1
|
Gazdzinski LM, Chung L, Spring S, Botelho O, Stefanovic B, Nieman BJ, Heyn CC, Sled JG. Minimally invasive measurement of carotid artery and brain temperature in the mouse. Magn Reson Med 2025; 93:2049-2058. [PMID: 39775951 DOI: 10.1002/mrm.30405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals. This work presents a methodology to measure both brain and arterial blood temperature in anesthetized mice by MRI using a paramagnetic lanthanide complex: thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (TmDOTMA-). METHODS A phase-based imaging approach using a multi-TE gradient echo sequence was used to measure the temperature-dependent chemical shift difference between thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid methyl protons and water, and from this calculate absolute temperature using calibration data. RESULTS In a series of mice in which core body temperature was held stable but at different values within the range of 33° to 37°C, brain temperature away from the midline was independent of carotid artery blood temperature. In contrast, midline voxels correlated with carotid artery blood temperature, likely reflecting the preponderance of larger arteries and veins in this region. CONCLUSION These results are consistent with brain temperature being actively regulated. A limitation of the present implementation is that the spatial resolution in the brain is coarse relative to the size of the mouse brain, and further optimization is required for this method to be applied for finer spatial scale mapping or to characterize focal pathology.
Collapse
Affiliation(s)
- Lisa M Gazdzinski
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Luke Chung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shoshana Spring
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Owen Botelho
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Brian J Nieman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Chinthaka C Heyn
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ge X, Mohapatra J, Silva E, He G, Gong L, Lyu T, Madhogaria RP, Zhao X, Cheng Y, Al-Enizi AM, Nafady A, Tian J, Liu JP, Phan MH, Taraballi F, Pettigrew RI, Ma S. Metal-Organic Framework as a New Type of Magnetothermally-Triggered On-Demand Release Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306940. [PMID: 38127968 DOI: 10.1002/smll.202306940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Jeotikanta Mohapatra
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Enya Silva
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Guihua He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Lingshan Gong
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Richa P Madhogaria
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Xin Zhao
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuchuan Cheng
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - J Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston Methodist Academic Institute, Houston, Texas, 77030, USA
| | - Roderic I Pettigrew
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| |
Collapse
|
3
|
Mysegaes F, Spiteller P, Bernarding J, Plaumann M. 19 F VT NMR: Novel Tm 3+ and Ce 3+ Complexes Provide New Insight into Temperature Measurement Using Molecular Sensors. Chemphyschem 2023; 24:e202300057. [PMID: 37384817 DOI: 10.1002/cphc.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
In the past few decades, magnetic resonance spectroscopy (MRS) and MR imaging (MRI) have developed into a powerful non-invasive tool for medical diagnostic and therapy. Especially 19 F MR shows promising potential because of the properties of the fluorine atom and the negligible background signals in the MR spectra. The detection of temperature in a living organism is quite difficult, and usually external thermometers or fibers are used. Temperature determination via MRS needs temperature-sensitive contrast agents. This article reports first results of solvent and structural influences on the temperature sensitivity of 19 F NMR signals of chosen molecules. By using this chemical shift sensitivity, a local temperature can be determined with a high precision. Based on this preliminary study, we synthesized five metal complexes and compared the results of all variable temperature measurements. It is shown that the highest 19 F MR signal temperature dependence is detectable for a fluorine nucleus in a Tm3+ -complex.
