1
|
Alshammari AAA, Arfeen M, Alkhamiss AS, Alwesmi MB, Mani V. Montelukast's potential as a neuroprotective agent against acrylamide induced neurotoxicity: In vivo and computational modelling. Food Chem Toxicol 2025; 201:115448. [PMID: 40222648 DOI: 10.1016/j.fct.2025.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/15/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Tobacco consumption, a leading cause of over 8 million deaths annually, exposes individuals to acrylamide (ACY), a neurotoxin in cigarette smoke that disrupts neurotransmitter function and induces oxidative stress, contributing to neurodegeneration. This study evaluated neuroprotective potential of montelukast (MTLU), a leukotriene receptor antagonist with anti-inflammatory and antioxidant properties, against ACY-induced neurotoxicity. Cognitive performance was assessed using elevated plus maze, novel object recognition, and Y-maze tests over 14 days. Biomarkers associated with neurodegeneration (BACE1, GSK-3β, AChE), neuroinflammation (COX-2, PGE2, TNF-α, NF-κB), oxidative stress (GSH, MDA, CAT), and apoptosis (Bcl-2, Caspase-3, Bax) were analyzed. Histopathological analyses of brain tissues were conducted to examine structural damage, and computational studies provided additional support for selected in vivo findings. MTLU significantly ameliorated ACY-induced cognitive deficits and reduced levels of GSK-3β, AChE, COX-2, PGE2, TNF-α, NF-κB, MDA, Bax, and Caspase-3 while enhancing antioxidant defenses (GSH) and upregulating Bcl-2. Histopathological analysis confirmed reduced structural brain damage, and molecular docking indicated strong binding potential for MTLU with AChE, COX-2, GSK-3β, BACE-1, and Caspase-3. While these findings suggest a protective role for MTLU in mitigating ACY-induced cognitive impairments, oxidative stress, neuroinflammation, and apoptosis, further research is needed to confirm its therapeutic potential and clinical relevance.
Collapse
Affiliation(s)
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | - Mai B Alwesmi
- Department of Medical-Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia.
| |
Collapse
|
2
|
Magni G, Riboldi B, Ceruti S. Human Glial Cells as Innovative Targets for the Therapy of Central Nervous System Pathologies. Cells 2024; 13:606. [PMID: 38607045 PMCID: PMC11011741 DOI: 10.3390/cells13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.
Collapse
Affiliation(s)
| | | | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy; (G.M.); (B.R.)
| |
Collapse
|
3
|
Gupta S, Singh P, Sharma B. Montelukast Ameliorates 2K1C-Hypertension Induced Endothelial Dysfunction and Associated Vascular Dementia. Curr Hypertens Rev 2024; 20:23-35. [PMID: 38192137 DOI: 10.2174/0115734021276985231204092425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Quinolines/pharmacology
- Male
- Dementia, Vascular/physiopathology
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/psychology
- Leukotriene Antagonists/pharmacology
- Oxidative Stress/drug effects
- Hypertension, Renovascular/physiopathology
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/metabolism
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Receptors, Leukotriene/metabolism
- Inflammation Mediators/metabolism
- Cognition/drug effects
- Rats, Wistar
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Rats
- Maze Learning/drug effects
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India
| | - Prabhat Singh
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Tsai ML, Lin HC, Yen CH, Ku JT, Sung SY, Chang H. Increased Risk of Tourette Syndrome with Leukotriene Modifier Use in Children with Allergic Diseases and Asthma: A Nationwide Population-Based Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9111607. [PMID: 36360335 PMCID: PMC9688072 DOI: 10.3390/children9111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
(1) Background: Cysteinyl leukotriene receptor antagonists (LTRAs), including montelukast and zafirlukast, are FDA-approved for treating pediatric asthma and allergic diseases. Tourette syndrome (TS), a common neuropsychiatric disorder in children, is associated with allergic diseases and asthma. In this study, we investigated the risk of TS following an LTRA prescription for pediatric allergic diseases. (2) Methods: Children younger than 18 years of age who were newly diagnosed with asthma, allergic rhinitis, or atopic dermatitis between 1 January 2005 and 31 December 2018 and who were registered in the Taiwan National Health Insurance Research Database, which comprises the medical records of nearly 23 million Taiwanese population, were enrolled. LTRA users were matched with randomly selected LTRA non-users by sex, age, asthma-diagnosis year, and urbanization level. In total, 26,984 participants with allergic disease and TS were enrolled and included in the Cox proportional hazards model analysis. (3) Results: Children with allergic disease and asthma treated with LTRAs had a higher risk for TS than LTRA non-users (adjusted hazard ratio 1.376 [95% CI: 1.232−1.536], p < 0.001). LTRA users had a significantly higher risk for TS than LTRA non-users with allergic disease. The cumulative incidence of TS was significantly higher in LTRA users than in non-users with allergic diseases and asthma (log-rank test, p < 0.0001). (4) Conclusion: A prescription of LTRAs, mainly montelukast, increased the risk of TS among children with asthma, allergic rhinitis, or atopic dermatitis. The mechanism underlying the neuropsychiatric effect of LTRAs needs further investigation.
