1
|
Chakraborty P, Das A, Chatterjee S, Bairagi A, Bhattacharya H, Bhattacharyya C, Chatterjee N, Sil PC, Dewanjee S. Formulation and evaluation of polymeric nanoparticles to improve in vivo chemotherapeutic efficacy of mangiferin against breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04068-0. [PMID: 40153014 DOI: 10.1007/s00210-025-04068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/17/2025] [Indexed: 03/30/2025]
Abstract
Mangiferin (Mgf), a naturally occurring polyphenol, can act as an apoptosis inducer for various cancer cells. Thus, it is holding the prospect of being a promising chemotherapeutic agent. However, a discrepancy between the in vitro results and in vivo observations seems to exist that apprehends its potential usefulness. The in vivo chemotherapeutic capacity of Mgf is greatly challenged because of the unfavorable pharmacokinetic credentials. The present study aims to overcome the biopharmaceutical limitations and improve the chemotherapeutic efficacy by incorporating it within nano-scale delivery system. Stable and sphere-shaped Mgf-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (MNPs) were formulated using the nanoprecipitation method and characterized. Further, MNPs were assessed through multiple in vitro and in vivo preclinical evaluations for their chemotherapeutic efficacy, with an ambition to improve the performance in the biological system. Sphere-shaped MNPs exhibited satisfactory drug loading and release profile. The Mgf-loaded nanoformulation also exhibited better cytotoxic potential against breast cancer cells compared to native Mgf owing to its better penetrability into cancer cells. MNPs were also found to confer superior in vivo chemotherapeutic efficacy in breast cancer-bearing mice evidenced by the reduction of tumor load. Improved anti-cancer potential of MNPs over free Mgf was also established through different bioassays. Moreover, the nanoparticles did not confer systemic toxicity to levels of concern. To conclude, the current study pleads for MNPs as a safe and efficacious tool in the fight against breast cancer for futuristic translations.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | | | | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Pangeni R, Poudel S, Herz SM, Berkbigler G, Duerfeldt AS, Damaj MI, Xu Q. New PPARα Agonist A190-Loaded Microemulsion for Chemotherapy-Induced Peripheral Neuropathy. Mol Pharm 2025; 22:1641-1656. [PMID: 39879378 PMCID: PMC11881135 DOI: 10.1021/acs.molpharmaceut.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy. To address these limitations, an optimized oil-in-water (o/w) microemulsion formulation was developed using Box-Behnken design to enhance the solubility and intestinal permeability of A190. The A190 microemulsion exhibited physical stability with a droplet size of approximately 100 nm and a drug loading efficiency of greater than 95%. The effective and apparent permeability of A190 from the microemulsion was significantly higher compared to that of free A190 dispersion, respectively. Additionally, no significant impact on the cell viability was observed, indicating less toxicity and a good biocompatibility of the formulation components. The oral bioavailability of A190 microemulsion was approximately 5-fold higher compared to A190 dispersion, demonstrating the microemulsion's potential to greatly enhance the oral bioavailability of hydrophobic drugs. Furthermore, our findings reveal that orally administered A190 microemulsion effectively reduced CIPN-induced mechanical hypersensitivity, likely mediated through PPARα activation. A190 microemulsion was found to be equally effective at reducing the chronic inflammatory complete Freund's adjuvant-induced pain. These results underscore A190s potential as a nonopioid therapeutic candidate, utilizing a novel microemulsion formulation for the management of chemotherapy-induced neuropathic pain and chronic inflammatory pain.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Surendra Poudel
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Grant Berkbigler
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qingguo Xu
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Departments
of Ophthalmology, Pediatrics, Biomedical Engineering, and Massey Cancer
Center, Center for Pharmaceutical Engineering, and Center for Drug
Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
3
