1
|
Ashraf A, Rather SA, Mehraj M. "Evaluation of Curcuma zedoaria Rosc. in the management of non-alcoholic fatty liver Disease: A Randomized, single blind, controlled trial". Arab J Gastroenterol 2025; 26:112-119. [PMID: 39880723 DOI: 10.1016/j.ajg.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND AND STUDY AIMS Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder, affecting 23% to 32% of the global population. This clinical study aimed to assess the efficacy of Curcuma zedoaria Rosc. compared to vitamin E in managing NAFLD. PATIENTS AND METHODS In this randomized, single-blind, standard-controlled study, 68 patients with grade 1 (mild) and grade 2 (moderate) NAFLD were randomly assigned to receive either Curcuma zedoaria Rosc. powder in capsule form (500 mg orally, twice a day) in the test group or vitamin E (400 mg orally, twice a day) in the control group for 60 days. Secondary endpoints included improvements in fatty liver grades, ultra-sonographic liver span, lipid profile, and liver function parameters after 60 days. Primary endpoints included improvements in dull ache intensity in the right hypochondrium (RHC), dyspepsia, anorexia, and severity of malaise assessed at days 0, 15, 30, 45, and 61. RESULTS Per protocol analysis was performed on 50 patients who completed the study. Both test and control groups showed significant improvement in dull ache severity in the RHC (p < 0.0001). The test group exhibited more favorable outcomes post-treatment (Chi-sq = 23.17, df = 2, p < 0.0001). Dyspepsia severity significantly improved in both groups post-treatment (p = 0.005 and p = 0.010, respectively), with the test group showing slightly better outcomes. Anorexia significantly improved in the test group (p = 0.016) from 72.00 % reporting absence post-treatment to 100.00 % absence, while the control group showed improvement without statistical significance (p = 0.102). Malaise severity significantly improved in the test group (p < 0.0001), with 84.00 % reporting absence post-treatment compared to 8.00 % in the control group, showing significant differences (p < 0.0001). Both groups exhibited a significant reduction in liver span post-treatment (p-value < 0.0001) without inter- group differences. Fatty liver grades improved significantly in both groups post-treatment (p < 0.0001), with no significant difference between groups (Chi-sq = 4, df = 2, p = 0.1353). There were no changes in liver function markers and lipid parameters in both groups, though the test drug demonstrated a slight reduction in serum triglyceride levels. No drug-related adverse events were observed during the trial. CONCLUSION The study revealed that Curcuma zedoaria Rosc. is effective in managing NAFLD, showing better outcomes than vitamin E in subjective parameters like dyspepsia, malaise, anorexia, and dull ache in RHC. With no observed drug-related adverse events, Curcuma zedoaria Rosc. could be a suitable alternative to conventional treatment modalities for NAFLD.
Collapse
Affiliation(s)
- Aaqib Ashraf
- Dept. of Moalajat,(Medicine) RRIUM, Srinagar, India
| | | | | |
Collapse
|
2
|
Xu Y, Sutanto CN, Xia X, Toh DWK, Gan AX, Deng Q, Ling LH, Khoo CM, Foo RSY, Kim JE. Consumption of plant sterols-enriched soy milk with a healthy dietary pattern diet lowers blood pressure in adults with metabolic syndrome: A randomized controlled trial. Nutr Metab Cardiovasc Dis 2025; 35:103773. [PMID: 39561689 DOI: 10.1016/j.numecd.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND & AIMS Plant sterols (PS) have been shown to lower blood lipid-lipoproteins concentrations and may serve as a potential functional ingredient for cardiovascular disease (CVD) risk management. However, there are limited studies examining this effect in individuals with metabolic syndrome (MetS). The aim of this study was to evaluate the effects of PS-enriched food consumption as part of a healthy dietary pattern (HDP) on blood pressure and endothelial function in Singaporean adults with MetS. METHODS AND RESULTS This was a 12-week, crossover, randomized controlled trial with a 4-week washout period. Thirteen subjects were instructed to consume an HDP diet either with normal soy milk (control group) or with PS (2 g/day)-enriched soy milk (PS group) for 4 weeks. Blood lipid-lipoproteins and glucose concentrations, blood pressure, and endothelial function-related indicators (flow-mediated dilation, total plasma nitrate/nitrite and endothelin-1, circulating endothelial progenitor cells) were assessed before and after the intervention. Systolic blood pressure [mean change, PS group: -4.0 ± 3.7 mmHg; control group: 5.9 ± 2.5 mmHg (PInteraction = 0.01)] and long-term CVD risk [mean change, PS group: -0.2 ± 1.0 %; control group: 2.7 ± 1.3 % (PInteraction = 0.03)] decreased following PS consumption. No changes were observed in the other endothelial function-related outcomes. CONCLUSIONS Consumption of PS-enriched food with an HDP diet may lower blood pressure and long-term CVD risk in adults with MetS. CLINICAL TRIAL REGISTRATION NCT03723330, https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Yujing Xu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Clarinda Nataria Sutanto
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Xuejuan Xia
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Alicia Xinli Gan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Qiyun Deng
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, Singapore
| | - Chin Meng Khoo
- Division of Endocrinology, University Medicine Cluster, National University Hospital, Singapore
| | - Roger Sik-Yin Foo
- Department of Cardiology, National University Heart Centre, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Pan L, Wang L, Ma H, Ding F. Relevance of combined influence of nutritional and inflammatory status on non-alcoholic fatty liver disease and advanced fibrosis: A mediation analysis of lipid biomarkers. J Gastroenterol Hepatol 2024; 39:2853-2862. [PMID: 39392197 DOI: 10.1111/jgh.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM This study aimed to investigate the relationship between advanced lung cancer inflammation index (ALI) and non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF). METHODS A total of 5642 individuals from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020 were examined. Limited cubic spline regression model, and weighted logistic regression were employed to determine if ALI levels were related to the prevalence of NAFLD and AF. Additionally, a mediating analysis was conducted to investigate the role of lipid biomarkers, such as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), in the effects of ALI on the prevalence of NAFLD and AF. RESULTS After adjusting for potential confounders, a significant positive association was found between ALI with NAFLD and AF prevalence. Compared with those in ALI Tertile 1, participants in Tertile 3 had higher odds of NAFLD prevalence (odds ratio [OR]: 3.16; 95% confidence interval [CI]: 2.52-3.97) and AF (OR: 3.17; 95% CI: 2.30-4.36). Participants in both Tertile 2 and Tertile 3 had lower odds of developing AF (P for trend = 0.005). Moreover, we discovered a nonlinear association between ALI and NAFLD. An inflection point of 74.25 for NAFLD was identified through a two-segment linear regression model. Moreover, TC and HDL-C levels mediated the association between ALI and NAFLD by 10.2% and 4.2%, respectively (both P < 0.001). CONCLUSION Our findings suggest that higher ALI levels are positively associated with an increased prevalence of NAFLD and AF, partly mediated by lipid biomarkers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of physiology, Hebei Medical University, Shijiazhuang, China
| | - Fan Ding