Collapse
Affiliation(s)
- Min-Lan Tsai
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chiung-Hui Yen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jung-Tzu Ku
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (S.-Y.S.); (H.C.); Tel.: +886-2-6638-2736 (ext. 1701) (S.-Y.S.); +886-2-2737-2181 (ext. 3715) (H.C.)
| | - Hsi Chang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (S.-Y.S.); (H.C.); Tel.: +886-2-6638-2736 (ext. 1701) (S.-Y.S.); +886-2-2737-2181 (ext. 3715) (H.C.)
| |
Collapse
|
5
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Attaluri S, Upadhya R, Kodali M, Madhu LN, Upadhya D, Shuai B, Shetty AK. Brain-Specific Increase in Leukotriene Signaling Accompanies Chronic Neuroinflammation and Cognitive Impairment in a Model of Gulf War Illness. Front Immunol 2022; 13:853000. [PMID: 35572589 PMCID: PMC9099214 DOI: 10.3389/fimmu.2022.853000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| |
Collapse
|
7
|
Kang SO, Min KH, Kim HJ, Kim TH, Kim W, Lee KE. The role of leukotriene modifying agent treatment in neuropsychiatric events of elderly asthma patients: a nested case control study. Asthma Res Pract 2021; 7:4. [PMID: 33731203 PMCID: PMC7972201 DOI: 10.1186/s40733-021-00070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background In March 2020, the US Food and Drug Administration decided that the dangers related to neuropsychiatric events (NPEs) of montelukast, one of the leukotriene modifying agents (LTMAs), should be communicated through ‘boxed warning’. In case of NPEs, the prevalence has been the highest in elderly people. Because the characteristics of the elderly such as old age itself can act as risk factors. Therefore, an investigation on safety of LTMAs related to NPEs in elderly using LTMAs is needed. Method A nested case-control study using an elderly sample cohort from the Korean National Health Insurance Service database was used. The asthma cohort included asthma patients newly diagnosed between 2003 and 2013. Within the asthma cohort, the case group was defined as patients who were diagnosed with NPEs. Among patients who had never been diagnosed with NPEs, the control group was selected by matching 1:1 by propensity score. Patients who were prescribed LTMAs for 1 year prior to index date were defined as the exposure group. The logistic regression model was used to measure the effect of LTMAs on NPEs. Results We identified 141,165 patients with newly diagnosed asthma, and selected 31,992 patients per each case and control group. Exposure to LTMAs significantly increased the risk of overall NPEs about in comparison with the absence of exposure (crude odds ratio [OR] 1.58, 95% CI 1.50–1.68). After adjusting for confounding factors, the overall NPEs risk increased (adjusted OR, 1.67, 95% CI 1.58–1.78). Conclusion This study suggests that elderly asthma patients prescribed LTMAs had a higher risk of NPEs than patients who were not treated with LTMAs. Therefore, clinicians should be aware of the potential risks of LTMAs.
Collapse
Affiliation(s)
- Sang Oh Kang
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Kyung Hyun Min
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Tae Hyeok Kim
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Woorim Kim
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea.
| |
Collapse
|
8
|
Michael J, Zirknitzer J, Unger MS, Poupardin R, Rieß T, Paiement N, Zerbe H, Hutter-Paier B, Reitsamer H, Aigner L. The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. Int J Mol Sci 2021; 22:2782. [PMID: 33803482 PMCID: PMC7967180 DOI: 10.3390/ijms22052782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. In particular, neuroinflammation, mediated by microglia cells but also through CD8+ T-cells, actively contributes to disease pathology. Leukotrienes are involved in neuroinflammation and in the pathological hallmarks of AD. In consequence, leukotriene signaling-more specifically, the leukotriene receptors-has been recognized as a potential drug target to ameliorate AD pathology. Here, we analyzed the effects of the leukotriene receptor antagonist montelukast (MTK) on hippocampal gene expression in 5xFAD mice, a commonly used transgenic AD mouse model. We identified glial activation and neuroinflammation as the main pathways modulated by MTK. The treatment increased the number of Tmem119+ microglia and downregulated genes related to AD-associated microglia and to lipid droplet-accumulating microglia, suggesting that the MTK treatment targets and modulates microglia phenotypes in the disease model compared to the vehicle. MTK treatment further reduced infiltration of CD8+T-cells into the brain parenchyma. Finally, MTK treatment resulted in improved cognitive functions. In summary, we provide a proof of concept for MTK to be a potential drug candidate for AD and provide novel modes of action via modulation of microglia and CD8+ T-cells. Of note, 5xFAD females showed a more severe pathology, and in consequence, MTK treatment had a more pronounced effect in the females compared to the males. The effects on neuroinflammation, i.e., microglia and CD8+ T-cells, as well as the effects on cognitive outcome, were dose-dependent, therefore arguing for the use of higher doses of MTK in AD clinical trials compared to the approved asthma dose.