Collapse
Affiliation(s)
- Felix Mysegaes
- University Bremen, Instrumental Analytics, Leobener Str. 7, 28359, Bremen, Germany
- Otto-von-Guericke University Magdeburg, Medical Faculty, Institute of Biometry and Medical Informatics, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Spiteller
- University Bremen, Instrumental Analytics, Leobener Str. 7, 28359, Bremen, Germany
| | - Johannes Bernarding
- Otto-von-Guericke University Magdeburg, Medical Faculty, Institute of Biometry and Medical Informatics, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Markus Plaumann
- Otto-von-Guericke University Magdeburg, Medical Faculty, Institute of Biometry and Medical Informatics, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
4
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
5
|
Keenan KE, Stupic KF, Russek SE, Mirowski E. MRI-visible liquid crystal thermometer. Magn Reson Med 2020; 84:1552-1563. [PMID: 32112464 PMCID: PMC7875457 DOI: 10.1002/mrm.28224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE MRI parameters, such as T1 , T2 , and ADC, of tissue-mimicking materials in MRI phantoms can exhibit temperature dependence, and bore temperatures can vary over a 10°C range across different MRI systems. If this variation is not accurately corrected for, the quantitative nature of reference or phantom measurements is irrelevant. Available thermometers require opening the phantoms to probe the temperature, which can introduce contaminants that may affect the stability and accuracy of the phantom. An integrated, MRI-visible thermometer that can be read using typical imaging protocols is needed. THEORY AND METHODS An MRI-compatible thermometer was designed using liquid crystals (LCs) that exhibit rapid transitions between the LC cholesteric state and isotropic state in the room temperature range spanning 17°C to 23°C in 1.0°C increments. The LC thermometer was assessed visually and using superconducting quantum interference device magnetometry, NMR, and MRI techniques. RESULTS The signal generated from the LC thermometer was visible with spin-echo and gradient-echo MRI images. The LC state transition temperatures were visually referenced to a National Institute of Standards and Technology-traceable thermometer, and these LC state transitions were confirmed using superconducting quantum interference device magnetometry and NMR. CONCLUSIONS The LC MR-visible thermometer had measurable changes in relative signal with temperature, which were invariant to a variety of imaging sequences used.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado
| | - Karl F. Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado
| | - Stephen E. Russek
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado
| | | |
Collapse
|
6
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Dehkharghani S, Qiu D. MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging. AJNR Am J Neuroradiol 2020; 41:555-565. [PMID: 32139425 DOI: 10.3174/ajnr.a6455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and develops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenomena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral temperature, perfusion, metabolism, and viability.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology (S.D.), New York University Langone Health, New York, New York
| | - D Qiu
- Department of Radiology (D.Q.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
8
|
Zhang SY, Wang ZY, Gao J, Wang K, Gianolio E, Aime S, Shi W, Zhou Z, Cheng P, Zaworotko MJ. A Gadolinium(III) Zeolite-like Metal-Organic-Framework-Based Magnetic Resonance Thermometer. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Two types of conformational dynamics and thermo-sensor properties of praseodymium-DOTA by 1H/13C NMR. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
11
|
Hyder F, Manjura Hoque S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6387217. [PMID: 29375280 PMCID: PMC5742516 DOI: 10.1155/2017/6387217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pHe) is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - S. Manjura Hoque
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
12
|
Heyn CC, Bishop J, Duffin K, Lee W, Dazai J, Spring S, Nieman BJ, Sled JG. Magnetic resonance thermometry of flowing blood. NMR IN BIOMEDICINE 2017; 30:e3772. [PMID: 28686319 DOI: 10.1002/nbm.3772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Blood temperature is a key determinant of tissue temperature and can be altered under normal physiological states, such as exercise, in diseases such as stroke or iatrogenically in therapies which modulate tissue temperature, such as therapeutic hypothermia. Currently available methods for the measurement of arterial and venous temperatures are invasive and, for small animal models, are impractical. Here, we present a methodology for the measurement of intravascular and tissue temperature by magnetic resonance imaging (MRI) using the lanthanide agent TmDOTMA- (DOTMA, tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Tm, thulium). The approach makes use of phase-sensitive imaging measurements, combined with spectrally selective excitation, to monitor the temperature-dependent shift in the resonance of proton nuclei associated with water and with methyl groups of TmDOTMA- . Measurements were first made in a flow phantom modelling diastolic blood flow in the mouse aorta or inferior vena cava (IVC) and imaged using 7-T preclinical MRI with a custom-built surface coil. Flowing and static fluid temperatures agreed to within 0.12°C for these experiments. Proof-of-concept experiments were also performed on three healthy adult mice, demonstrating temperature measurements in the aorta, IVC and kidney following a bolus injection of contrast agent. A small (0.7-1°C), but statistically significant, higher kidney temperature compared with the aorta (p = 0.002-0.007) and IVC (p = 0.003-0.03) was shown in all animals. These findings demonstrate the feasibility of the technique for in vivo applications and illustrate how the technique could be used to explore the relationship between blood and tissue temperature for a wide range of applications.