- Hubei Jingmen Maternal and Child Health Hospital, Jingmen, China
| |
Collapse
|
4
|
Hwang S, Ha AW. Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults. Nutrients 2024; 16:2959. [PMID: 39275274 PMCID: PMC11397032 DOI: 10.3390/nu16172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Dairy and soy products are healthy food. However, studies have reported conflicting results associating their intake with coronary heart disease (CHD). Thus, this study determined the association between intake of dairy or soy products and 10-year CHD risk. Participants aged 40~69 years were grouped into those who consumed dairy products (more or less than twice a week) and those who consumed soy products (more or less than twice a week). Ten-year CHD risk (%), atherogenic index (AI), and atherogenic index of plasma (AIP) were calculated. The CHD risk, according to the level of dairy and soy product intake, was expressed as an odds ratio (OR) and a confidence interval (CI). Significant differences were observed in sex, age, education, income, and living area according to dairy intake frequencies, whereas only age showed significant differences according to soy products' intake frequencies. Relative effects of Framingham Risk Score (FRS) factors on 10-year CHD risk in Korean adults were found to be significant in the order of age, high-density lipoprotein cholesterol (HDL-C), smoking, blood total cholesterol (TC), systolic blood pressure (SBP), diabetes, and sex. Overall, participants who consumed dairy products ≥2/week had a significantly lower OR of 10-year CHD risk compared to those who consumed dairy products <2/week after adjusting for confounding factors (OR: 0.742, 95% CI: 0.619 to 0.890). Otherwise, intake of soy products ≥2/week tended to decrease the OR of 10-year CHD risk, although the decrease was not statistically significant. In conclusion, Korean adults who consumed dairy products ≥2/week had higher HDL-C and lower 10-year CHD risk than those who consumed dairy products <2/week. However, these results did not appear when consuming soy products.
Collapse
Affiliation(s)
- Sinwoo Hwang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ae Wha Ha
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Ma P, Ou H, Sun Z, Lu Y, Li M, Xu L, Liang Y, Zheng J, Ou Y. IAVPGEVA: Orally Available DPP4-Targeting Soy Glycinin Derived Octapeptide with Therapeutic Potential in Nonalcoholic Steatohepatitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7167-7178. [PMID: 38511978 DOI: 10.1021/acs.jafc.3c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Hao Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yunbiao Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Mengdan Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Liuxin Xu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yan Liang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Jiawei Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| |
Collapse
|
6
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
7
|
Kosmalski M, Frankowski R, Deska K, Różycka-Kosmalska M, Pietras T. Exploring the Impact of Nutrition on Non-Alcoholic Fatty Liver Disease Management: Unveiling the Roles of Various Foods, Food Components, and Compounds. Nutrients 2023; 15:2838. [PMID: 37447164 DOI: 10.3390/nu15132838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
There is a need to introduce standardized treatment options for non-alcoholic fatty liver disease (NAFLD) due to its global prevalence and the complications of this disease. Many studies have revealed that food-derived substances may be beneficial in dealing with this disease. Therefore, this review aims to evaluate the recently published studies on the food-derived treatment options for NAFLD. A comprehensive search of the PubMed database using keywords such as "NAFLD", "nutrition", "food", "derived", "therapy", and "guidelines" yielded 219 relevant papers for our analysis, published from 2004 to 2023. The results show the significant benefits of food-derived treatment in NAFLD therapy, including improvements in liver histology, hepatic fat amounts, anthropometric measures, lipid profile, and other metabolic measures. The availability of the substances discussed makes them a significant adjuvant in the treatment of this disease. The usefulness of Viusid as additional therapy to diet and physical activity should be emphasized due to improvements in liver histology; however, many other substances lead to a decrease in liver fat amounts including, e.g., berberine or omega-3 fatty acids. In addition, the synbiotic Protexin seems to be useful in terms of NAFLD treatment, especially because it is effective in both obese and lean subjects. Based on the latest research results, we suggest revising the therapeutic recommendations for patients suffering from NAFLD.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kacper Deska
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
8
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
9
|
Chiavaroli L, Cheung A, Ayoub-Charette S, Ahmed A, Lee D, Au-Yeung F, Qi X, Back S, McGlynn N, Ha V, Lai E, Khan TA, Blanco Mejia S, Zurbau A, Choo VL, de Souza RJ, Wolever TM, Leiter LA, Kendall CW, Jenkins DJ, Sievenpiper JL. Important food sources of fructose-containing sugars and adiposity: A systematic review and meta-analysis of controlled feeding trials. Am J Clin Nutr 2023; 117:741-765. [PMID: 36842451 DOI: 10.1016/j.ajcnut.2023.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Sugar-sweetened beverages (SSBs) providing excess energy increase adiposity. The effect of other food sources of sugars at different energy control levels is unclear. OBJECTIVES To determine the effect of food sources of fructose-containing sugars by energy control on adiposity. METHODS In this systematic review and meta-analysis, MEDLINE, Embase, and Cochrane Library were searched through April 2022 for controlled trials ≥2 wk. We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars), addition (energy from sugars added), subtraction (energy from sugars subtracted), and ad libitum (energy from sugars freely replaced). Independent authors extracted data. The primary outcome was body weight. Secondary outcomes included other adiposity measures. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. RESULTS We included 169 trials (255 trial comparisons, n = 10,357) assessing 14 food sources at 4 energy control levels over a median 12 wk. Total fructose-containing sugars increased body weight (MD: 0.28 kg; 95% CI: 0.06, 0.50 kg; PMD = 0.011) in addition trials and decreased body weight (MD: -0.96 kg; 95% CI: -1.78, -0.14 kg; PMD = 0.022) in subtraction trials with no effect in substitution or ad libitum trials. There was interaction/influence by food sources on body weight: substitution trials [fruits decreased; added nutritive sweeteners and mixed sources (with SSBs) increased]; addition trials [dried fruits, honey, fruits (≤10%E), and 100% fruit juice (≤10%E) decreased; SSBs, fruit drink, and mixed sources (with SSBs) increased]; subtraction trials [removal of mixed sources (with SSBs) decreased]; and ad libitum trials [mixed sources (with/without SSBs) increased]. GRADE scores were generally moderate. Results were similar across secondary outcomes. CONCLUSIONS Energy control and food sources mediate the effect of fructose-containing sugars on adiposity. The evidence provides a good indication that excess energy from sugars (particularly SSBs at high doses ≥20%E or 100 g/d) increase adiposity, whereas their removal decrease adiposity. Most other food sources had no effect, with some showing decreases (particularly fruits at lower doses ≤10%E or 50 g/d). This trial was registered at clinicaltrials.gov as NCT02558920 (https://clinicaltrials.gov/ct2/show/NCT02558920).