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Haider M, Jagal J, Ali Alghamdi M, Haider Y, Hassan HAFM, Najm MB, Jayakuma MN, Ezzat H, Greish K. Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. Int J Pharm 2024; 666:124825. [PMID: 39401579 DOI: 10.1016/j.ijpharm.2024.124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remain a major oncological challenge with significant morbidity and mortality rates. Erlotinib (Er) and Curcumin (Cm) are potential therapeutic agents for HNSCC, yet they are hindered by poor solubility and bioavailability. This study explored the optimization of poly(lactic-co-glycolic acid) nanoparticles co-loaded with Er and Cm (Er/Cm-NP), prepared via a D-optimal response surface design-guided nanoprecipitation process. The optimized formulation, optEr/Cm-NP, was then incorporated into chitosan/β-glycerophosphate hydrogels (optEr/Cm-NP-HG) to create an injectable intratumoral (IT) nanocomposite hydrogel (HG) delivery system. Physicochemical properties of the formulations, including gelation time, injectability, mechanical strength and drug release profiles were assessed alongside hemolytic activity. Compared to optEr/Cm-NP alone, the NP-loaded HG formulation exhibited a more pronounced modulation effect, enabling sustained and controlled drug release. The cytotoxicity of the developed formulations was evaluated using the FaDu HNSCC cancer cell line. Both optEr/Cm-NP and optEr/Cm-NP-HG21 displayed enhanced cytotoxicity compared to free drugs. Confocal laser microscopy and flow cytometry confirmed superior cellular uptake of Er and Cm when delivered via NPs or NP-loaded HG. Furthermore, a significant increase in apoptotic cell death upon treatment with optEr/Cm-NP was observed, highlighting its potential for HNSCC therapy. In vivo studies conducted on a xenograft HNSCC mouse model revealed the significant capacity of the intratumorally-injected optEr/Cm-NP-HG21 formulation to retard the tumor growth. Conclusively, the results presented herein report the successful development of a nanocomposite HG system incorporating NPs co-loaded with Er and Cm that could be efficiently utilized in the treatment of HNSCC.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Kingdom of Saudi Arabia; Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Youssef Haider
- College of Engineering, Boston University, Boston, MA, USA
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Muna B Najm
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Manju N Jayakuma
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Helal Ezzat
- Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates; Civil Engineering Department, Delta Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
5
|
Camacho Vieira C, Peltonen L, Karttunen AP, Ribeiro AJ. Is it advantageous to use quality by design (QbD) to develop nanoparticle-based dosage forms for parenteral drug administration? Int J Pharm 2024; 657:124163. [PMID: 38670473 DOI: 10.1016/j.ijpharm.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Parenteral administration is one of the most commonly used drug delivery routes for nanoparticle-based dosage forms, such as lipid-based and polymeric nanoparticles. For the treatment of various diseases, parenteral administration include intravenous, subcutaneous, and intramuscular route. In drug development phase, multiparameter strategy with a focus on drug physicochemical properties and the specificity of the administration route is required. Nanoparticle properties in terms of size and targeted delivery, among others, are able to surpass many drawbacks of conventional dosage forms, but these unique properties can be a bottleneck for approval by regulatory authorities. Quality by Design (QbD) approach has been widely utilized in development of parenteral nanoparticle-based dosage forms. It fosters knowledge of product and process quality by involving sound scientific data and risk assessment strategies. A full and comprehensive investigation into the state of implementation and applications of the QbD approach in these complex drug products can highlight the gaps and challenges. In this review, the analysis of critical attributes and Design of Experiment (DoE) approach in different nanoparticulate systems, together with the proper utilization of Process Analytical Technology (PAT) applications are described. The essential of QbD approach for the design and development of nanoparticle-based dosage forms for delivery via parenteral routes is discussed thoroughly.