Collapse
Affiliation(s)
- Chinthaka C Heyn
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jonathan Bishop
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyle Duffin
- Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Wayne Lee
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jun Dazai
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shoshana Spring
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Thorarinsdottir AE, Gaudette AI, Harris TD. Spin-crossover and high-spin iron(ii) complexes as chemical shift 19F magnetic resonance thermometers. Chem Sci 2017; 8:2448-2456. [PMID: 28694955 PMCID: PMC5477811 DOI: 10.1039/c6sc04287b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
The potential utility of paramagnetic transition metal complexes as chemical shift 19F magnetic resonance (MR) thermometers is demonstrated. Further, spin-crossover FeII complexes are shown to provide much higher temperature sensitivity than do the high-spin analogues, owing to the variation of spin state with temperature in the former complexes. This approach is illustrated through a series of FeII complexes supported by symmetrically and asymmetrically substituted 1,4,7-triazacyclononane ligand scaffolds bearing 3-fluoro-2-picolyl derivatives as pendent groups (L x ). Variable-temperature magnetic susceptibility measurements, in conjunction with UV-vis and NMR data, show thermally-induced spin-crossover for [Fe(L1)]2+ in H2O, with T1/2 = 52(1) °C. Conversely, [Fe(L2)]2+ remains high-spin in the temperature range 4-61 °C. Variable-temperature 19F NMR spectra reveal the chemical shifts of the complexes to exhibit a linear temperature dependence, with the two peaks of the spin-crossover complex providing temperature sensitivities of +0.52(1) and +0.45(1) ppm per °C in H2O. These values represent more than two-fold higher sensitivity than that afforded by the high-spin analogue, and ca. 40-fold higher sensitivity than diamagnetic perfluorocarbon-based thermometers. Finally, these complexes exhibit excellent stability in a physiological environment, as evidenced by 19F NMR spectra collected in fetal bovine serum.
Collapse
Affiliation(s)
- Agnes E Thorarinsdottir
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Alexandra I Gaudette
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| |
Collapse
|
14
|
Senanayake PK, Rogers NJ, Finney KLNA, Harvey P, Funk AM, Wilson JI, O'Hogain D, Maxwell R, Parker D, Blamire AM. A new paramagnetically shifted imaging probe for MRI. Magn Reson Med 2016; 77:1307-1317. [PMID: 26922918 PMCID: PMC5324534 DOI: 10.1002/mrm.26185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop and characterize a new paramagnetic contrast agent for molecular imaging by MRI. METHODS A contrast agent was developed for direct MRI detection through the paramagnetically shifted proton magnetic resonances of two chemically equivalent tert-butyl reporter groups within a dysprosium(III) complex. The complex was characterized in phantoms and imaged in physiologically intact mice at 7 Tesla (T) using three-dimensional (3D) gradient echo and spectroscopic imaging (MRSI) sequences to measure spatial distribution and signal frequency. RESULTS The reporter protons reside ∼6.5 Å from the paramagnetic center, resulting in fast T1 relaxation (T1 = 8 ms) and a large paramagnetic frequency shift exceeding 60 ppm. Fast relaxation allowed short scan repetition times with high excitation flip angle, resulting in high sensitivity. The large dipolar shift allowed direct frequency selective excitation and acquisition of the dysprosium(III) complex, independent of the tissue water signal. The biokinetics of the complex were followed in vivo with a temporal resolution of 62 s following a single, low-dose intravenous injection. The lower concentration limit for detection was ∼23 μM. Through MRSI, the temperature dependence of the paramagnetic shift (0.28 ppm.K-1 ) was exploited to examine tissue temperature variation. CONCLUSIONS These data demonstrate a new MRI agent with the potential for physiological monitoring by MRI. Magn Reson Med 77:1307-1317, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
| | - Nicola J Rogers
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | | | - Peter Harvey
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Alexander M Funk
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - J Ian Wilson
- Northern Institute for Cancer Research, Newcastle University, United Kingdom
| | - Dara O'Hogain
- Institute of Cellular Medicine & Newcastle MR Centre, Newcastle University, United Kingdom
| | - Ross Maxwell
- Northern Institute for Cancer Research, Newcastle University, United Kingdom
| | - David Parker
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Andrew M Blamire
- Institute of Cellular Medicine & Newcastle MR Centre, Newcastle University, United Kingdom
| |
Collapse
|
15
|