Collapse
Affiliation(s)
- Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - XinYe Qi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Songhee Back
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Néma McGlynn
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa Ha
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ethan Lai
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
| | - Vivian L Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Russell J de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, Ontario, Canada
| | - Thomas Ms Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Hall RL, George ES, Tierney AC, Reddy AJ. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:475-499. [PMID: 36796436 DOI: 10.1016/j.advnut.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease from simple steatosis to nonalcoholic steatohepatitis, with inflammatory cytokines and adipokines identified as drivers of disease progression. Poor dietary patterns are known to promote an inflammatory milieu, although the effects of specific diets remain largely unknown. This review aimed to gather and summarize new and existing evidence on the effect of dietary intervention on inflammatory markers in patients with NAFLD. The electronic databases MEDLINE, EMBASE, CINAHL, and Cochrane were searched for clinical trials which investigated outcomes of inflammatory cytokines and adipokines. Eligible studies included adults >18 y with NAFLD, which compared a dietary intervention with an alternative diet or control (no intervention) group or were accompanied by supplementation or other lifestyle interventions. Outcomes for inflammatory markers were grouped and pooled for meta-analysis where heterogeneity was allowed. Methodological quality and risk of bias were assessed using the Academy of Nutrition and Dietetics Criteria. Overall, 44 studies with a total of 2579 participants were included. Meta-analyses indicated intervention with an isocaloric diet plus supplement was more effective in reducing C-reactive protein (CRP) [standard mean difference (SMD): 0.44; 95% CI: 0.20, 0.68; P = 0.0003] and tumor necrosis factor-alpha (TNF-α) (SMD: 0.74; 95% CI: 0.02, 1.46; P = 0.03) than an isocaloric diet alone. No significant weighting was shown between a hypocaloric diet with or without supplementation for CRP (SMD: 0.30; 95% CI: -0.84, 1.44; P = 0.60) and TNF-α (SMD: 0.01; 95% CI: -0.43, 0.45; P = 0.97). In conclusion, hypocaloric and energy-restricted diets alone or with supplementation, and isocaloric diets with supplementation were shown to be most effective in improving the inflammatory profile of patients with NAFLD. To better determine the effectiveness of dietary intervention alone on a NAFLD population, further investigations of longer durations, with larger sample sizes are required.
Collapse
Affiliation(s)
- Renate L Hall
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| | - Elena S George
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Audrey C Tierney
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; School of Allied Health, Health Implementation Science and Technology Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Anjana J Reddy
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia.