Collapse
Affiliation(s)
- C Camacho Vieira
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal
| | - L Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A P Karttunen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
6
|
Goyal R, Mittal P, Gautam RK, Kamal MA, Perveen A, Garg V, Alexiou A, Saboor M, Haque S, Farhana A, Papadakis M, Ashraf GM. Natural products in the management of neurodegenerative diseases. Nutr Metab (Lond) 2024; 21:26. [PMID: 38755627 PMCID: PMC11100221 DOI: 10.1186/s12986-024-00800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Neurodegenerative diseases represent one of the utmost imperative well-being health issues and apprehensions due to their escalating incidence of mortality. Natural derivatives are more efficacious in various preclinical models of neurodegenerative illnesses. These natural compounds include phytoconstituents in herbs, vegetables, fruits, nuts, and marine and freshwater flora, with remarkable efficacy in mitigating neurodegeneration and enhancing cognitive abilities in preclinical models. According to the latest research, the therapeutic activity of natural substances can be increased by adding phytoconstituents in nanocarriers such as nanoparticles, nanogels, and nanostructured lipid carriers. They can enhance the stability and specificity of the bioactive compounds to a more considerable extent. Nanotechnology can also provide targeting, enhancing their specificity to the respective site of action. In light of these findings, this article discusses the biological and therapeutic potential of natural products and their bioactive derivatives to exert neuroprotective effects and some clinical studies assessing their translational potential to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura-Punjab, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Rau, Indore, India.
| | - Mohammad Amjad Kamal
- Institute for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu,, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah,, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Uttar Pradesh, Saharanpur, India
- Princess Dr, Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak Haryana, 124001, India
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, 11741, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Sharjah, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Aljouf, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Jing J, Fang S, Li Y, Liu W, Wang C, Lan Y, Wang Y, Yang C. An enhanced cardio-protective effect of nanoparticles loaded with active components from Polygonum orientale L. against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2024; 655:124047. [PMID: 38531434 DOI: 10.1016/j.ijpharm.2024.124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.
Collapse
Affiliation(s)
- Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
8
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
9
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
10
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
11
|
Mittal P, Goyal R, Kapoor R, Wan C, Gautam RK. Natural Products-based Drugs: Potential Drug Targets Against Neurological Degeneration. Curr Neuropharmacol 2023; 21:777-786. [PMID: 36825704 PMCID: PMC10227921 DOI: 10.2174/1570159x21666230220102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
Phytochemicals or natural products have been studied extensively for their potential in the treatment of neurodegenerative diseases (NDs) like Parkinson's disease, Alzheimer's disease, etc. The neuronal structure loss and progressive dysfunction are the main characteristics of these diseases. In spite of impressive and thorough knowledge of neurodegenerative molecular pathways, little advancement has been found in the treatment of the same. Moreover, it was proved that natural products can be used efficiently in the treatment of NDs while certain issues regarding the patient's safety and clinical data are still existing. As ND is a bunch of diseases and it will start the myriad of pathological processes, active targeting of the molecular pathway behind ND will be the most efficient strategy to treat all ND-related diseases. The targeting pathway must prevent cell death and should restore the damaged neurons. In the treatment of ND and related diseases, natural products are playing the role of neuroprotective agents. This review will target the therapeutic potential of various phytochemicals which shows neuroprotective action.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, India
| | | | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore, 453331, M.P., India
| |
Collapse
|
12
|
Targeted Nanoparticles for the Binding of Injured Vascular Endothelium after Percutaneous Coronary Intervention. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238144. [PMID: 36500236 PMCID: PMC9739478 DOI: 10.3390/molecules27238144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Percutaneous coronary intervention (PCI) is a common procedure for the management of coronary artery obstruction. However, it usually causes vascular wall injury leading to restenosis that limits the long-term success of the PCI endeavor. The ultimate objective of this study was to develop the targeting nanoparticles (NPs) that were destined for the injured subendothelium and attract endothelial progenitor cells (EPCs) to the damaged location for endothelium regeneration. Biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs were conjugated with double targeting moieties, which are glycoprotein Ib alpha chain (GPIbα) and human single-chain antibody variable fragment (HuscFv) specific to the cluster of differentiation 34 (CD34). GPIb is a platelet receptor that interacts with the von Willebrand factor (vWF), highly deposited on the damaged subendothelial surface, while CD34 is a surface marker of EPCs. A candidate anti-CD34 HuscFv was successfully constructed using a phage display biopanning technique. The HuscFv could be purified and showed binding affinity to the CD34-positive cells. The GPIb-conjugated NPs (GPIb-NPs) could target vWF and prevent platelet adherence to vWF in vitro. Furthermore, the HuscFv-conjugated NPs (HuscFv-NPs) could capture CD34-positive cells. The bispecific NPs have high potential to locate at the damaged subendothelial surface and capture EPCs for accelerating the vessel repair.
