1
|
Renouf B, Sutanto EN, Kidd C, Lim J, Amin M, Berry L, Hoyne GF, D'Vaz N, Kicic-Starcevich E, Stick SM, Iosifidis T. Profiling epithelial viral receptor expression in amniotic membrane and nasal epithelial cells at birth. Placenta 2025; 160:82-88. [PMID: 39778257 DOI: 10.1016/j.placenta.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium. METHODS Placenta were collected (n = 33) from newborns in AERIAL, a sub-study nested under the ORIGINS birth cohort. Using purified RNA from amniotic samples (n = 33), along with previously extracted RNA from nasal epithelial cells from newborns (n = 20), real-time quantitative polymerase chain reaction (qPCR) was performed to determine gene expression of viral receptors for RV, RSV and SARS-CoV-2 in both amniotic and newborn nasal epithelial samples. In addition, receptor protein expression was quantified through Western blot and localised using immunohistochemical staining in amniotic samples. RESULTS Amniotic and newborn nasal samples expressed various receptors for RV (ICAM-1, LDLR, CDHR3), RSV (NCL, CX3CR1) and SARS-CoV-2 (ACE2, TMPRSS2) at the gene level, although the magnitude of expression varied. In addition, protein expression of these receptors was confirmed in the amniotic samples. These proteins were localised to the epithelial layer of the amniotic membrane. CONCLUSION This proof-of-concept study indicates the potential of amniotic samples to facilitate investigation into the interactions between the in utero environment and prenatal programming of epithelial innate immune responses to viruses.
Collapse
Affiliation(s)
- Bailee Renouf
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia; School of Health Sciences, The University of Notre Dame Australia, Fremantle, 6160, Western Australia, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia; Centre for Child Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Courtney Kidd
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia
| | - James Lim
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia
| | - Minda Amin
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia
| | - Luke Berry
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia
| | - Gerard F Hoyne
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, 6160, Western Australia, Australia; Institute of Respiratory Health, QEII Medical Centre, Nedlands, 6009, Western Australia, Australia
| | - Nina D'Vaz
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia
| | | | - Stephen M Stick
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Thomas Iosifidis
- Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
2
|
Watkinson RL, Bochkov YA, Gern JE, Iosifidis T, Looi K, Laing IA, Kicic A. Investigation of Differentiated Nasal Epithelial Responses to Infection with Clinical Isolates of Rhinovirus A and C. Methods Mol Biol 2025; 2903:113-139. [PMID: 40016462 DOI: 10.1007/978-1-0716-4410-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The nasal epithelium is the primary point of contact for inhaled respiratory viruses such as rhinovirus, respiratory syncytial virus, influenza, and coronavirus, among others. In order to establish infection, these viruses must engage their respective receptors located on host epithelial cells and begin replication. However, the nasal epithelium is also a pivotal orchestrator of both structural and innate immune defenses against these pathogens and thus mounts a broad antiviral response to halt the progression of the infection into the lower airways. Of note, the most common virus found in the airways of children presenting to the hospital emergency department with acute wheezing and asthma is rhinovirus C (RV-C), followed by rhinovirus A (RV-A). Here, we illustrate infection of a preclinical differentiated nasal epithelial model with clinical isolates of RV-A and -C, in conjunction with several methods utilized for characterization of epithelial responses post-infection in vitro.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Yury A Bochkov
- Department of Paediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - James E Gern
- Department of Paediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Thomas Iosifidis
- Division of Paediatrics, School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Kevin Looi
- Division of Paediatrics, School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, WA, Australia.
- School of Population Health, Curtin University, Bentley, WA, Australia.
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
3
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Karpievitch YV, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway epithelium respiratory illnesses and allergy (AERIAL) birth cohort: study protocol. FRONTIERS IN ALLERGY 2024; 5:1349741. [PMID: 38666051 PMCID: PMC11043573 DOI: 10.3389/falgy.2024.1349741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.