Collapse
Affiliation(s)
- Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Julia Zirknitzer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Michael Stefan Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Tanja Rieß
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Nadine Paiement
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | - Horst Zerbe
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | | | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
- Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
9
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
10
|
Hoxha M, Malaj V, Vara-Messler M, Doce CR, Cavanillas AB. A case-control study: Evaluating the role of leukotriene receptor antagonists in preventing the cardiovascular and cerebrovascular disease. Semergen 2020; 47:4-11. [PMID: 33277178 DOI: 10.1016/j.semerg.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/23/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Leukotriene receptor antagonists (LTRAs) are used as a therapeutic alternative in asthmatic patients. Different animal studies indicate that LTRAs can decrease intimal hyperplasia after vascular injury, and have a protective role in cerebral ischemia. OBJECTIVE The aim of this study was to assess the role of leukotriene receptor antagonists in preventing the cardiovascular and ischemic stroke in humans. MATERIAL AND METHOD A matched case-control study with a follow up period of three years has been conducted, investigating the effect of the LTRAs in the myocardial infarct (MI) risk, and in the ischemic stroke (IS) risk in asthmatic patients from San Cecilio University Hospital of Granada, and from two Primary Health Care Centers of Granada. RESULTS 59 cases with MI and 108 cases with IS were included in the study, each of them with an equal number of controls matched by age and sex in each of the two Health Care Centers. Unlike for MI risk, the treatment with LTRAs was associated with a slight trend in reducing the risk of stroke, in both of the primary care controls (Odds ratios: 0.74 (0.37-1.47); 0.82 (0.4-1.67), for the first, and the second Health Centers Controls, respectively), but without reaching a statistical significance. CONCLUSIONS The results did not confirm a protective effect of LTRAs on cardiovascular risk as suggested by different animal studies.
Collapse
Affiliation(s)
- M Hoxha
- Catholic University Our Lady of Good Counsel, Department of Chemical, Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania; Università degli studi di Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti, 9-20133 Milan, Italy.
| | - V Malaj
- University of Tirana, Faculty of Economics, Department of Economics, Rruga Arben Broci, Tirana, Albania
| | - M Vara-Messler
- University of Turin, Department of Oncology, Via Verdi, 8-10124 Turin, Italy
| | - C R Doce
- IBS Granada, University of Granada, Ciber of Epidemiology and Public, Spain
| | - A B Cavanillas
- IBS Granada, University of Granada, Ciber of Epidemiology and Public, Spain
| |
Collapse
|
11
|
Michael J, Unger MS, Poupardin R, Schernthaner P, Mrowetz H, Attems J, Aigner L. Microglia depletion diminishes key elements of the leukotriene pathway in the brain of Alzheimer's Disease mice. Acta Neuropathol Commun 2020; 8:129. [PMID: 32771067 PMCID: PMC7414992 DOI: 10.1186/s40478-020-00989-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022] Open
Abstract
Leukotrienes (LTs) contribute to the neuropathology of chronic neurodegenerative disorders including Alzheimer's Disease (AD), where they mediate neuroinflammation and neuronal cell-death. In consequence, blocking the action of Leukotrienes (LTs) ameliorates pathologies and improves cognitive function in animal models of neurodegeneration. Surprisingly, the source of Leukotrienes (LTs) in the brain is largely unknown. Here, we identified the Leukotriene (LT) synthesis rate-limiting enzyme 5-Lipoxygenase (5-Lox) primarily in neurons and to a lesser extent in a subpopulation of microglia in human Alzheimer´s Disease (AD) hippocampus brain sections and in brains of APP Swedish PS1 dE9 (APP-PS1) mice, a transgenic model for Alzheimer´s Disease (AD) pathology. The 5-Lipoxygenase (5-Lox) activating protein (FLAP), which anchors 5-Lipoxygenase (5-Lox) to the membrane and mediates the contact to the substrate arachidonic acid, was confined exclusively to microglia with the entire microglia population expressing 5-Lipoxygenase activating protein (FLAP). To define the contribution of microglia in the Leukotriene (LT) biosynthesis pathway, we ablated microglia using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 in wildtype (WT) and APP-PS1 mice. Microglia ablation not only diminished the expression of FLAP and of the Leukotriene (LT) receptor Cysteinylleukotriene receptor 1 (CysLTR1), as expected based on their microglia cell type-specific expression, but also drastically reduced 5-Lipoxygenase (5-Lox) mRNA expression in the brain and its protein expression in neurons, in particular in wildtype (WT) mice. In conclusion i) microglia are key in Leukotriene (LT) biosynthesis, and ii) they regulate neuronal 5-Lipoxygenase (5-Lox) expression implying a yet unknown signaling mechanism between neurons and microglia.