Collapse
|
13
|
Study of sonication parameters on PLA nanoparticles preparation by simple emulsion-evaporation solvent technique. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8524951. [PMID: 35432585 PMCID: PMC9007685 DOI: 10.1155/2022/8524951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study effective carriers that can enhance the antitumor effect of paclitaxel (PTX). Methods. PTX-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) (PTX-PLGA NPs), constructed using the emulsification solvent evaporation method, were characterized by scanning electron microscopy and dynamic light scattering. Non-small-cell lung carcinoma (NSCLC) cells were divided into the dimethyl sulfoxide (DMSO) group, PLGA NPs group, PTX group, and PTX-PLGA NPs group. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell apoptosis was determined by flow cytometry, and cell migration and invasion were assessed using Transwell assay. Results. PTX-PLGA NPs were smooth in the surface and spherical in shape, with a particle size of
nm. Both PTX and PTX-PLGA NPs could effectively inhibit the activity of A549 and H1650 cells. At 12 and 24 h, PTX-PLGA NPs presented weaker inhibition on the activity of NSCLC cells than PTX, but at 48 and 72 h, PTX-PLGA NPs presented stronger inhibition. Compared with PTX, PTX-PLGA NPs were more effective in enhancing apoptosis and inhibiting migration and invasion of NSCLC cells. Conclusion. With good sustained release and the ability to promote cellular uptake, PTX-PLGA NPs can strongly inhibit the malignant activities of NSCLC cells, which can be used as a promising drug carrier.
Collapse
|
15
|
Jeswani G, Chablani L, Gupta U, Sahoo RK, Nakhate KT, Ajazuddin. Development and optimization of paclitaxel loaded Eudragit/PLGA nanoparticles by simplex lattice mixture design: Exploration of improved hemocompatibility and in vivo kinetics. Biomed Pharmacother 2021; 144:112286. [PMID: 34653755 DOI: 10.1016/j.biopha.2021.112286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
Anemia is the most common hematological abnormality of chemotherapy, which is responsible for poor clinical outcomes. To overcome this complication, the present study was aimed for developing a Eudragit/polylactic-co-glycolic acid (PLGA) based nanoparticulate system for a model drug paclitaxel (PTX). The study was planned using a simplex lattice mixture design. PTX nanoparticles (PTXNp) were evaluated in vitro for physicochemical properties, hemolytic effects and cytotoxic effects. Further, the nanoparticles were subjected to in vivo screening using rats for hemocompatibility, pharmacokinetic profile, and biodistribution to the vital organs. The PTXNps were 65.77-214.73 nm in size, showed more than 60% sustained drug release in 360 h and caused less than 8% hemolysis. The parameters like red blood cell count, activated partial thromboplastin time (aPTT), prothrombin time (PT) and C3 complement were similar to the negative control. Cytotoxicity results suggested that all the PTXNp demonstrated drug concentration-dependent cytotoxicity. The in vivo pharmacokinetic study concluded that PTXNp formulations had significantly higher blood AUC (93.194.55-163,071.15 h*ng/mL), longer half-lives (5.80-6.35 h) and extended mean residence times (6.05-8.54 h) in comparison to PTX solution (p < 0.05). Overall, the study provides a nanoparticulate drug delivery system to deliver PTX safely and effectively along with reducing the associated hematological adverse effects.
Collapse
Affiliation(s)
- Gunjan Jeswani
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India; Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Bhilai, Chhattisgarh 490020, India
| | - Lipika Chablani
- Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY 14618, USA.