Collapse
Affiliation(s)
| | - David G. Hancock
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Patricia Agudelo-Romero
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | | | | | - Desiree Silva
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
- Department of Paediatrics and Neonatology, Joondalup Health Campus, Joondalup, WA, Australia
- School of Medicine and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Peter N. Le Souef
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Anthony Bosco
- School of Population Health, Curtin University, Bentley, WA, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - David J. Martino
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Susan L. Prescott
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | - Stephen M. Stick
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
4
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
5
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) birth cohort: study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289314. [PMID: 37205501 PMCID: PMC10187351 DOI: 10.1101/2023.04.29.23289314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.
Collapse
|
6
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
7
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Landwehr KR, Nabi MN, Rasul MG, Kicic A, Mullins BJ. Biodiesel Exhaust Toxicity with and without Diethylene Glycol Dimethyl Ether Fuel Additive in Primary Airway Epithelial Cells Grown at the Air-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14640-14648. [PMID: 36177943 DOI: 10.1021/acs.est.2c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biodiesel usage is increasing steadily worldwide as the push for renewable fuel sources increases. The increased oxygen content in biodiesel fuel is believed to cause decreased particulate matter (PM) and increased nitrous oxides within its exhaust. The addition of fuel additives to further increase the oxygen content may contribute to even further benefits in exhaust composition. The aim of this study was to assess the toxicity of 10% (v/v) diethylene glycol dimethyl ether (DGDME) added as a biodiesel fuel additive. Primary human airway epithelial cells were grown at the air-liquid interface and exposed to diluted exhaust from an engine running on either grapeseed, bran, or coconut biodiesel or the same three biodiesels with 10% (v/v) DGDME added to them; mineral diesel and air were used as controls. Exhaust properties, culture permeability, epithelial cell damage, and IL-6 and IL-8 release were measured postexposure. The fuel additive DGDME caused a decrease in PM and nitrous oxide concentrations. However, exhaust exposure with DGDME also caused decreased permeability, increased epithelial cell damage, and increased release of IL-6 and IL-8 (p < 0.05). Despite the fuel additive having beneficial effects on the exhaust properties of the biodiesel, it was found to be more toxic.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Respiratory Environmental Health, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
| | - Md Nurun Nabi
- School of Engineering and Technology, Fuel and Energy Research Group, Central Queensland University, Perth, Western Australia 6000, Australia
| | - Mohammad G Rasul
- School of Engineering and Technology, Fuel and Energy Research Group, Central Queensland University, Rockhampton, Queensland 4701, Australia
| | - Anthony Kicic
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Respiratory Environmental Health, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Department of of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- St. John of God Hospital, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
9
|
Likońska A, Gawrysiak M, Gajewski A, Klimczak K, Michlewska S, Szewczyk R, Gulbas I, Chałubiński M. Human lung vascular endothelium may limit viral replication and recover in time upon the infection with rhinovirus HRV16. APMIS 2022; 130:678-685. [PMID: 35959516 DOI: 10.1111/apm.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Vascular endothelium is a semi-permeable barrier that regulates the flow of nutrients, ions, cytokines, and immune cells between blood and tissues. Barrier properties of endothelium, its ability to regenerate, and the potential for secretion of inflammatory mediators play a crucial role in maintaining local tissue homeostasis. The lung vascular endothelial cells was shown to be infected by human rhinovirus and generate antiviral, inflammatory and cytopathic responses. The current study reveals that in the long-time manner the lung vascular endothelium may efficiently limit the HRV replication via the IFN-dependent 2'-5'-oligoadenylate synthetase 1 (OAS1) activation. This leads to the restoration of integrity accompanied by the up-regulation of adherens and tight junctions, increase of metabolic activity, and proliferation rate. Secondly, HRV16-infected cells show delayed and transient up-regulation of the expression of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin 1 and 2, and neurophilin-1 (NRP-1), as well as VEGF receptors. The lung vascular endothelium infected with HRV may limit the infection, recover in time, and regain barrier properties and metabolic functions, thus leading to the restoration of integrated barrier tissue.