Tsitovich PB, Cox JM, Benedict JB, Morrow JR. Six-coordinate Iron(II) and Cobalt(II) paraSHIFT Agents for Measuring Temperature by Magnetic Resonance Spectroscopy. Inorg Chem 2016; 55:700-16. [PMID: 26716610 PMCID: PMC5555598 DOI: 10.1021/acs.inorgchem.5b02144] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paramagnetic Fe(II) and Co(II) complexes are utilized as the first transition metal examples of (1)H NMR shift agents (paraSHIFT) for thermometry applications using Magnetic Resonance Spectroscopy (MRS). The coordinating ligands consist of TACN (1,4,7-triazacyclononane) and CYCLEN (1,4,7,10-tetraazacyclododecane) azamacrocycles appended with 6-methyl-2-picolyl groups, denoted as MPT and TMPC, respectively. (1)H NMR spectra of the MPT- and TMPC-based Fe(II) and Co(II) complexes demonstrate narrow and highly shifted resonances that are dispersed as broadly as 440 ppm. The six-coordinate complex cations, [M(MPT)](2+) and [M(TMPC)](2+), vary from distorted octahedral to distorted trigonal prismatic geometries, respectively, and also demonstrate that 6-methyl-2-picolyl pendents control the rigidity of these complexes. Analyses of the (1)H NMR chemical shifts, integrated intensities, line widths, the distances obtained from X-ray diffraction measurements, and longitudinal relaxation time (T1) values allow for the partial assignment of proton resonances of the [M(MPT)](2+) complexes. Nine and six equivalent methyl protons of [M(MPT)](2+) and [M(TMPC)](2+), respectively, produce 3-fold higher (1)H NMR intensities compared to other paramagnetically shifted proton resonances. Among all four complexes, the methyl proton resonances of [Fe(TMPC)](2+) and [Co(TMPC)](2+) at -49.3 ppm and -113.7 ppm (37 °C) demonstrate the greatest temperature dependent coefficients (CT) of 0.23 ppm/°C and 0.52 ppm/°C, respectively. The methyl groups of these two complexes both produce normalized values of |CT|/fwhm = 0.30 °C(-1), where fwhm is full width at half-maximum (Hz) of proton resonances. The T1 values of the highly shifted methyl protons are in the range of 0.37-2.4 ms, allowing rapid acquisition of spectroscopic data. These complexes are kinetically inert over a wide range of pH values (5.6-8.6), as well as in the presence of serum albumin and biologically relevant cations and anions. The combination of large hyperfine shifts, large temperature sensitivity, increased signal-to-noise ratio, and short T1 values suggests that these complexes, in particular the TMPC-based complexes, show promise as paraSHIFT agents for thermometry.
Collapse
Affiliation(s)
- Pavel B. Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jordan M. Cox
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
16
|
Dharmadhikari S, James JR, Nyenhuis J, Bansal N. Evaluation of radiofrequency safety by high temperature resolution MR thermometry using a paramagnetic lanthanide complex. Magn Reson Med 2015; 75:2121-9. [DOI: 10.1002/mrm.25792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shalmali Dharmadhikari
- School of Health Sciences, Purdue University; West Lafayette Indiana USA
- Department of Radiology and Imaging Sciences; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Judy R. James
- Department of Radiology; Mayo Clinic, Scottsdale; Arizona USA
| | - John Nyenhuis
- Department of Electrical and Computer Engineering; Purdue University; West Lafayette Indiana USA
| | - Navin Bansal
- Department of Radiology and Imaging Sciences; Indiana University School of Medicine; Indianapolis Indiana USA
| |
Collapse
|
17
|
Döpfert J, Witte C, Schröder L. Slice-selective gradient-encoded CEST spectroscopy for monitoring dynamic parameters and high-throughput sample characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:34-39. [PMID: 24135801 DOI: 10.1016/j.jmr.2013.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) NMR is an increasingly used technique for generating molecule or microenvironment specific signal contrast. To characterize CEST agents and to extract parameters such as temperature and pH, it is often required to resolve the spectral dimension. This is achieved by recording so called CEST- or z-spectra, where the spectral CEST information is conventionally acquired point by point, leading to long acquisition times. Here, we employ gradient-encoding to substantially accelerate the acquisition process of z-spectra in phantom experiments, reducing it to only two scans. This speedup allows us to monitor dynamic processes such as rapid temperature changes in a PARACEST sample that would be inaccessible with the conventional encoding. Furthermore, we combine the gradient-encoding approach with multi-slice selection, thus reserving one spatial dimension for the simultaneous investigation of heterogeneous PARACEST sample packages within one experiment. Hence, gradient-encoded CEST might be of great use for high-throughput screening of CEST contrast agents.