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Ajazuddin
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
16
|
Raspantini GL, Luiz MT, Abriata JP, Eloy JDO, Vaidergorn MM, Emery FDS, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci 2021; 16:551-576. [PMID: 34849162 PMCID: PMC8609445 DOI: 10.1016/j.ajps.2020.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
This article discusses the various blood interactions that may occur with various types of nano drug-loading systems. Nanoparticles enter the blood circulation as foreign objects. On the one hand, they may cause a series of inflammatory reactions and immune reactions, resulting in the rapid elimination of immune cells and the reticuloendothelial system, affecting their durability in the blood circulation. On the other hand, the premise of the drug-carrying system to play a therapeutic role depends on whether they cause coagulation and platelet activation, the absence of hemolysis and the elimination of immune cells. For different forms of nano drug-carrying systems, we can find the characteristics, elements and coping strategies of adverse blood reactions that we can find in previous researches. These adverse reactions may include destruction of blood cells, abnormal coagulation system, abnormal effects of plasma proteins, abnormal blood cell behavior, adverse immune and inflammatory reactions, and excessive vascular stimulation. In order to provide help for future research and formulation work on the blood compatibility of nano drug carriers.
Collapse
Affiliation(s)
- Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yanan Shi
- College of Life Science, Yantai University, Yantai 264005, China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, China
| |
Collapse
|
18
|
Wang F, Shan Q, Chang X, Li Z, Gui S. Paeonol-loaded PLGA nanoparticles as an oral drug delivery system: Design, optimization and evaluation. Int J Pharm 2021; 602:120617. [PMID: 33887394 DOI: 10.1016/j.ijpharm.2021.120617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
Herein, we report a novel type of NPs by loading paeonol (Pae) into PLGA NPs, to enhance drug stability and oral bioavailability. The paeonol (Pae)-loaded polylactic-co-Gly-colic acid (PLGA) nanoparticles (Pae-PLGA-NPs) were prepared by nanoprecipitation method. The resultant NPs were in spherical shape with an average particle size around 237.7 ± 4.92 nm, and the PDI and zeta potential were 0.110 ± 0.01 and -25.33 ± 1.37 mV, respectively. The encapsulation efficiency (EE) and drug loading (DL) of the Pae-PLGA-NPs were 86.26 ± 1.12 and 12.74 ± 0.37% respectively. The in vitro drug release, in vivo pharmacokinetics and in situ single-pass intestinal perfusion (SPIPs) of Pae-PLGA-NPs was investigated. In vivo, the AUC(0-t), C max, MRT(0-t), and T1/2z of the Pae-PLGA-NPs group were 3.79-, 1.89-, 1.40- and 1.49-fold greater than those of the Pae suspension group, respectively. The in situ single-pass intestinal perfusion of NPs results showed the Ka values in the duodenum, jejunum, ileum and colon were 1.12-, 1.40-, 1.52- and 2.21-fold higher than those of Pae solution, respectively. Moreover, the Papp values of the ileum and colon were 1.27- and 1.31-fold higher than those of the solution group. Such findings suggested the Pae-PLGA-NPs can significantly improve the intestinal absorption characteristics, and have a beneficial effect on oral administration as a nanometer-sized carrier.
Collapse
Affiliation(s)
| | | | - Xiangwei Chang
- Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China
| | - Zhenbao Li
- Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China
| | - Shuangying Gui
- Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China.