Collapse
Affiliation(s)
- Aleksandra Likońska
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Kinga Klimczak
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland;Banacha12/16, 90-237 Lodz, Poland
| | - Robert Szewczyk
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Izabela Gulbas
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
10
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155016. [PMID: 35381248 DOI: 10.1016/j.scitotenv.2022.155016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock used to create it. The aim of this study was to assess the different toxicological properties of biodiesel exhausts created from different feedstocks using a complex 3D air-liquid interface (ALI) model that mimics the human airway. Primary human airway epithelial cells were grown at ALI until full differentiation was achieved. Cells were then exposed to 1/20 diluted exhaust from an engine running on Diesel (ULSD), pure or 20% blended Canola biodiesel and pure or 20% blended Tallow biodiesel, or Air for control. Exhaust was analysed for various physio-chemical properties and 24-h after exposure, ALI cultures were assessed for permeability, protein release and mediator response. All measured exhaust components were within industry safety standards. ULSD contained the highest concentrations of various combustion gases. We found no differences in terms of particle characteristics for any of the tested exhausts, likely due to the high dilution used. Exposure to Tallow B100 and B20 induced increased permeability in the ALI culture and the greatest increase in mediator response in both the apical and basal compartments. In contrast, Canola B100 and B20 did not impact permeability and induced the smallest mediator response. All exhausts but Canola B20 induced increased protein release, indicating epithelial damage. Despite the concentrations of all exhausts used in this study meeting industry safety regulations, we found significant toxic effects. Tallow biodiesel was found to be the most toxic of the tested fuels and Canola the least, both for blended and pure biodiesel fuels. This suggests that the feedstock biodiesel is made from is crucial for the resulting health effects of exhaust exposure, even when not comprising the majority of fuel composition.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
11
|
Gwatimba A, Rosenow T, Stick SM, Kicic A, Iosifidis T, Karpievitch YV. AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma. J Pers Med 2022; 12:jpm12050809. [PMID: 35629232 PMCID: PMC9146422 DOI: 10.3390/jpm12050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound repair assays can be used to identify compounds that modulate airway repair in childhood asthma. Manual cell tracking has been used to determine cell trajectories and wound closure rates, but is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial intelligence, analyzes high-throughput drug screening experiments and produces multiple wound repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training data generation requirements for researchers working with other cell types. EPIC outperformed publicly available software in our wound repair datasets by achieving human-level cell tracking accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial repair for children with asthma but can be applied in other cellular contexts by outperforming the same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput drug screening targeting airway epithelial repair for children with asthma.
Collapse
Affiliation(s)
- Alphons Gwatimba
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Computer Science and Software Engineering, University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence:
| | - Tim Rosenow
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, WA 6009, Australia
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Thomas Iosifidis
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Yuliya V. Karpievitch
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
12
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma. Front Immunol 2021; 12:731807. [PMID: 34899691 PMCID: PMC8660125 DOI: 10.3389/fimmu.2021.731807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic respiratory disease affecting people of all ages, especially children, worldwide. Origins of asthma are suggested to be placed in early life with heterogeneous clinical presentation, severity and pathophysiology. Exacerbations of asthma disease can be triggered by many factors, including viral respiratory tract infections. Rhinovirus (RV) induced respiratory infections are the predominant cause of the common cold and also play a crucial role in asthma development and exacerbations. Rhinovirus mainly replicates in epithelial cells lining the upper and lower respiratory tract. Type III interferons, also known as interferon-lambda (IFNλ), are potent immune mediators of resolution of infectious diseases but they are known to be involved in autoimmune diseases as well. The protective role of type III IFNs in antiviral, antibacterial, antifungal and antiprotozoal functions is of major importance for our innate immune system. The IFNλ receptor (IFNλR) is expressed in selected types of cells like epithelial cells, thus orchestrating a specific immune response at the site of viruses and bacteria entry into the body. In asthma, IFNλ restricts the development of TH2 cells, which are induced in the airways of