Collapse
Affiliation(s)
- Jörg Döpfert
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Leif Schröder
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
18
|
Shrivastava D, Abosch A, Hughes J, Goerke U, DelaBarre L, Visaria R, Harel N, Vaughan JT. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys Med Biol 2012; 57:5651-65. [PMID: 22892760 DOI: 10.1088/0031-9155/57/17/5651] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heating induced near deep brain stimulation (DBS) lead electrodes during magnetic resonance imaging with a 3 T transceive head coil was measured, modeled, and imaged in three cadaveric porcine heads (mean body weight = 85.47 ± 3.19 kg, mean head weight = 5.78 ± 0.32 kg). The effect of the placement of the extra-cranial portion of the DBS lead on the heating was investigated by looping the extra-cranial lead on the top, side, and back of the head, and placing it parallel to the coil's longitudinal axial direction. The heating was induced using a 641 s long turbo spin echo sequence with the mean whole head average specific absorption rate of 3.16 W kg(-1). Temperatures were measured using fluoroptic probes at the scalp, first and second electrodes from the distal lead tip, and 6 mm distal from electrode 1 (T(6 mm)). The heating was modeled using the maximum T(6 mm) and imaged using a proton resonance frequency shift-based MR thermometry method. Results showed that the heating was significantly reduced when the extra-cranial lead was placed in the longitudinal direction compared to the other placements (peak temperature change = 1.5-3.2 °C versus 5.1-24.7 °C). Thermal modeling and MR thermometry may be used together to determine the heating and improve patient safety online.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, 2021, 6th St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shuhendler AJ, Staruch R, Oakden W, Gordijo CR, Rauth AM, Stanisz GJ, Chopra R, Wu XY. Thermally-triggered 'off-on-off' response of gadolinium-hydrogel-lipid hybrid nanoparticles defines a customizable temperature window for non-invasive magnetic resonance imaging thermometry. J Control Release 2011; 157:478-84. [PMID: 21939700 DOI: 10.1016/j.jconrel.2011.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
For effective and safe thermotherapy, real-time, accurate, three-dimensional tissue thermometry is required. Magnetic resonance imaging (MRI)-based thermometry in combination with current temperature responsive contrast agents only provides an 'off-on' signal at a certain temperature, not indicating temperature increases beyond the desired therapeutic levels. To overcome this limitation, a novel Gd-chelated hydrogel-lipid hybrid nanoparticle (HLN) formulation was developed that provides an 'off-on-off' signal defining a thermometric window for MR thermometry. Novel thermally responsive poly(N-isopropylacrylamide-co-acrylamide) (NIPAM-co-AM) hydrogel nanoparticles (<15 nm) with bisallylamidodiethylenetriaminetriacetic acid, a novel crosslinker with Gd(3+) chelation functionality, were synthesized. The Gd-hydrogel nanoparticles were encapsulated in a solid lipid nanoparticle matrix that prevented T(1)-weighted contrast signal enhancement. Melting of the matrix lipid freed the Gd-hydrogel nanoparticles into the bulk water and an 'off-on' contrast signal enhancement occurred. As the temperature was further increased to temperatures greater than, the volume phase transition temperature of the hydrogel nanoparticles, they collapsed and provided an 'on-off' signal diminution. Both the 'off-on' and the 'on-off' transition temperature could be tailored by changing the lipid matrix and altering the NIPAM/AM ratio in the hydrogel, respectively. This allowed MRI thermometry of different temperature windows using the Gd-HLN system.