| |
Collapse
|
19
|
Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura de Carvalho Vicentini F, Lopes Badra Bentley MV, Chorilli M, Maldonado Marchetti J, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 2021; 165:127-148. [PMID: 33992754 DOI: 10.1016/j.ejpb.2021.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Viegas
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Delia Rita Tapia-Blácido
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
20
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
21
|
Wei W, Tang J, Li H, Huang Y, Yin C, Li D, Tang F. Antitumor Effects of Self-Assembling Peptide-Emodin in situ Hydrogels in vitro and in vivo. Int J Nanomedicine 2021; 16:47-60. [PMID: 33442249 PMCID: PMC7797320 DOI: 10.2147/ijn.s282154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To study the in vitro and in vivo antitumor effects of the colloidal suspension-in situ hydrogel of emodin (EM) constructed with the self-assembling peptide RADA16-I and systematically evaluate the feasibility of the delivery system. METHODS The MTT and colony-formation assays were used to determine the viability of normal cells NCTC 1469 and tumor cells Hepa1-6. The uptake of EM in the RADA16-I-EM in situ hydrogel by tumor cells was analyzed by laser confocal microscope and flow cytometry. Flow cytometry was used to detect the cell apoptosis and cell cycle distribution. Transwell assay was used to detect the migration and invasion of tumor cells. The antitumor efficacy of the RADA16-I-EM in situ hydrogel and its toxic effects was further assessed in vivo on Hepa1-6 tumor-bearing C57 mice. RESULTS The results showed that the RADA16-I-EM in situ hydrogels could obviously reduce the toxicity of EM to normal cells and the survival of tumor cells. The uptake of EM by the cells from the hydrogels was obviously increased and could significantly induce apoptosis and arrest cell cycle in the G2/M phase, and reduce the migration, invasion and clone-formation ability of the cells. The RADA16-I-EM in situ hydrogel could also effectively inhibit the tumor growth and obviously decrease the toxic effects of EM on normal tissues in vivo. CONCLUSION Our results demonstrated that RADA16-I has the potential to be a carrier for the hydrophobic drug EM and can effectively improve the delivery of hydrophobic antitumor drugs with enhanced antitumor effects and reduced toxic effects of the drugs on normal cells and tissues.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, CheshireSK10 4TG, UK
| | - Hongfang Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Yongsheng Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing100005, People’s Republic of China
| | - Chengchen Yin
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, People’s Republic of China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| |
Collapse
|
22
|
Hemocompatibility of Silver Nanoparticles Based on Conjugate of Quaternized Chitosan with Gallic Acid in In Vitro Experiments. Bull Exp Biol Med 2020; 168:507-511. [PMID: 32147767 DOI: 10.1007/s10517-020-04742-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 12/11/2022]
Abstract
We studied hemocompatibility of silver nanoparticles synthesized on the basis of a conjugate of quaternized chitosan with gallic acid (QChit-Gal). For the three variants of silver particles (Nos. 1, 2, and 3), the QChit-Gal:AgNO3 ratio was 5:1, 5:3, and 1:1, respectively. Anticoagulant activity of all samples of silver nanoparticles was lower than that of the conjugate. Samples of nanoparticles Nos. 1 and 2 in a concentration of 0.0233 mg/ml did not affect plasma clotting time and can be used for intravenous administration. However, their concentration in the blood should not exceed 0.01 mg/ml, because in this concentration they do not affect erythrocyte membrane, do not induce platelet aggregation, and do not affect platelet aggregation induced by ADP.
Collapse
|
23
|
Bonde GV, Ajmal G, Yadav SK, Mittal P, Singh J, Bakde BV, Mishra B. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in-vitro characterisation. Colloids Surf B Biointerfaces 2020; 185:110611. [DOI: 10.1016/j.colsurfb.2019.110611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
|
24
|
Gracia E, Mancini A, Colapietro A, Mateo C, Gracia I, Festuccia C, Carmona M. Impregnation of Curcumin into a Biodegradable (Poly-lactic-co-glycolic acid, PLGA) Support, to Transfer Its Well Known In Vitro Effect to an In Vivo Prostate Cancer Model. Nutrients 2019; 11:E2312. [PMID: 31569529 PMCID: PMC6835253 DOI: 10.3390/nu11102312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in older men and is associated with high mortality. Despite advances in screening for early detection of PCa, a large proportion of patients continue to be diagnosed with metastatic disease, with ~20% of men showing a high tumor grade and stage. Medicinal plant extracts have a great potential to prevent/treat PCa, as well as to reduce its incidence/prevalence and improve survival rates. One of the most promising extracts is curcumin, which is a major, nontoxic, bioactive compound of Curcuma longa. Curcumin has strong antitumor activity in vitro. However, its potential beneficial in vivo affects are limited by its low intestinal absorption and rapid metabolism. In this study, curcumin was impregnated into a biodegradable poly(lactic-co-glycolic) acid (PLGA) support and characterized by FTIR and DSC, and its release by UV spectrophotometry. PLGA-curcumin was tested in different subcutaneous PCa xenograft models (PC3, 22rv1, and DU145 PCa cell-lines), and its effects evaluated by tumor progression an immuno-histochemical analysis (Trichromic, Ki67 and TUNEL stainings), were compared with those of a commercial curcumin preparation. Our results indicate that curcumin-impregnated PLGA is significantly more active (~2-fold increase) with respect to oral curcumin, which supports its use for subcutaneous administration.