asthmatic patients. Several studies described type III IFNs as the predominant type of interferon increased after infection caused by respiratory viruses. It efficiently reduces viral replication, viral spread into the lungs and viral transmission from infected to naive individuals. Several reports showed that bronchial epithelial cells from asthmatic subjects have a deficient response of type III interferon after RV infection ex vivo. Toll like Receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, and induce the development of antiviral and antibacterial immunity. We recently discovered that activation of TLR7/8 resulted in enhanced IFNλ receptor mRNA expression in PBMCs of healthy and asthmatic children, opening new therapeutic frontiers for rhinovirus-induced asthma. This article reviews the recent advances of the literature on the regulated expression of type III Interferons and their receptor in association with rhinovirus infection in asthmatic subjects.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cristina Sicorschi Gutu
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mircea T Chiriac
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Yuksel H, Ocalan M, Yilmaz O. E-Cadherin: An Important Functional Molecule at Respiratory Barrier Between Defence and Dysfunction. Front Physiol 2021; 12:720227. [PMID: 34671272 PMCID: PMC8521047 DOI: 10.3389/fphys.2021.720227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
While breathing, many microorganisms, harmful environmental particles, allergens, and environmental pollutants enter the human airways. The human respiratory tract is lined with epithelial cells that act as a functional barrier to these harmful factors and provide homeostasis between external and internal environment. Intercellular epithelial junctional proteins play a role in the formation of the barrier. E-cadherin is a calcium-dependent adhesion molecule and one of the most important molecules involved in intercellular epithelial barier formation. E-cadherin is not only physical barrier element but also regulates cell proliferation, differentiation and the immune response to environmental noxious agents through various transcription factors. In this study, we aimed to review the role of E-cadherin in the formation of airway epithelial barier, its status as a result of exposure to various environmental triggers, and respiratory diseases associated with its dysfunction. Moreover, the situations in which its abnormal activation can be noxious would be discussed.
Collapse
Affiliation(s)
- Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Merve Ocalan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
15
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
16
|
Gawrysiak M, Gajewski A, Szewczyk R, Likońska A, Michlewska S, Chmiela M, Kowalski ML, Chałubiński M. Human rhinovirus HRV16 impairs barrier functions and regeneration of human lung vascular endothelium. Allergy 2021; 76:1872-1875. [PMID: 33247950 DOI: 10.1111/all.14671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Mateusz Gawrysiak
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Robert Szewczyk
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
- Department of Immunology and Infectious Biology Institute of Microbiology, Biotechnology and Immunology Faculty of Biology and Environmental Protection University of Lodz Lodz Poland
| | | | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques Faculty of Biology and Environmental Protection University of Lodz Lodz Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology Institute of Microbiology, Biotechnology and Immunology Faculty of Biology and Environmental Protection University of Lodz Lodz Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| |
Collapse
|
17
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
19
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
20
|
Hunderi JOG, Rolfsjord LB, Carlsen KCL, Holst R, Bakkeheim E, Berents TL, Carlsen KH, Skjerven HO. Virus, allergic sensitisation and cortisol in infant bronchiolitis and risk of early asthma. ERJ Open Res 2020; 6:00268-2019. [PMID: 32201686 PMCID: PMC7073413 DOI: 10.1183/23120541.00268-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background Acute bronchiolitis during infancy and human rhinovirus (HRV) lower respiratory tract infections increases the risk of asthma in atopic children. We aimed to explore whether specific viruses, allergic sensitisation or cortisol levels during acute bronchiolitis in infancy increase the risk of early asthma, using recurrent wheeze as a proxy. Methods In 294 children with a mean (range) age of 4.2 (0–12) months enrolled during hospitalisation for acute infant bronchiolitis, we analysed virus in nasopharyngeal aspirates, serum specific immunoglobulin E against food and inhalant allergens, and salivary morning cortisol. These factors were assessed by regression analyses, adjusted for age, sex and parental atopy, for risk of recurrent wheeze, defined as a minimum of three parentally reported episodes of wheeze at the 2-year follow-up investigation. Results At 2 years, children with, compared to without, recurrent wheeze had similar rates of respiratory syncytial virus (RSV) (82.9% versus 81.8%) and HRV (34.9% versus 35.0%) at the acute bronchiolitis, respectively. During infancy, 6.9% of children with and 9.2% of children without recurrent wheeze at 2 years were sensitised to at least one allergen (p=0.5). Neither recurrent wheeze nor incidence rate ratios for the number of wheeze episodes at 2 years were significantly associated with specific viruses, high viral load of RSV or HRV, allergic sensitisation, or morning salivary cortisol level during acute bronchiolitis in infancy. Conclusion In children hospitalised with acute infant bronchiolitis, specific viruses, viral load, allergic sensitisation and salivary morning cortisol did not increase the risk of early asthma by 2 years of age. In infants with acute bronchiolitis, specific viruses including human rhinovirus, viral load and/or allergic sensitisation did not increase the risk of asthma by 2 years of age.http://bit.ly/2tCE9Yd