| |
Collapse
|
11
|
Liu Z, Huang H, Xie J, Xu C. Dietary Patterns and Long-Term Outcomes in Patients with NAFLD: A Prospective Analysis of 128,695 UK Biobank Participants. Nutrients 2023; 15:271. [PMID: 36678145 PMCID: PMC9862257 DOI: 10.3390/nu15020271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Large longitudinal studies exploring the role of dietary patterns in the assessment of long-term outcomes of NAFLD are still lacking. We conducted a prospective analysis of 128,695 UK Biobank participants. Cox proportional hazards models were used to estimate the risk associated with two dietary patterns for long-term outcomes of NAFLD. During a median follow-up of 12.5 years, 1925 cases of end-stage liver disease (ESLD) and 12,466 deaths occurred in patients with NAFLD. Compared with patients in the lowest quintile, those in the highest quintile of the diet quality score was negatively associated with the risks of ESLD and all-cause mortality (HRQ5vsQ1: 0.76, 95% CI: 0.66−0.87, p < 0.001; HRQ5vsQ1: 0.84, 95% CI: 0.79−0.88, p < 0.001, respectively). NAFLD patients with high-quality carbohydrate patterns carried a 0.74-fold risk of ESLD and a 0.86-fold risk of all-cause mortality (HRQ5vsQ1: 0.74, 95% CI: 0.65−0.86, p < 0.001; HRQ5vsQ1: 0.86, 95% CI: 0.82−0.91, p < 0.001, respectively). For prudent dietary patterns rich in vegetables, fruits and fish, the adjusted HR Q5vsQ1 (95% CI) was 0.87 (0.76−0.99) and 0.94 (0.89−0.99) for ESLD and all-cause mortality of NAFLD patients. There was a U-shaped association between the meat-rich dietary pattern and all-cause mortality in patients with NAFLD. These findings suggest that a diet characterized by a high-quality, high intake of vegetables, fruits, fish and whole grains as well as an appropriate intake of meat, was associated with a lower risk of adverse outcomes of NAFLD.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiarong Xie
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou 310003, China
| |
Collapse
|
12
|
Chai XN, Zhou BQ, Ning N, Pan T, Xu F, He SH, Chen NN, Sun M. Effects of lifestyle intervention on adults with metabolic associated fatty liver disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1081096. [PMID: 36875459 PMCID: PMC9978774 DOI: 10.3389/fendo.2023.1081096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION This systematic review and meta-analysis evaluates the overall effects of lifestyle interventions upon hepatic fat content and metabolism-related indicators among adults with metabolic associated fatty liver disease. METHODS It was registered under PROSPERO (CRD42021251527). We searched PubMed, EMBASE, MEDLINE, Cochrane, CINAHL, Scopus, CNKI, Wan-fang, VIP, and CBM from the inception of each database to May 2021 for RCT studies of lifestyle interventions on hepatic fat content and metabolism-related indicators. We used Review Manager 5.3 for meta-analysis and used text and detailed tabular summaries when heterogeneity existed. RESULTS Thirty-four RCT studies with 2652 participants were included. All participants were obesity, 8% of whom also had diabetes, and none was lean or normal weight. Through subgroup analysis, we found low carbohydrate diet, aerobic training and resistance training significantly improved the level of HFC, TG, HDL, HbA1c, and HOMA-IR. Moreover, low carbohydrate diet is more effective in improving HFC than low fat diet and resistance training is better than aerobic training in reduction in HFC and TG (SMD, -0.25, 95% CI, -0.45 to -0.06; SMD, 0.24, 95% CI, 0.03 to 0.44, respectively). DISCUSSION Overall, this is the first review that systematically synthesizes studies focused on the effects of various lifestyle on adults with MAFLD. The data generated in this systematic review were more applicable to obesity MAFLD rather than lean or normal weight MAFLD. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier (CRD42021251527).
Collapse
Affiliation(s)
- Xiao-Ni Chai
- Xiangya Nursing School, Central South University, Changsha, China
| | - Bing-Qian Zhou
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ni Ning
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ting Pan
- Xiangya Nursing School, Central South University, Changsha, China
| | - Fan Xu
- Xiangya Nursing School, Central South University, Changsha, China
| | - Si-Han He
- School of Nursing, Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Ni-Ni Chen
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha, China
- School of Nursing, Changsha Medical University, Changsha, China
- *Correspondence: Mei Sun,
| |
Collapse
|
13
|
Qi X, Chiavaroli L, Lee D, Ayoub-Charette S, Khan TA, Au-Yeung F, Ahmed A, Cheung A, Liu Q, Blanco Mejia S, Choo VL, de Souza RJ, Wolever TMS, Leiter LA, Kendall CWC, Jenkins DJA, Sievenpiper JL. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients 2022; 14:3986. [PMID: 36235639 PMCID: PMC9572084 DOI: 10.3390/nu14193986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fructose-containing sugars as sugar-sweetened beverages (SSBs) may increase inflammatory biomarkers. Whether this effect is mediated by the food matrix at different levels of energy is unknown. To investigate the role of food source and energy, we conducted a systematic review and meta-analysis of controlled trials on the effect of different food sources of fructose-containing sugars on inflammatory markers at different levels of energy control. METHODS MEDLINE, Embase, and the Cochrane Library were searched through March 2022 for controlled feeding trials ≥ 7 days. Four trial designs were prespecified by energy control: substitution (energy matched replacement of sugars); addition (excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced). The primary outcome was C-reactive protein (CRP). Secondary outcomes were tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Independent reviewers extracted data and assessed risk of bias. GRADE assessed certainty of evidence. RESULTS We identified 64 controlled trials (91 trial comparisons, n = 4094) assessing 12 food sources (SSB; sweetened dairy; sweetened dairy alternative [soy]; 100% fruit juice; fruit; dried fruit; mixed fruit forms; sweetened cereal grains and bars; sweets and desserts; added nutritive [caloric] sweetener; mixed sources [with SSBs]; and mixed sources [without SSBs]) at 4 levels of energy control over a median 6-weeks in predominantly healthy mixed weight or overweight/obese adults. Total fructose-containing sugars decreased CRP in addition trials and had no effect in substitution, subtraction or ad libitum trials. No effect was observed on other outcomes at any level of energy control. There was evidence of interaction/influence by food source: substitution trials (sweetened dairy alternative (soy) and 100% fruit juice decreased, and mixed sources (with SSBs) increased CRP); and addition trials (fruit decreased CRP and TNF-α; sweets and desserts (dark chocolate) decreased IL-6). The certainty of evidence was moderate-to-low for the majority of analyses. CONCLUSIONS Food source appears to mediate the effect of fructose-containing sugars on inflammatory markers over the short-to-medium term. The evidence provides good indication that mixed sources that contain SSBs increase CRP, while most other food sources have no effect with some sources (fruit, 100% fruit juice, sweetened soy beverage or dark chocolate) showing decreases, which may be dependent on energy control. CLINICALTRIALS gov: (NCT02716870).