Collapse
Affiliation(s)
- J Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - M S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - R Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - P Schernthaner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - H Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - L Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
12
|
Tseng YT, Cox TM, Grant GD, Arora D, Hall S, McFarland AJ, Ekberg J, Rudrawar S, Anoopkumar-Dukie S. In vitro cytotoxicity of montelukast in HAPI and SH-SY5Y cells. Chem Biol Interact 2020; 326:109134. [PMID: 32464120 DOI: 10.1016/j.cbi.2020.109134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Montelukast is a cysteinyl leukotriene (CysLT) receptor antagonist with efficacy against a variety of diseases, including asthma and inflammation-related conditions. However, various neuropsychiatric events (NEs) suspected to be related to montelukast have been reported recently, with limited understanding on their association and underlying mechanisms. This study aimed to investigate whether montelukast can induce neuroinflammation and neurotoxicity in microglial HAPI cells and neural SH-SY5Y cells. The present study also compared the effects of montelukast with a 5-lipoxygenase inhibitor (zileuton) and a cyclooxygenase-2 inhibitor (celecoxib) to better understand modulation of related pathways. HAPI or SH-SY5Y cells were treated with the indicated drugs (3.125 μM-100 μM) for 24 h to investigate drug-induced neuroinflammation and neurotoxicity. Montelukast induced cytotoxicity in HAPI cells (50-100 μM), accompanied with caspase-3/7 activation, prostaglandin E2 (PGE2) release, and reactive oxygen species (ROS) production. Whilst both montelukast and zileuton down-regulated CysLT release in HAPI cells, zileuton did not significantly affect cell viability or inflammatory and oxidative factors. Celecoxib decreased HAPI cell viability (6.25-100 μM), accompanied with increasing caspase-3/7 activation and ROS production, but in contrast to montelukast increased CysLT release and decreased PGE2 production. Similar to observations in HAPI cells, both montelukast and celecoxib (50-100 μM) but not zileuton produced toxicity in SH-SY5Y neuroblastoma cells. Similarly, CM from HAPI cells treated with either montelukast or zileuton produced toxicity in SH-SY5Y cells. The results of the current study show the capability of montelukast to directly induce toxicity and inflammation in HAPI cells, possibly through the involvement of PGE2 and ROS, and toxicity in undifferentiated SH-SY5Y neuroblastoma cells. The current study highlights the importance of consideration between benefit and risk of montelukast usage and provides references for future investigation on decreasing montelukast-related NEs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Tynan M Cox
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Devinder Arora
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Susan Hall
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Amelia J McFarland
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Queensland, 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Queensland, 4222, Australia; Quality Use of Medicines Network, Queensland, Australia.
| |
Collapse
|
13
|
Zhou L, Sun X, Shi Y, Liu J, Luan G, Yang Y. Cysteinyl leukotriene receptor type 1 antagonist montelukast protects against injury of blood-brain barrier. Inflammopharmacology 2019; 27:933-940. [PMID: 31313075 DOI: 10.1007/s10787-019-00611-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells. Injury of human brain endothelial cells can cause disruption of the BBB and severe injury to brain tissue. Signals mediated cysteinyl leukotrienes (cysLTs) and their receptors are involved in a variety of pathological conditions. In the current study, our results show that oxygen glucose-deprivation/reoxygenation (OGD/R) induced the expression of leukotriene receptor type 1 (cysLT1R) in brain endothelial cells. Blockage of cysLT1R by its specific antagonist montelukast suppressed OGD/R-induced altered permeability of the human brain endothelial cell (EC) monolayer. Mechanistically, montelukast treatment reversed OGD/R-induced reduction of the tight junction proteins occludin and zonula occludens-1 (ZO-1). Montelukast also ameliorated OGD/R-induced reduction of inhibitors of matrix metalloproteinases (TIMPs), such as TIMP-1 and TIMP-2. On the other hand, montelukast suppressed the expression and production of matrix metalloproteinases (MMPs) and cytokines including MMP-2, MMP-9, interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). Using a murine middle cerebral artery occlusion brain injury model, we demonstrated that the administration of montelukast improved the surgery-induced brain injury and protected against disruption of brain endothelial junction proteins such as occludin and ZO-1. Collectively, our data suggest that montelukast might confer protective roles against injury in brain endothelial cells.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China
| | - Xiaomin Sun
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China
| | - Yong Shi
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China
| | - Junpeng Liu
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China
| | - Guohui Luan
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China
| | - Yanwen Yang
- Department of Neurology, Weifang People's Hospital, No. 5, Guangwen Street, Kuiwen District, Weifang, 261000, Shandong, China.
| |
Collapse
|
14
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24:505-516. [DOI: 10.1016/j.drudis.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
|
16
|
Toklu HZ, Yang Z, Ersahin M, Wang KKW. Neurological Exam in Rats Following Stroke and Traumatic Brain Injury. Methods Mol Biol 2019; 2011:371-381. [PMID: 31273710 DOI: 10.1007/978-1-4939-9554-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using the appropriate model for testing neurological symptoms in rats is essential for the assessment of functional outcome. A number of tests have been developed to quantify the severity of neurological deficits. These tests should meet criteria such as validity, specificity, sensitivity, and utility. Although analysis of motor function shows homology in primates and rodents, the total neurological exam scores may not always reflect the clinical outcome. Therefore, the selection of the appropriate tests has critical importance when evaluating therapeutic strategies. This chapter describes Toklu's modified neurological exam score method which can be used practically to assess neurological symptoms following traumatic brain injury (TBI) and stroke. The method is a combination of balance, muscle strength, coordination, and reflex.
Collapse
Affiliation(s)
- Hale Z Toklu
- University of Central Florida College of Medicine, Department of Clinical Sciences, Gainesville, FL, USA.
- HCA North Florida Division, Graduate Medical Education, Tallahassee, FL, USA.