Collapse
Affiliation(s)
- Jon Olav Gjengstø Hunderi
- Dept of Pediatrics and Adolescent Medicine, Østfold Hospital Trust, Grålum, Norway.,Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Leif Bjarte Rolfsjord
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Dept of Pediatrics, Innlandet Hospital Trust, Elverum, Norway
| | - Karin C Lødrup Carlsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - René Holst
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Egil Bakkeheim
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Teresa Løvold Berents
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Dept of Dermatology, Oslo University Hospital, Oslo, Norway
| | - Kai-Håkon Carlsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Håvard Ove Skjerven
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Liu JJ, Zhang T, Mi YM. [Effects of respiratory syncytial virus infection on epidermal growth factor receptor, tight junction association proteins and mucin in airway epithelial cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:294-299. [PMID: 30907357 PMCID: PMC7389363 DOI: 10.7499/j.issn.1008-8830.2019.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effects of respiratory syncytial virus (RSV) infection on epidermal growth factor receptor (EGFR), tight junction association proteins and mucin in the human airway epithelial cells. METHODS Human airway epithelial cells NCI-H292 were randomly treated by ultraviolet light-inactivated RSV (control group) or thawed RSV (RSV infection group). After 48 hours of treatment, the protein levels of occludin, E-cadherin, phosphorylated EGFR and EGFR in NCI-H292 cells were measured by Western blot. The distribution and expression levels of occludin and E-cadherin in NCI-H292 cells were examined by immunofluorescence technique. The expression levels of MUC5AC mRNA in NCI-H292 cells were assessed by RT-PCR. RESULTS The protein levels of occludin and E-cadherin were significantly reduced in the RSV infection group compared with the control group (P<0.05). The protein levels of phosphorylated EGFR and EGFR increased significantly in the RSV infection group compared with the control group (P<0.05). The MUC5AC mRNA levels also increased significantly in the RSV infection group compared with the control group (P<0.05). CONCLUSIONS RSV may down-regulate the tight junction association proteins and up-regulate the expression of MUC5AC in airway epithelial cells, which contributes to epithelial barrier dysfunction. EGFR phosphorylation may play an important role in regulation of airway barrier.
Collapse
Affiliation(s)
- Juan-Juan Liu
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | | | | |
Collapse
|
22
|
Kalsi KK, Garnett JP, Patkee W, Weekes A, Dockrell ME, Baker EH, Baines DL. Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCζ-mediated phosphorylation of occludin. J Cell Mol Med 2018; 23:317-327. [PMID: 30450773 PMCID: PMC6307806 DOI: 10.1111/jcmm.13929] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
Airway epithelial tight junction (TJ) proteins form a resistive barrier to the external environment, however, during respiratory bacterial infection TJs become disrupted compromising barrier function. This promotes glucose flux/accumulation into the lumen which acts as a nutrient source for bacterial growth. Metformin used for the treatment of diabetes increases transepithelial resistance (TEER) and partially prevents the effect of bacteria but the mechanisms of action are unclear. We investigated the effect of metformin and Staphylococcus aureus on TJ proteins, zonula occludins (ZO)-1 and occludin in human airway epithelial cells (H441). We also explored the role of AMP-activated protein kinase (AMPK) and PKCζ in metformin-induced effects. Pretreatment with metformin prevented the S. aureus-induced changes in ZO-1 and occludin. Metformin also promoted increased abundance of full length over smaller cleaved occludin proteins. The nonspecific PKC inhibitor staurosporine reduced TEER but did not prevent the effect of metformin indicating that the pathway may involve atypical PKC isoforms. Investigation of TJ reassembly after calcium depletion showed that metformin increased TEER more rapidly and promoted the abundance and localization of occludin at the TJ. These effects were inhibited by the AMPK inhibitor, compound C and the PKCζ pseudosubstrate inhibitor (PSI). Metformin increased phosphorylation of occludin and acetyl-coA-carboxylase but only the former was prevented by PSI. This study demonstrates that metformin improves TJ barrier function by promoting the abundance and assembly of full length occludin at the TJ and that this process involves phosphorylation of the protein via an AMPK-PKCζ pathway.