Collapse
Affiliation(s)
- XinYe Qi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Tauseef A. Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Qi Liu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Vivian L. Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G1V7, Canada
| | - Russell J. de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S4K1, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON L8L2X2, Canada
| | - Thomas M. S. Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- INQUIS Clinical Research Ltd. (Formerly GI Labs), Toronto, ON M5C2N8, Canada
| | - Lawrence A. Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| | - Cyril W. C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - David J. A. Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| |
Collapse
|
14
|
Xiao CW, Hendry A. Hypolipidemic Effects of Soy Protein and Isoflavones in the Prevention of Non-Alcoholic Fatty Liver Disease- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:319-328. [PMID: 35678936 PMCID: PMC9463339 DOI: 10.1007/s11130-022-00984-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. Obesity and diabetes are the main causes of the disease characterized by excessive accumulation of lipids in the liver. There is currently no direct pharmacological treatments for NAFLD. Dietary intervention and lifestyle modification are the key strategies in the prevention and treatment of the disease. Soy consumption is associated with many health benefits such as decreased incidence of coronary heart disease, type-2 diabetes, atherosclerosis and obesity. The hypolipidemic functions of soy components have been shown in both animal studies and human clinical trials. Dietary soy proteins and associated isoflavones suppressed the formation and accumulation of lipid droplets in the liver and improved NAFLD-associated metabolic syndrome. The molecular mechanism(s) underlying the effects of soy components are mainly through modulation of transcription factors, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ2, and expressions of their target genes involved in lipogenesis and lipolysis as well as lipid droplet-promoting protein, fat-specific protein-27. Inclusion of appropriate amounts of soy protein and isoflavones in the diets might be a useful approach to decrease the prevalence of NAFLD and mitigate disease burden.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Amy Hendry
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada
| |
Collapse
|
15
|
Lee D, Chiavaroli L, Ayoub-Charette S, Khan TA, Zurbau A, Au-Yeung F, Cheung A, Liu Q, Qi X, Ahmed A, Choo VL, Blanco Mejia S, Malik VS, El-Sohemy A, de Souza RJ, Wolever TMS, Leiter LA, Kendall CWC, Jenkins DJA, Sievenpiper JL. Important Food Sources of Fructose-Containing Sugars and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Nutrients 2022; 14:2846. [PMID: 35889803 PMCID: PMC9325155 DOI: 10.3390/nu14142846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Fructose providing excess calories in the form of sugar sweetened beverages (SSBs) increases markers of non-alcoholic fatty liver disease (NAFLD). Whether this effect holds for other important food sources of fructose-containing sugars is unclear. To investigate the role of food source and energy, we conducted a systematic review and meta-analysis of controlled trials of the effect of fructose-containing sugars by food source at different levels of energy control on non-alcoholic fatty liver disease (NAFLD) markers. Methods and Findings: MEDLINE, Embase, and the Cochrane Library were searched through 7 January 2022 for controlled trials ≥7-days. Four trial designs were prespecified: substitution (energy-matched substitution of sugars for other macronutrients); addition (excess energy from sugars added to diets); subtraction (excess energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced by other macronutrients). The primary outcome was intrahepatocellular lipid (IHCL). Secondary outcomes were alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Independent reviewers extracted data and assessed risk of bias. The certainty of evidence was assessed using GRADE. We included 51 trials (75 trial comparisons, n = 2059) of 10 food sources (sugar-sweetened beverages (SSBs); sweetened dairy alternative; 100% fruit juice; fruit; dried fruit; mixed fruit sources; sweets and desserts; added nutritive sweetener; honey; and mixed sources (with SSBs)) in predominantly healthy mixed weight or overweight/obese younger adults. Total fructose-containing sugars increased IHCL (standardized mean difference = 1.72 [95% CI, 1.08 to 2.36], p < 0.001) in addition trials and decreased AST in subtraction trials with no effect on any outcome in substitution or ad libitum trials. There was evidence of influence by food source with SSBs increasing IHCL and ALT in addition trials and mixed sources (with SSBs) decreasing AST in subtraction trials. The certainty of evidence was high for the effect on IHCL and moderate for the effect on ALT for SSBs in addition trials, low for the effect on AST for the removal of energy from mixed sources (with SSBs) in subtraction trials, and generally low to moderate for all other comparisons. Conclusions: Energy control and food source appear to mediate the effect of fructose-containing sugars on NAFLD markers. The evidence provides a good indication that the addition of excess energy from SSBs leads to large increases in liver fat and small important increases in ALT while there is less of an indication that the removal of energy from mixed sources (with SSBs) leads to moderate reductions in AST. Varying uncertainty remains for the lack of effect of other important food sources of fructose-containing sugars at different levels of energy control.
Collapse
Affiliation(s)
- Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Tauseef A. Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- INQUIS Clinical Research Ltd. (Formerly GI Labs), Toronto, ON M5C 2N8, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- INQUIS Clinical Research Ltd. (Formerly GI Labs), Toronto, ON M5C 2N8, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Qi Liu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Xinye Qi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Vivian L. Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Vasanti S. Malik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
| | - Russell J. de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON L8L 2X2, Canada
| | - Thomas M. S. Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- INQUIS Clinical Research Ltd. (Formerly GI Labs), Toronto, ON M5C 2N8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lawrence A. Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Cyril W. C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - David J. A. Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.); (L.C.); (S.A.-C.); (T.A.K.); (A.Z.); (F.A.-Y.); (A.C.); (Q.L.); (X.Q.); (A.A.); (V.L.C.); (S.B.M.); (V.S.M.); (A.E.-S.); (R.J.d.S.); (T.M.S.W.); (L.A.L.); (C.W.C.K.); (D.J.A.J.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
16
|