| | - Zhiui Yang
- University of Florida, Department of Emergency Medicine, Gainesville, FL, USA
| | - Mehmet Ersahin
- Istanbul Medeniyet University, Department of Neurosurgery, Istanbul, Turkey
| | - Kevin K W Wang
- University of Florida, Department of Emergency Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Hoxha M, Lewis-Mikhael AM, Bueno-Cavanillas A. Potential role of leukotriene receptor antagonists in reducing cardiovascular and cerbrovascular risk: A systematic review of human clinical trials and in vivo animal studies. Biomed Pharmacother 2018; 106:956-965. [PMID: 30119268 DOI: 10.1016/j.biopha.2018.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leukotrienes are important lipid mediators of inflammation arising from arachidonic acid cascade. They are implicated in vascular inflammation and produced in different pathologic conditions as atherosclerosis, stroke and myocardial infarction. Different studies have investigated the role of leukotriene receptor antagonist (LTRA) in reducing some cardiovascular events, especially in animals. We conducted a systematic review of both in vivo animal and human studies to determine the potential role of leukotriene receptor antagonist in reducing cardiovascular and cerebrovascular events. METHODS Data sources: Pubmed, Embase and Cochrane database. DATA EXTRACTION Two reviewers independently screened potentially eligible articles and extracted relevant data. RESULTS A total of 28 studies were included, of which 26 were conducted in animals, and 2 in humans. CONCLUSIONS All animal studies reported that using a leukotriene receptor antagonist brings to a reduction of either myocardial infarction, ischemic stroke, or atherosclerosis risk. Similar results were obtained from two clinical trials on humans, suggesting a potential role of montelukast in reducing some cardiovascular diseases.
Collapse
Affiliation(s)
- Malvina Hoxha
- Catholic University Our Lady of Good Counsel, Department of Chemical- Toxicological and Pharmacological Evaluation of Drugs, Rruga Dritan Hoxha, Tirana, Albania; Università degli studi di Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti, 9-20133, Milan, Italy.
| | | | - Aurora Bueno-Cavanillas
- Department of Preventive Medicine and Public Health, University of Granada, Spain; Instituto de Investigación Biosantiaria, IBS Granada, Spain; Ciber of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
18
|
El-shafaei A, Abdelmaksoud R, Elshorbagy A, Zahran N, Elabd R. Protective effect of melatonin versus montelukast in cisplatin-induced seminiferous tubule damage in rats. Andrologia 2018; 50:e13077. [DOI: 10.1111/and.13077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Adel El-shafaei
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - Rania Abdelmaksoud
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - Amany Elshorbagy
- Department of Physiology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - Noha Zahran
- Department of Histology and Cell biology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| | - Rana Elabd
- Department of Dermatology, Venereology and Andrology; Faculty of Medicine; Alexandria University; Alexandria Egypt
| |
Collapse
|
19
|
Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats. Neurotoxicology 2018; 67:141-149. [DOI: 10.1016/j.neuro.2018.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
|
20
|
Haarman MG, van Hunsel F, de Vries TW. Adverse drug reactions of montelukast in children and adults. Pharmacol Res Perspect 2018; 5. [PMID: 28971612 PMCID: PMC5625152 DOI: 10.1002/prp2.341] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 11/17/2022] Open
Abstract
Montelukast, a selective leukotriene receptor antagonist, is recommended in guidelines for the treatment of asthma in both children and adults. However, its effectiveness is debated, and recent studies have reported several adverse events such as neuropsychiatric disorders and allergic granulomatous angiitis. This study aims to obtain more insight into the safety profile of montelukast and to provide prescribing physicians with an overview of relevant adverse drug reactions in both children and adults. We retrospectively studied all adverse drug reactions on montelukast in children and adults reported to the Netherlands Pharmacovigilance Center Lareb and the WHO Global database, VigiBase® until 2016. Depression was reported most frequently in the whole population to the global database VigiBase® (reporting odds ratio (ROR) 6.93; 95% CI: 6.5–7.4). In the VigiBase®, aggression was reported the most in children (ROR, 29.77; 95% CI: 27.5–32.2). Headaches were reported the most frequently to the Dutch database (ROR, 2.26; 95% CI: 1.61–3.19). Furthermore, nightmares are often reported for both children and adults to the Dutch and the global database. Eight patients with allergic granulomatous angiitis were reported to the Dutch database and 563 patients in the VigiBase®. These data demonstrate that montelukast is associated with neuropsychiatric adverse drug reactions such as depression and aggression. Especially in children nightmares are reported frequently. Allergic granulomatous angiitis is also reported, a causal relationship has not been established.
Collapse
Affiliation(s)
- Meindina G Haarman
- Department of Pediatric Cardiology, Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, The Netherlands
| | | | - Tjalling W de Vries
- Department of Pediatrics, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| |
Collapse
|
21
|
Toklu HZ, Yang Z, Oktay S, Sakarya Y, Kirichenko N, Matheny MK, Muller-Delp J, Strang K, Scarpace PJ, Wang KK, Tümer N. Overpressure blast injury-induced oxidative stress and neuroinflammation response in rat frontal cortex and cerebellum. Behav Brain Res 2018; 340:14-22. [PMID: 28419850 DOI: 10.1016/j.bbr.2017.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
22
|
Khalid F, Aftab A, Khatri S. The Association Between Leukotriene-Modifying Agents and Suicidality: A Review of Literature. PSYCHOSOMATICS 2017; 59:19-27. [PMID: 28919375 DOI: 10.1016/j.psym.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND In 2008 Food and Drug Administration issued a warning regarding a possible association between leukotriene-modifying agents and suicidality. OBJECTIVE The warning remains controversial and this review of literature is an attempt to examine the evidence on the matter. METHODS Literature search on PubMed. RESULTS The data supporting a relationship between leukotriene-modifying agents and suicidality comes primarily from reviews of individual safety reports in adverse event databases; it is subject to considerable reporting bias and does not control for confounding factors. Case-control and cohort studies as well as data from clinical trials do not support an association between leukotriene-modifying agents and suicidality. The data from ecological studies offers strong evidence of a lack of positive association between leukotriene-modifying agents and suicide outcomes (attempts and deaths) at the population level. Furthermore, there is no pharmacological mechanism that would explain an association between the two. CONCLUSION Overall, the weight of higher quality evidence casts doubt on the association (especially at population level), but is not enough to conclusively disprove the association at an individual level.