Collapse
Affiliation(s)
- Eulalio Gracia
- Institute of Chemical and Environmental Technology (ITQUIMA), Department of Chemical Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cristina Mateo
- Food Technology Lab, School of Architecture, Engineering and Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Ignacio Gracia
- Institute of Chemical and Environmental Technology (ITQUIMA), Department of Chemical Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Manuel Carmona
- Food Technology Lab, School of Architecture, Engineering and Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| |
Collapse
|
25
|
Clemente N, Argenziano M, Gigliotti CL, Ferrara B, Boggio E, Chiocchetti A, Caldera F, Trotta F, Benetti E, Annaratone L, Ribero S, Pizzimenti S, Barrera G, Dianzani U, Cavalli R, Dianzani C. Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Front Pharmacol 2019; 10:776. [PMID: 31354491 PMCID: PMC6639435 DOI: 10.3389/fphar.2019.00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
This study investigated the effects of free paclitaxel (PTX) and PTX-loaded in pyromellitic nanosponges (PTX-PNS) in reducing in vitro and in vivo melanoma cell growth and invasivity, and in inhibiting angiogenesis. To test the response of cells to the two PTX formulations, the cell viability was evaluated by MTT assay in seven continuous cell lines, in primary melanoma cells, both in 2D and 3D cultures, and in human umbilical vein endothelial cells (HUVECs) after exposure to different concentrations of PTX or PTX-PNS. Cell motility was assessed by a scratch assay or Boyden chamber assay, evaluating cell migration in presence or absence of diverse concentrations of PTX or PTX-PNS. The effect of PTX and PTX-PNS on angiogenesis was evaluated as endothelial tube formation assay, a test able to estimate the formation of three-dimensional vessels in vitro. To assess the anticancer effect of PTX and PTX-PNS in in vivo experiments, the two drug formulations were tested in a melanoma mouse model obtained by B16-BL6 cell implantation in C57/BL6 mice. Results obtained were as follows: 1) MTT analysis revealed that cell proliferation was more affected by PTX-PNS than by PTX in all tested cell lines, in both 2D and 3D cultures; 2) the analysis of the cell migration showed that PTX-PNS acted at very lower concentrations than PTX; 3) tube formation assay showed that PTX-PNS were more effective in inhibiting tube formation than free PTX; and 4) in vivo experiments demonstrated that tumor weights, volumes, and growth were significantly reduced by PTX-PNS treatment with respect to PTX; the angiogenesis and the cell proliferation, detected in the tumor samples with CD31 and Ki-67 antibodies, respectively, indicated that, in the PTX-PNS-treated tumors, the tube formation was inhibited, and a low amount of proliferating cells was present. Taken together, our data demonstrated that our new PTX nanoformulation can respond to some important issues related to PTX treatment, lowering the anti-tumor effective doses and increasing the effectiveness in inhibiting melanoma growth in vivo.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), UPO, Novara, Italy
| | - Monica Argenziano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), UPO, Novara, Italy
| | - Benedetta Ferrara
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), UPO, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), UPO, Novara, Italy
| | | | | | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Simone Ribero
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), UPO, Novara, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| |
Collapse
|