Bijeh N, Mohammadnia-Ahmadi M, Hooshamnd-Moghadam B, Eskandari M, Golestani F. Effects of Soy Milk in Conjunction With Resistance Training on Physical Performance and Skeletal Muscle Regulatory Markers in Older Men. Biol Res Nurs 2022; 24:294-307. [PMID: 35332795 DOI: 10.1177/10998004211073123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: We aimed to determine the effects of 12 weeks of soy milk consumption combined with resistance training (RT) on body composition, physical performance, and skeletal muscle regulatory markers in older men. Methods: In this randomized clinical trial study, 60 healthy elderly men (age = 65.63 ± 3.16 years) were randomly assigned to four groups: resistance training (RT; n = 15), soy milk consumption (SMC; n = 15), resistance training + soy milk (RSM; n = 15), and control (CON; n = 15) groups. The study was double-blind for the soy milk/placebo. Participants in RT and RSM groups performed resistance training (3 times/week) for 12 weeks. Participants in the SMC and RSM groups consumed 240 mL of soy milk daily. Body composition [body mass (BM), body fat percent (BFP), waist-hip ratio (WHR), and fat mass (FM)], physical performance [upper body strength (UBS), lower body strength (LBS), VO2max, upper anaerobic power, lower anaerobic power, and handgrip strength], and serum markers [follistatin, myostatin, myostatin-follistatin ratio (MFR), and growth and differentiation factor 11 (GDF11)] were evaluated before and after interventions. Results: All 3 interventions significantly (p < 0.05) increased serum follistatin concentrations (RT = 1.7%, SMC = 2.9%, RSM = 7.8%) and decreased serum myostatin (RT = -1.3% SMC = -5.4%, RSM = -0.5%) and GDF11 concentrations (RT = -1.4%, SMC = -1.4%, RSM = -9.0%), and MFR (RT = -2.6%, SMC = -3.2%, RSM = -12%). In addition, we observed significant reduction in all 3 intervention groups in BFP (RT = -3.6%, SMC = -1.4%, RSM = -6.0%), WHR (RT = -2.2%, SMC = -2.1%, RSM = -4.3%), and FM (RT = -9.6%, SMC = -3.8%, RSM = -11.0%). Moreover, results found significant increase only in RT and RSM groups for muscle mass (RT = 3.8% and RSM = 11.8%), UBS (RT = 10.9% and RSM = 21.8%), LBS (RT = 4.3% and RSM = 7.8%), upper anaerobic power (RT = 7.8% and RSM = 10.3%), and lower anaerobic power (RT = 4.6% and RSM = 8.9%). Handgrip strength were significantly increased in all 3 intervention groups (RT = 7.0%, SMC = 6.9%, RSM = 43.0%). VO2max significantly increased only in RSM (1.7%) after 12 weeks of intervention. Additionally, significant differences were observed between the changes for all variables in the RSM group compared to RT, SMC, and CON groups (p < 0.05). Conclusions: There were synergistic effects of soy milk and RT for skeletal muscle regulatory markers, body composition, and physical performance. Results of the present study support the importance of soy milk in conjunction with RT for older men.
Collapse
Affiliation(s)
- Nahid Bijeh
- Department of Exercise Physiology, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Mozhgan Eskandari
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| | - Fateme Golestani
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| |
Collapse
|
17
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
18
|
Hassan Sohouli M, Lari A, Fatahi S, Shidfar F, Găman MA, Sernizon Guimarães N, Sindi GA, Mandili RA, Alzahrani GR, Abdulwahab RA, Almuflihi AM, Alsobyani FM, Albu Mahmud AM, Nazzal O, Alshaibani L, Elmokid S, Abu-Zaid A. Impact of soy milk consumption on cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2021; 83:104499. [DOI: 10.1016/j.jff.2021.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Xiong P, Zhu YF. Soy diet for nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e25817. [PMID: 34087824 PMCID: PMC8183754 DOI: 10.1097/md.0000000000025817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The efficacy of soy diet for nonalcoholic fatty liver disease remains controversial. We conduct a systematic review and meta-analysis to explore the influence of soy diet vs placebo on the treatment of non-alcoholic fatty liver disease. METHODS We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through October 2020 for randomized controlled trials assessing the efficacy of soy diet vs placebo for nonalcoholic fatty liver disease. This meta-analysis is performed using the random-effect model. RESULTS Five randomized controlled trials are included in the meta-analysis. Overall, compared with control group for nonalcoholic fatty liver disease, soy diet is associated with significantly reduced HOMA-IR (standard mean difference [SMD] = -0.42; 95% confidence interval [CI] = -0.76 to -0.08; P = .01), increased insulin (SMD = -0.64; 95% CI = -0.98 to -0.30; P = .0002) and decreased malondialdehyde (SMD = -0.43; 95% CI = -0.74 to -0.13; P = .005), but demonstrated no substantial impact on body mass index (SMD = 0.17; 95% CI = -0.20 to 0.53; P = .37), alanine aminotransferase (SMD = -0.01; 95% CI = -0.61 to 0.60; P = .98), aspartate-aminotransferase (SMD = 0.01; 95% CI = -0.47 to 0.49; P = .97), total cholesterol (SMD = 0.05; 95% CI = -0.25 to 0.35; P = .73) or low density lipoprotein (SMD = 0; 95% CI = -0.30 to 0.30; P = .99). CONCLUSIONS Soy diet may benefit to alleviate insulin resistance for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Pian Xiong
- Department of Infectious Disease, The Fourth Affiliated Hospital Zhejiang University, School of Medicine, Yiwu
| | - Yong-Fen Zhu
- Department of Hepatology and infection, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Darvish Damavandi R, Shidfar F, Najafi M, Janani L, Masoodi M, Akbari-Fakhrabadi M, Dehnad A. Effect of Portulaca Oleracea (purslane) extract on liver enzymes, lipid profile, and glycemic status in nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. Phytother Res 2021; 35:3145-3156. [PMID: 33880813 DOI: 10.1002/ptr.6972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Purslane (Portulaca oleracea L.) is the richest green leafy vegetable source of omega-3, especially alpha linolenic acid (ALA). Experimental studies have shown beneficial effects of purslane extract on liver enzymes. The aim of the present study was to examine the effect of purslane hydroalcohoic extract in patients with non-alcoholic fatty liver disease (NAFLD). In a randomized double-blinded clinical trial, 74 patients were randomly assigned to receive either 300 mg purslane extract or placebo capsules for 12 weeks. Compared with baseline, alanine aminotransferase (ALT) (-9 [-17, 0.50] mg/dl; p = .007), aspartate aminotransferase (AST) (-4 [-10, -0.50] mg/dl; p = .001), gamma glutamyltransferase (GGT) (-6.21 ± 9.85 mg/dL; p < .001), fasting blood glucose (FBG) (-8 [-11, -1.50] mg/dl; p < .001) insulin resistance (-0.95 ± 2.23; p = .020), triglyceride (-20 [-67.50, 3.50] mg/dl; p = .010), and low-density lipoprotein cholesterol (LDL-C) (-5 [-12, -1] mg/dl; p < .001) decreased significantly in the purslane group. At the end of study, no significant changes were observed in liver steatosis grade, insulin, liver enzymes, total bilirubin, lipid profile, and blood pressure between the two groups. The findings of our study show that purslane extract at the dose of 300 mg/day for 12 weeks has no significant effects on liver enzymes, lipid profile, and glycemic indices in patients with NAFLD.