Collapse
Affiliation(s)
- Adam J Shuhendler
- Department of Pharmaceutical Sciences, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Melancon MP, Elliott AM, Shetty A, Huang Q, Stafford RJ, Li C. Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J Control Release 2011; 156:265-72. [PMID: 21763373 DOI: 10.1016/j.jconrel.2011.06.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/28/2011] [Accepted: 06/18/2011] [Indexed: 12/25/2022]
Abstract
Hyperthermia, which is heating of tumors above 43°C for about 30min, has been known to modulate vascular permeability for enhanced chemotherapy. However, it is not clear whether a similar effect exists when temperature at tumor sites is elevated above 43°C, such as temperature achieved in laser-induced photothermal ablation (PTA) therapy. Also, the effect of timing of chemotherapeutic drug administration following heating in the efficiency of drug delivery is not established. In this study, we investigated the impact of near infrared (NIR) laser irradiated anti-EGFR monoclonal antibody C225-conjugated hollow gold nanospheres (C225-HAuNS) on vascular permeability and subsequent tumor uptake of a water-soluble polymer using combined MRI, ultrasound and optical imaging approaches. Magnetic temperature imaging showed a maximum temperature of 65.2±0.10 °C in A431 tumor xenograft of mice treated with C225-HAuNS plus laser and 47.0±0.33 °C in tumors of mice treated with saline plus laser at 4 W/cm² for 3 min (control) at 2 mm from the light incident surface. Dynamic contrast enhanced (DCE) MRI demonstrated greater than 2-fold increase of DTPA-Gd in the initial area under the curve (IAUC₉₀) in mice injected with C225-HAuNS and exposed to NIR laser compared with control mice at 3 min after laser treatment. Similarly, Power Doppler (PD) ultrasound revealed a 4- to 6-fold increase in percentage vascularization in mice treated with C225-HAuNS plus NIR laser compared to control mice and confirmed increased vascular perfusion immediately after laser treatment. Twenty-four hours later, the blood perfusion was shut down. On optical imaging, tumor uptake of PG-Gd-NIR813, which is the model polymeric drug used, was significantly higher (p-value<0.05) in mice injected with PG-Gd-NIR813 at 5 min after laser treatment than in mice injected with PG-Gd-NIR813 at 24h after laser treatment and the saline-treated mice. In conclusion, laser irradiation of tumors after intravenous injection of C255-HAuNS induces a thermally mediated modulation of the vascular perfusion, which enhances the delivery of polymeric drugs to the tumors at the time phototherapy is initiated.
Collapse
Affiliation(s)
- Marites P Melancon
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Milne M, Hudson RH. Contrast agents possessing high temperature sensitivity. Chem Commun (Camb) 2011; 47:9194-6. [DOI: 10.1039/c1cc13073k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Lüdemann L, Wlodarczyk W, Nadobny J, Weihrauch M, Gellermann J, Wust P. Non-invasive magnetic resonance thermography during regional hyperthermia. Int J Hyperthermia 2010; 26:273-82. [DOI: 10.3109/02656731003596242] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
James JR, Gao Y, Soon VC, Topper SM, Babsky A, Bansal N. Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by (1)H, (23)Na and (31)P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma. Int J Hyperthermia 2010; 26:79-90. [PMID: 20100055 DOI: 10.3109/02656730903373509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A magnetic resonance (MR) technique is developed to produce controlled radio-frequency (RF) hyperthermia (HT) in subcutaneously-implanted 9L-gliosarcoma in Fisher rats using an MR scanner and its components; the scanner is also simultaneously used to monitor the tumour temperature and the metabolic response of the tumour to the therapy. The method uses the (1)H chemical shift of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-acetic acid (TmDOTA(-)) to monitor temperature. The desired HT temperature is achieved and maintained using a feedback loop mechanism that uses a proportional-integral-derivative controller. The RF HT technique was able to heat the tumour from 33 degrees to 45 degrees C in approximately 10 min and was able to maintain the tumour temperature within +/-0.2 degrees C of the target temperature (45 degrees C). Simultaneous monitoring of the metabolic changes with RF HT showed increases in total tissue and intracellular Na(+) as measured by single-quantum and triple-quantum filtered (23)Na MR spectroscopy (MRS), respectively, and decreases in intra- and extracellular pH and cellular bioenergetics as measured by (31)P MRS. Monitoring of metabolic response in addition to the tumour temperature measurements may serve as a more reliable and early indicator of therapy response. In addition, such measurements during HT treatment will enhance our understanding of the tumour response mechanisms during HT, which may prove valuable in designing methods to improve therapeutic efficiency.