Collapse
Affiliation(s)
- Kameljit K. Kalsi
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - James P. Garnett
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Present address:
Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Wishwanath Patkee
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Alexina Weekes
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Mark E. Dockrell
- South West Thames Institute for Renal ResearchSt Helier HospitalCarshaltonUK
| | - Emma H. Baker
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Deborah L. Baines
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
23
|
Toll-Like Receptor Agonists Modulate Wound Regeneration in Airway Epithelial Cells. Int J Mol Sci 2018; 19:ijms19082456. [PMID: 30127243 PMCID: PMC6121421 DOI: 10.3390/ijms19082456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Impaired regeneration of airway epithelium may lead to persistence of inflammation and remodelling. Regeneration of injured epithelium is a complex phenomenon and the role of toll-like receptors (TLRs) in the stimulation of respiratory virus products in this process has not been established. Objective: This study was undertaken to test the hypothesis that the wound repair process in airway epithelium is modulated by microbial products via toll-like receptors. Methods: Injured and not-injured bronchial epithelial cells (ECs) (BEAS-2B line) were incubated with the TLR agonists poly(I:C), lipopolisacharide (LPS), allergen Der p1, and supernatants from virus-infected epithelial cells, either alone or in combination with TLR inhibitors. Regeneration and immune response in injured and not-injured cells were studied. Results: Addition of either poly(I:C) or LPS to ECs induced a marked inhibition of wound repair. Supernatants from RV1b-infected cells also decreased regeneration. Preincubation of injured and not-injured ECs with TLR inhibitors decreased LPS and poly(I:C)-induced repair inhibition. TGF-β and RANTES mRNA expression was higher in injured ECs and IFN-α, IFN-β, IL-8, and VEGF mRNA expression was lower in damaged epithelium as compared to not-injured. Stimulation with poly(I:C) increased IFN-α and IFN-β mRNA expression in injured cells, and LPS stimulation decreased interferons mRNA expression both in not-injured and injured ECs. Conclusion: Regeneration of the airway epithelium is modulated by microbial products via toll-like receptors.
Collapse
|
24
|
Haag P, Sharma H, Rauh M, Zimmermann T, Vuorinen T, Papadopoulos NG, Weiss ST, Finotto S. Soluble ST2 regulation by rhinovirus and 25(OH)-vitamin D3 in the blood of asthmatic children. Clin Exp Immunol 2018; 193:207-220. [PMID: 29645082 PMCID: PMC6046486 DOI: 10.1111/cei.13135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Paediatric asthma exacerbations are often caused by rhinovirus (RV). Moreover, 25(OH)-vitamin D3 (VitD3) deficiency during infancy was found associated with asthma. Here, we investigated the innate immune responses to RV and their possible modulation by 25(OH)-VitD3 serum levels in a preschool cohort of children with and without asthma. The innate lymphoid cell type 2 (ILC2)-associated marker, ST2, was found up-regulated in the blood cells of asthmatic children with low serum levels of 25(OH)-VitD3 in the absence of RV in their airways. Furthermore, in blood cells from control and asthmatic children with RV in their airways, soluble (s) ST2 (sST2) protein was found reduced. Asthmatic children with low 25(OH)-VitD3 in serum and with RV in vivo in their airways at the time of the analysis had the lowest sST2 protein levels in the peripheral blood compared to control children without RV and high levels of 25(OH)-VitD3. Amphiregulin (AREG), another ILC2-associated marker, was found induced in the control children with RV in their airways and low serum levels of 25(OH)-VitD3. In conclusion, the anti-inflammatory soluble form of ST2, also known as sST2, in serum correlated directly with interleukin (IL)-33 in the airways of asthmatic children. Furthermore, RV colonization in the airways and low serum levels of 25(OH)-VitD3 were found to be associated with down-regulation of sST2 in serum in paediatric asthma. These data indicate a counter-regulatory role of 25(OH)-VitD3 on RV-induced down-regulation of serum sST2 in paediatric asthma, which is relevant for the therapy of this disease.