Collapse
Affiliation(s)
- Faiza Khalid
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Awais Aftab
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH.
| | - Sumita Khatri
- Department of Pulmonary Medicine, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
23
|
Hoxha M, Rovati GE, Cavanillas AB. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol 2017; 73:799-809. [PMID: 28374082 DOI: 10.1007/s00228-017-2242-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are pro-inflammatory mediators of the 5-lipooxygenase (5-LO) pathway, that play an important role in bronchoconstriction, but can also enhance endothelial cell permeability and myocardial contractility, and are involved in many other inflammatory conditions. In the late 1990s, leukotriene receptor antagonists (LTRAs) were introduced in therapy for asthma and later on, approved for the relief of the symptoms of allergic rhinitis, chronic obstructive pulmonary disease, and urticaria. In addition, it has been shown that LTRAs may have a potential role in preventing atherosclerosis progression. PURPOSE The aims of this short review are to delineate the potential cardiovascular protective role of a LTRA, montelukast, beyond its traditional use, and to foster the design of appropriate clinical trials to test this hypothesis. RESULTS AND CONCLUSIONS What it is known about leukotriene receptor antagonists? •Leukotriene receptor antagonist, such as montelukast and zafirlukast, is used in asthma, COPD, and allergic rhinitis. • Montelukast is the most prescribed CysLT1 antagonist used in asthmatic patients. • Different in vivo animal studies have shown that leukotriene receptor antagonists can prevent the atherosclerosis progression, and have a protective role after cerebral ischemia. What we still need to know? • Today, there is a need for conducting clinical trials to assess the role of montelukast in reducing cardiovascular risk and to further understand the mechanism of action behind this effect.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical, Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Rruga. D. Hoxha, Tirana, Albania.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy.
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy
| | - Aurora Bueno Cavanillas
- IBS Granada, University of Granada, CIBER of Epidemiology and Public Health (CIBERESP), Granada, Spain
| |
Collapse
|
24
|
The functional and structural changes in the basilar artery due to overpressure blast injury. J Cereb Blood Flow Metab 2015; 35:1950-6. [PMID: 26104291 PMCID: PMC4671114 DOI: 10.1038/jcbfm.2015.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Overpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24 hours after injury and the basilar artery was isolated, cannulated, and pressurized (90 cm H2O). Vascular responses to potassium chloride (KCl) (30 to 100 mmol/L), endothelin-1 (10(-12) to 10(-7) mol/L), acetylcholine (ACh) (10(-10) to 10(-4) mol/L) and diethylamine-NONO-ate (DEA-NONO-ate) (10(-10) to 10(-4) mol/L) were evaluated. The OBI resulted in an increase in the contractile responses to endothelin and a decrease in the relaxant responses to ACh in both single and r-OBI groups. However, impaired DEA-NONO-ate-induced vasodilation and increased wall thickness to lumen ratio were observed only in the r-OBI group. The endothelin-1 type A (ET(A)) receptor and endothelial nitric oxide synthase (eNOS) immunoreactivity were significantly enhanced by OBI. These findings indicate that both single and r-OBI impairs cerebral vascular endothelium-dependent dilation, potentially a consequence of endothelial dysfunction and/or vascular remodelling in basilar arteries after OBI.
Collapse
|
25
|
Cevik B, Solmaz V, Aksoy D, Erbas O. Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med Sci Monit 2015; 21:869-74. [PMID: 25803241 PMCID: PMC4384514 DOI: 10.12659/msm.892932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Montelukast is an antiinflammatory drug with an antioxidant property. In this study, we aimed to reveal whether montelukast has a preventive effect against seizures and post-seizure oxidative stress in pentylenetetrazol (PTZ)-induced seizures in rats. Material/Methods Of the 48 male Sprague-Dawley rats used in the study, 24 were assigned to EEG recordings (group A) and 24 were assigned to behavioral studies (group B). In group A, the electrodes were implanted on dura over the left frontal cortex for EEG recording. After 10 days, in group A, i.p. saline, 25, 50, or 100 mg/kg montelukast+35 mg/kg PTZ was administered to the rats. EEG was recorded and spike percentage was evaluated. In group B, i.p. saline, 25, 50, or 100 mg/kg montelukast+70 mg/kg PTZ was administered to the rats. Racine’s Convulsion Scale (RCS) and onset times of first myoclonic jerk (FMJ) was used to evaluate the seizures. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined in the brain tissue of animals. Results Animals treated with 50 or 100 mg/kg montelukast had significantly lower RCS and significantly increased FMJ onset time compared to the saline-treated animals. Moreover, groups given 25, 50, or 100 mg/kg montelukast had significantly lower MDA and higher SOD levels compared to the saline-treated group. The differences were more pronounced in the 100 mg/kg montelukast-pretreated group (p<0.001). Conclusions Montelukast showed anticonvulsant action and led to amelioration of oxidative stress markers in PTZ-induced seizures in rats.