Collapse
Affiliation(s)
- Judy R James
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5181, USA
| | | | | | | | | | | |
Collapse
|
24
|
James JR, Gao Y, Miller MA, Babsky A, Bansal N. Absolute temperature MR imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-). Magn Reson Med 2009; 62:550-6. [PMID: 19526494 DOI: 10.1002/mrm.22039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MR thermometry based on the water (1)H signal provides high temporal and spatial resolution, but it has low temperature sensitivity (approximately 0.01 ppm/degrees C) and requires monitoring of another weaker signal for absolute temperature measurements. The use of the paramagnetic lanthanide complex, thulium 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (TmDOTMA(-)), which is approximately 60 times more sensitive to temperature than the water (1)H signal, is advanced to image absolute temperatures in vivo using water signal as a reference. The temperature imaging technique was developed using gradient echo and asymmetric spin echo imaging sequences on 9.4 Tesla (T) horizontal and vertical MR scanners. A comparison of regional temperatures measured with TmDOTMA(-) and fiber-optic probes showed that the accuracy of imaging temperature is <0.3 degrees C. The temperature imaging technique was found to be insensitive to inhomogeneities in the main magnetic field. The feasibility of imaging temperature of intact rats at approximately 1.4 mmol/kg dose with approximately 1-mm spatial resolution in only 3 min is demonstrated. TmDOTMA(-) should prove useful for imaging absolute temperatures in deep-seated organs in numerous biomedical applications.
Collapse
Affiliation(s)
- Judy R James
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | | | | | | | | |
Collapse
|
25
|
Coman D, Trubel HK, Rycyna RE, Hyder F. Brain temperature and pH measured by (1)H chemical shift imaging of a thulium agent. NMR IN BIOMEDICINE 2009; 22:229-39. [PMID: 19130468 PMCID: PMC2735415 DOI: 10.1002/nbm.1312] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non-invasive methods. At 11.7 T, we demonstrate that a thulium-based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by (1)H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi-parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor - which has a predominantly extracellular presence - depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium-based method compared well with other methods for temperature ((1)H MRS of N-acetylaspartate and water; copper-constantan thermocouple wire) and pH ((31)P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in alpha-chloralose-anesthetized and renal-ligated rats revealed temperature (33-34 degrees C) and pH (7.3-7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS).
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Hubert K. Trubel
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- University of Witten/Herdecke, Germany
| | | | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Biomedical Engineering Yale University, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Abstract
Minimally invasive thermal therapy as local treatment of benign and malignant diseases has received increasing interest in recent years. Safety and efficacy of the treatment require accurate temperature measurement throughout the thermal procedure. Noninvasive temperature monitoring is feasible with magnetic resonance (MR) imaging based on temperature-sensitive MR parameters such as the proton resonance frequency (PRF), the diffusion coefficient (D), T1 and T2 relaxation times, magnetization transfer, the proton density, as well as temperature-sensitive contrast agents. In this article the principles of temperature measurements with these methods are reviewed and their usefulness for monitoring in vivo procedures is discussed. Whereas most measurements give a temperature change relative to a baseline condition, temperature-sensitive contrast agents and spectroscopic imaging can provide absolute temperature measurements. The excellent linearity and temperature dependence of the PRF and its near independence of tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI imaging techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.
Collapse
Affiliation(s)
- Viola Rieke
- Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA.
| | | |
Collapse
|
27
|
|