Collapse
Affiliation(s)
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari-Fakhrabadi
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Afsaneh Dehnad
- School of Health Management and Information Sciences, Department of Medical Education, Center for Educational Research in Medical Sciences (CERMS), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Zhang S, Kumari S, Gu Y, Wu X, Li X, Meng G, Zhang Q, Liu L, Wu H, Wang Y, Zhang T, Wang X, Cao X, Li H, Liu Y, Wang X, Sun S, Wang X, Zhou M, Jia Q, Song K, Sun Z, Niu K. Soy Food Intake Is Inversely Associated with Newly Diagnosed Nonalcoholic Fatty Liver Disease in the TCLSIH Cohort Study. J Nutr 2020; 150:3280-3287. [PMID: 33097932 DOI: 10.1093/jn/nxaa297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Animal studies have shown that soy protein and isoflavones can increase antioxidant capacity and improve insulin resistance, and thus ameliorate nonalcoholic fatty liver disease (NAFLD). However, only limited epidemiological studies have examined the association of soy food intake with NAFLD. OBJECTIVES We investigated the association between soy food intake and NAFLD in a Chinese cohort. METHODS A total of 24,622 participants aged 20-90 y were included in the study. Diet information was collected using a validated 100-item FFQ. NAFLD was defined as having fatty liver diagnosed by ultrasonography and excluding men and women who consumed >210 g alcohol/wk and >140 g/wk, respectively. Logistic regression analysis was used to assess the association of soy food intake with NAFLD. RESULTS After adjustment for potential confounders, and taking those with <1 time/wk soy food intake as the reference group, the ORs for NAFLD across soy food intake frequency were 0.94 (95% CI: 0.83, 1.07) for 1 time/wk, 0.88 (95% CI: 0.78, 0.99) for 2-3 times/wk, and 0.75 (95% CI: 0.65, 0.87) for ≥4 times/wk (P-trend <0.0001). The results were similar when participants were categorized by the energy-adjusted soy food intake (grams per 1000 kilocalories) quartiles (OR = 0.80; 95% CI: 0.71, 0.91; comparing extreme quartiles). CONCLUSIONS Higher soy food intake was associated with a lower prevalence of NAFLD in Chinese adults. Further prospective studies and randomized clinical trials are necessary to confirm if soy food intake is inversely related to the risk of NAFLD.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shubham Kumari
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaohui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaoyue Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xingqi Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yunyun Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaohe Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong Sun
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Center, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
22
|
Zarei A, Stasi C, Mahmoodi M, Masoumi SJ, Zare M, Jalali M. Effect of soy consumption on liver enzymes, lipid profile, anthropometry indices, and oxidative stress in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1245-1250. [PMID: 33149855 PMCID: PMC7585529 DOI: 10.22038/ijbms.2020.46854.10797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Abstract
The present systematic review and meta-analysis was conducted to investigate the effects of soy intake on liver enzymes, lipid profile, anthropometry indices, and oxidative stress in non-alcoholic fatty liver disease (NAFLD). A systematic search was undertaken in PubMed, Embase, Scopus, Web of Science, and Cochrane Library covering up to 10 January 2020. A fixed-effect or random-effects models were applied to pool mean difference (MD) and its 95 % confidence intervals (CI). Four clinical trials comprising 234 participants were included in the meta-analysis. Compared to the controls, alanine aminotransferase (ALT) levels (MD=-7.53, 95% CI=[-11.98, -3.08], P=0.001, I2=0.0 %), body weight (MD=-0.77, 95 % CI=[-1.38, -0.16], P=0.01, I2=36.9%), and the concentration of serum Malondialdehyde (MDA) (MD=-0.75, 95% CI=[-1.29, -0.21], P=0.007, I2=63.6%) were significantly changed following soy intake. Lipid profile was not significantly affected by soy intake. Moreover, no evidence of a significant publication bias was found. The present study suggests lowering effects for soy intake on ALT levels, body weight, and MDA in nonalcoholic liver patients. Therefore, further large-scale and well-designed clinical trials are needed to find conclusive findings.
Collapse
Affiliation(s)
- Aida Zarei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cristina Stasi
- Interdepartmental Hepatology Center MASVE, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Marzieh Mahmoodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Technical opinion of the Asociación Mexicana de Gastroenterología on soy plant-based beverages. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2020. [DOI: 10.1016/j.rgmxen.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Vázquez-Frias R, Icaza-Chávez ME, Ruiz-Castillo MA, Amieva-Balmori M, Argüello-Arévalo GA, Carmona-Sánchez RI, Flores-Bello MV, Hernández-Rosiles V, Hernández-Vez G, Medina-Vera I, Montijo-Barrios E, Núñez-Barrera I, Pinzón-Navarro BA, Sánchez-Ramírez CA. Technical opinion of the Asociación Mexicana de Gastroenterología on soy plant-based beverages. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2020; 85:461-471. [PMID: 32863095 DOI: 10.1016/j.rgmx.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
There has been a recent increase in the consumption of cow's milk substitutes, specifically plant-based beverages, which have erroneously been named "plant milks". Plant-based beverages do not have a standard of identity, and so their nutritional composition can vary from one brand to another, even within the same category. The aim of the present narrative review was to produce a technical opinion to serve as a frame of reference for sustaining the recommendation of soy plant-based beverages. Nutrition and gastroenterology experts that belong to the Asociación Mexicana de Gastroenterología jointly commented on and analyzed themes on plant-based beverages, and on soy drinks in particular, including their nutritional characteristics, consumption in children, and potential growth and development alterations, as well as soy drink consumption in adults and its association with gastrointestinal alterations and other conditions. Plant-based beverages, including those made from soy, are not a replacement for breastmilk or breastmilk substitutes. Soy beverages are considered safe and can enrich the varied diet of its consumers, as long as they are considered an additional liquid portion of the diet. They can be ingested by adults and children above two years of age that present with cow's milk protein allergy or lactose intolerance.