Collapse
Affiliation(s)
- Betul Cevik
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Volkan Solmaz
- Department of Neurology, Turhal State Hospital, Tokat, Turkey
| | - Durdane Aksoy
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
26
|
Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood-brain barrier after traumatic brain injury in mice. Neuroscience 2015; 291:26-36. [PMID: 25668593 DOI: 10.1016/j.neuroscience.2015.01.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/12/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. After 6 h and 24 h of CCI, the permeability of the cortical BBB was determined after Evans Blue administration. The water content of the brain was also measured. Treatment with PJ34 markedly attenuated the permeability of the BBB and decreased the brain edema at 6 h and 24 h after CCI. Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI.
Collapse
|
27
|
Lenz Q, Arroyo D, Temp F, Poersch A, Masson C, Jesse A, Marafiga J, Reschke C, Iribarren P, Mello C. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood–brain barrier dysfunction. Neuroscience 2014; 277:859-71. [DOI: 10.1016/j.neuroscience.2014.07.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
|
28
|
Corser-Jensen CE, Goodell DJ, Freund RK, Serbedzija P, Murphy RC, Farias SE, Dell'Acqua ML, Frey LC, Serkova N, Heidenreich KA. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Exp Neurol 2014; 256:7-16. [PMID: 24681156 DOI: 10.1016/j.expneurol.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/14/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in the brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arm water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits.
Collapse
Affiliation(s)
- Chelsea E Corser-Jensen
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dayton J Goodell
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Predrag Serbedzija
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert C Murphy
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santiago E Farias
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren C Frey
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie Serkova
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kim A Heidenreich
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Kobeissy F, Mondello S, Tümer N, Toklu HZ, Whidden MA, Kirichenko N, Zhang Z, Prima V, Yassin W, Anagli J, Chandra N, Svetlov S, Wang KKW. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol 2013; 4:186. [PMID: 24312074 PMCID: PMC3836009 DOI: 10.3389/fneur.2013.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/02/2013] [Indexed: 01/10/2023] Open
Abstract
Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Psychiatry, Center of Neuroproteomics & Biomarker Research, University of Florida , Gainesville, FL , USA ; Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Demir H, Onur OE, Denizbasi A, Akoglu H, Eroglu SE, Ozpolat C, Akoglu E. The effects of adrenomedullin in traumatic brain injury. Peptides 2013; 43:27-31. [PMID: 23474144 DOI: 10.1016/j.peptides.2013.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability throughout the world. A multifunctional peptide adrenomedullin (AM) has protective effects in the central nervous system. We evaluated AM in an animal model as a therapeutic agent that reduces brain damage after traumatic brain injury. A total of 36 rats was divided into 3 groups as sham, head trauma plus intraperitoneal (ip) saline, and head trauma plus adrenomedullin ip. The diffuse brain injury model of Marmarou et al. was used. Blood samples were taken from all groups at the 1st, 6th and 24th hours for analysis of TNF-α (tumor necrosis factor-α), IL-1β (interleukin-1β) and IL-6 (interleukin-6) levels. At the end of the study (at the 24th hour) a neurological examination was performed and half of the rats were decapitated to obtain blood and tissue samples, the other half were perfused transcardiacally for studying the histopathology of the brain tissue. There were no statistically significant changes in plasma levels of IL-1β, IL-6 and TNF-α relative to the sham group. Also, changes in tissue levels of malonedialdehyde, myeloperoxidase and glutathione were not statistically significant. However, neurological scores and histopathological examinations revealed healing. AM individually exerts neuroprotective effects in animal models of acute brain injury. But the mechanisms of action remain to be assessed.
Collapse
Affiliation(s)
- Hasan Demir
- Istanbul Fatih Sultan Mehmet Research and Training Hospital, Department of Emergency Medicine, Turkey
| | | | | | | | | | | | | |
Collapse
|
31
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
32
|
Kenne E, Erlandsson A, Lindbom L, Hillered L, Clausen F. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice. J Neuroinflammation 2012; 9:17. [PMID: 22269349 PMCID: PMC3292978 DOI: 10.1186/1742-2094-9-17] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022] Open
Abstract
Background Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.
Collapse
Affiliation(s)
- Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Schumock GT, Lee TA, Joo MJ, Valuck RJ, Stayner LT, Gibbons RD. Association between leukotriene-modifying agents and suicide: what is the evidence? Drug Saf 2011; 34:533-44. [PMID: 21663330 DOI: 10.2165/11587260-000000000-00000] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The US FDA has issued safety alerts and required manufacturers of leukotriene-modifying agents (LTMAs), including montelukast, zafirlukast and zileuton, to include suicide and neuropsychiatric events as a precaution in the drug label. This paper reviews the existing evidence on the potential association between the LTMAs and suicidal behaviour. We conducted a literature search of MEDLINE, EMBASE and International Pharmaceutical Abstracts from 1995 to 2010 (inclusive) to identify pertinent studies and reports. We also examined data obtained from the FDA adverse event reporting system. To date, there are no well conducted, comparative, observational studies of this association, and the safety alerts are based primarily on case reports. While the FDA safety alerts apply to all three LTMAs, montelukast (known by its trade name Singulair®) is by far the most widely used of these drugs and most of the reports to date regarding suicide pertain to montelukast. From 1998 to 2009 there were 838 suicide-related adverse events associated with leukotrienes reported to the FDA, of which all but five involved montelukast. Nearly all cases were reported in 2008 and 2009 (96.1%) after the FDA warnings. LTMAs are approved for use in asthma and allergic rhinitis, and are effective drugs. Both of these diseases are also associated with suicide, making confirmation of the association more difficult. Given the lack of good evidence, we recommend that a large observational cohort or case-control study be conducted to quantify the association between LTMAs and suicide. Until then, when prescribing LTMAs, clinicians should consider the potential for suicide and monitor patients who may be at elevated risk carefully for suicidal ideation or psychiatric symptoms associated with suicidal behaviour.