Collapse
Affiliation(s)
- P. Haag
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - H. Sharma
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - M. Rauh
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Zimmermann
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Vuorinen
- Department of VirologyUniversity of TurkuTurkuFinland
| | - N. G. Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and KapodistriaUniversity of AthensAthensGreece
| | - S. T. Weiss
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - S. Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
25
|
Looi K, Buckley AG, Rigby PJ, Garratt LW, Iosifidis T, Zosky GR, Larcombe AN, Lannigan FJ, Ling KM, Martinovich KM, Kicic-Starcevich E, Shaw NC, Sutanto EN, Knight DA, Kicic A, Stick SM. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma. Clin Exp Allergy 2018; 48:513-524. [PMID: 29350877 DOI: 10.1111/cea.13097] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma. OBJECTIVES To investigate the impact of HRV infection on airway epithelial TJ expression and barrier function in airway epithelial cells (AECs) of children with and without asthma. Furthermore, to test the hypothesis that barrier integrity and function is compromised to a greater extent by HRV in AECs from asthmatic children. METHODS Primary AECs were obtained from children with and without asthma, differentiated into air-liquid interface (ALI) cultures and infected with rhinovirus. Expression of claudin-1, occludin and zonula occluden-1 (ZO-1) was assessed via qPCR, immunocytochemistry (ICC), in-cell western (ICW) and confocal microscopy. Barrier function was assessed by transepithelial electrical resistance (TER; RT ) and permeability to fluorescent dextran. RESULTS Basal TJ gene expression of claudin-1 and occludin was significantly upregulated in asthmatic children compared to non-asthmatics; however, no difference was seen with ZO-1. Interestingly, claudin-1, occludin and ZO-1 protein expression was significantly reduced in AEC of asthmatic children compared to non-asthmatic controls suggesting possible post-transcriptional inherent differences. HRV infection resulted in a transient dissociation of TJ and airway barrier integrity in non-asthmatic children. Although similar dissociation of TJ was observed in asthmatic children, a significant and sustained reduction in TJ expression concurrent with both a significant decrease in TER and an increase in permeability in asthmatic children was observed. CONCLUSION This study demonstrates novel intrinsic differences in TJ gene and protein expression between AEC of children with and without asthma. Furthermore, it correlates directly the relationship between HRV infection and the resultant dissociation of epithelial TJ that causes a continued altered barrier function in children with asthma.
Collapse
Affiliation(s)
- K Looi
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - A G Buckley
- Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia, Crawley, WA, Australia
| | - P J Rigby
- Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia, Crawley, WA, Australia
| | - L W Garratt
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - T Iosifidis
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands, WA, Australia
| | - G R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hohart, TAS, Australia
| | - A N Larcombe
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth, WA, Australia
| | - F J Lannigan
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,School of Medicine, Notre Dame University, Fremantle, WA, Australia
| | - K-M Ling
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - K M Martinovich
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - E Kicic-Starcevich
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - N C Shaw
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - E N Sutanto
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - D A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - A Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - S M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| |
Collapse
|
26
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int 2018; 67:12-17. [PMID: 28941636 DOI: 10.1016/j.alit.2017.08.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function.
Collapse
|