Collapse
Affiliation(s)
- R Vázquez-Frias
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Ciudad de México, México.
| | | | - M A Ruiz-Castillo
- Servicio de Gastroenterología Pediátrica, Hospital del Niño DIF Hidalgo, Pachuca, Hidalgo, México
| | - M Amieva-Balmori
- Instituto de Investigaciones Médico Biológicas, Universidad Veracruzana, Veracruz, México
| | - G A Argüello-Arévalo
- Departamento de Gastroenterología y Nutrición Pediátrica, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - R I Carmona-Sánchez
- Unidad de Medicina Ambulatoria, Christus Muguerza, San Luis Potosí, San Luis Potosí, México
| | - M V Flores-Bello
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Ciudad de México, México
| | - V Hernández-Rosiles
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Ciudad de México, México
| | | | - I Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, México
| | - E Montijo-Barrios
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Pediatría, Ciudad de México, México
| | - I Núñez-Barrera
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Ciudad de México, México
| | - B A Pinzón-Navarro
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Pediatría, Ciudad de México, México
| | | |
Collapse
|
25
|
Hosseinikia M, Oubari F, Hosseinkia R, Tabeshfar Z, Salehi MG, Mousavian Z, Abbasi M, Samadi M, Pasdar Y. Quercetin supplementation in non-alcoholic fatty liver disease. NUTRITION & FOOD SCIENCE 2020; 50:1279-1293. [DOI: 10.1108/nfs-10-2019-0321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Purpose
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease which has become a public health concern, whose growing prevalence has been reported as around 33.9% in Iran. As oxidative stress plays a crucial role in the pathogenesis of NAFLD, antioxidant compounds such as quercetin could ameliorate the side effect of oxidative stress. The aim of the current study was to assess the effect of quercetin on lipid profile, liver enzymes and inflammatory indices in NAFLD patients.
Design/methodology/approach
In a randomized, double-blind, placebo-controlled trial conducted as a pilot study, 90 patients with NAFLD were supplemented with either a quercetin or a placebo capsule twice daily (500 mg) for 12 weeks. Both groups were advised to follow an energy-balanced diet with physical activity recommendations. Blood sample was obtained for laboratory parameters at baseline and the end of week 12.
Findings
At the end of the follow-up, quercetin group had significantly greater reduction in anthropometric parameters, cholesterol (−15 ± (−41, 0.00) in Q group versus −1± (−8, 2) in control group, p = 0.004), TG (−56.7 ± 22.7) in Q group versus −13.4 ± 27.7 in control group, p = 0.04), and tumor necrosis factor-α (TNF-α) (−49.5 ± (−99, 21) in Q group versus −5 ± (−21, 0.30) in the control group, p < 0.0001) compared to the control group. However, changes in fatty liver grade, liver enzymes, as well as high density lipoprotein-cholesterol and high-sensitivity C-reactive protein were not significantly different between the two groups.
Originality/value
To the best of the authors’ knowledge, this was the first study which assessed the effect of quercetin supplementation on liver enzymes, lipid profile and inflammatory indices of NAFLD patients as a double-blind placebo-controlled pilot study.
Collapse
|
26
|
Mu Y, Kou T, Wei B, Lu X, Liu J, Tian H, Zhang W, Liu B, Li H, Cui W, Wang Q. Soy Products Ameliorate Obesity-Related Anthropometric Indicators in Overweight or Obese Asian and Non-Menopausal Women: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11112790. [PMID: 31731772 PMCID: PMC6893485 DOI: 10.3390/nu11112790] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background: The effect of soy products on the weight of overweight or obese people is controversial, so we aimed to conduct a systematic review and a meta-analysis of published randomized controlled trials to analyze whether supplementation with soy products can help them to lose weight. Methods: The relevant data before January 2019 in PubMed, Embase and Cochrane Library were searched. A random-effect model was adopted to calculate the weighted average difference of net changes of body weight, body mass index (BMI), body fat percentage, fat mass, waist circumference, etc. Results: A total of 22 trials (870 overweight or obese participants) were reflected in the present meta-analysis. Analysis showed that soy products significantly reduced body weight, BMI, body fat percent and waist circumference in overweight or obese Asian populations (−0.37 kg, P = 0.010; −0.27 kg/m2, P = 0.042; −0.36%, P = 0.032; −0.35 cm, P = 0.049) and more significant effects were observed in non-menopausal women reduced body weight (−0.59 kg, P = 0.041), BMI (−0.59, P = 0.041) and waist circumference (−0.59 cm, P = 0.041) in overweight or obese populations. Conclusion: This meta-analysis showed that soy products have weight loss effects, mainly due to soy protein, isoflavone and soy fiber.
Collapse
Affiliation(s)
- Yuze Mu
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Tingyan Kou
- Junan County Health Bureau, Linyi 276600, China;
| | - Boyang Wei
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Xuezhao Lu
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Jingyao Liu
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Huimin Tian
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Wenwen Zhang
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Bingkun Liu
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Huihui Li
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Wenbo Cui
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
| | - Qiuzhen Wang
- Department of the College of Public Health, Qingdao University, Qingdao 266071, China; (Y.M.); (B.W.); (X.L.); (J.L.); (H.T.); (W.Z.); (B.L.); (H.L.); (W.C.)
- Correspondence: ; Tel.: +86-532-8299-1503
| |
Collapse
|
27
|
Eslami O, Shidfar F. Soy milk: A functional beverage with hypocholesterolemic effects? A systematic review of randomized controlled trials. Complement Ther Med 2019; 42:82-88. [DOI: 10.1016/j.ctim.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 11/24/2022] Open
|