Collapse
Affiliation(s)
- Glen T Schumock
- Center for Pharmacoeconomic Research, University of Illinois at Chicago, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 2011; 63:539-84. [PMID: 21771892 DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Al Saadi MM, Meo SA, Mustafa A, Shafi A, Tuwajri ASA. Effects of Montelukast on free radical production in whole blood and isolated human polymorphonuclear neutrophils (PMNs) in asthmatic children. Saudi Pharm J 2011; 19:215-20. [PMID: 23960762 DOI: 10.1016/j.jsps.2011.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022] Open
Abstract
Montelukast is a highly selective leukotriene-receptor antagonist (LTRA). It is widely used in the treatment of bronchial asthma, primarily as an adjunct to corticosteroids. Reactive oxygen species (ROSs) play an important role in the pathogenesis of asthma and oxidative stress contributing to the initiation and worsening of inflammatory respiratory disorders, such as asthma. Antioxidant drugs may have a role in minimizing or preventing damage in asthmatic children. The aim of this study was to assess the antioxidant effect of montelukast on the production of free radicals in the whole blood and polymorphonuclear neutrophils (PMNs) in asthmatic children. A group of 48 (38 males and 10 females), apparently healthy asthmatic children were recruited with ages ranging between 6 and 14 years. In asthmatic children, base line (premedication) and post medication free radicals activity in the whole blood and polymorphonuclear neutrophils (PMNs) was determined by measuring chemiluminescence (CL) response through chemiluminescence luminometer. Free radical productions were significantly decreased in the whole blood, when stimulated with Phorbol Myristate Acetate (p < 0.04) and Opsonised Zymosan (p < 0.05). The free radicals were also significantly decreased in isolated polymorphonuclear neutrophils (PMNs) when stimulated with Opsonised Zymosan (p < 0.05) after the post medication treatment of montelukast in asthmatic children. Montelukast decreased the reactive oxygen species production, both in the whole blood as well as isolated PMNs in asthmatic children.
Collapse
Affiliation(s)
- Muslim M Al Saadi
- Department of Paediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
36
|
Experimental trauma models: an update. J Biomed Biotechnol 2011; 2011:797383. [PMID: 21331361 PMCID: PMC3035380 DOI: 10.1155/2011/797383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023] Open
Abstract
Treatment of polytrauma patients remains a medical as well as socioeconomic challenge. Although diagnostics and therapy improved during the last decades, multiple injuries are still the major cause of fatalities in patients below 45 years of age. Organ dysfunction and organ failure are major complications in patients with major injuries and contribute to mortality during the clinical course. Profound understanding of the systemic pathophysiological response is crucial for innovative therapeutic approaches. Therefore, experimental studies in various animal models are necessary. This review is aimed at providing detailed information of common trauma models in small as well as in large animals.
Collapse
|
37
|
Kalonia H, Kumar P, Kumar A, Nehru B. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats. Neuroscience 2010; 171:284-99. [PMID: 20813166 DOI: 10.1016/j.neuroscience.2010.08.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 01/22/2023]
Abstract
The present study has been designed to explore the protective effect of montelukast (leukotriene receptor antagonist) against intrastriatal quinolinic acid (QA; 300 nmol) and malonic acid (MA; 6 μmol) induced Huntington's like symptoms in rats. Quinolinic acid has been reported to induce excitotoxicity by stimulating the N-methyl-D-aspartate receptor, causing calcium overload which in turn leads to the neurodegeneration. On the other hand, MA, being a reversible inhibitor of mitochondrial enzyme complex-II, leads to energy crisis and free radical generation. Recent studies have reported the therapeutic potential of leukotriene receptor antagonists in different neurodegenerative disorders. However, their exact role is yet to be established. The present study accordingly, is an attempt to investigate the effect of montelukast against QA and MA induced behavioral, biochemical and molecular alterations in rat striatum. Oxidative stress, mitochondrial enzyme complex and tumor necrosis factor-alpha (TNF-α) were evaluated on day 21st and 14th post intrastriatal QA and MA treatment, respectively. Findings of the present study demonstrate significant alteration in the locomotor activity and motor coordination as well as oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), mitochondrial enzyme complex (I, II and IV) activities and TNF-α level, in both intrastriatal QA and MA treated animals. Further, montelukast (0.4, 0.8 mg/kg p.o.) treatment for 21 and 14 days respectively, attenuated the behavioral alterations, oxidative stress, mitochondrial dysfunction and TNF-α level in these models of Huntington's disease in a significant manner. In conclusion, the present study emphasizes the neuroprotective potential of montelukast in the therapeutic management of Huntington like symptoms.
Collapse
Affiliation(s)
- H Kalonia
- Pharmacology Division, University Institute of Pharmaceutical Sciences, University Grants Commission-Centre of Advanced Study, Panjab University, Chandigarh-160014, India
| | | | | | | |
Collapse
|