1
|
Jain SK, Stevens CM, Margret JJ, Levine SN. Alzheimer's Disease: A Review of Pathology, Current Treatments, and the Potential Therapeutic Effect of Decreasing Oxidative Stress by Combined Vitamin D and l-Cysteine Supplementation. Antioxid Redox Signal 2024; 40:663-678. [PMID: 37756366 PMCID: PMC11001507 DOI: 10.1089/ars.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Significance: Excess oxidative stress and neuroinflammation are risk factors in the onset and progression of Alzheimer's disease (AD) and its association with amyloid-β plaque accumulation. Oxidative stress impairs acetylcholine (ACH) and N-methyl-d-aspartate receptor signaling in brain areas that function in memory and learning. Glutathione (GSH) antioxidant depletion positively correlates with the cognitive decline in AD subjects. Treatments that upregulate GSH and ACH levels, which simultaneously decrease oxidative stress and inflammation, may be beneficial for AD. Recent Advances: Some clinical trials have shown a benefit of monotherapy with vitamin D (VD), whose deficiency is linked to AD or with l-cysteine (LC), a precursor of GSH biosynthesis, in reducing mild cognitive impairment. Animal studies have shown a simultaneous decrease in ACH esterase (AChE) and increase in GSH; combined supplementation with VD and LC results in a greater decrease in oxidative stress and inflammation, and increase in GSH levels compared with monotherapy with VD or LC. Therefore, cosupplementation with VD and LC has the potential of increasing GSH, downregulation of oxidative stress, and decreased inflammation and AChE levels. Future Directions: Clinical trials are needed to determine whether safe low-cost dietary supplements, using combined VD+LC, have the potential to alleviate elevated AChE, oxidative stress, and inflammation levels, thereby halting the onset of AD. Goal of Review: The goal of this review is to highlight the pathological hallmarks and current Food and Drug Administration-approved treatments for AD, and discuss the potential therapeutic effect that cosupplementation with VD+LC could manifest by increasing GSH levels in patients. Antioxid. Redox Signal. 40, 663-678.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher M. Stevens
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jeffrey Justin Margret
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Steven N. Levine
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
2
|
Medoro A, Davinelli S, Colletti A, Di Micoli V, Grandi E, Fogacci F, Scapagnini G, Cicero AFG. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev Nutr Food Sci 2023; 28:89-107. [PMID: 37416796 PMCID: PMC10321448 DOI: 10.3746/pnf.2023.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 07/08/2023] Open
Abstract
Dietary supplementation with nutraceuticals can promote optimal immune system activation, modulating different pathways that enhance immune defenses. Therefore, the immunity-boosting effects of nutraceuticals encompass not only immunomodulatory but also antioxidant, antitumor, antiviral, antibacterial, and antifungal properties, with therapeutic effects against diverse pathological conditions. However, the complexity of the pathways that regulate the immune system, numerous mechanisms of action, and heterogeneity of the immunodeficiencies, and subjects treated make their application in the clinical field difficult. Some nutraceuticals appear to safely improve immune system function, particularly by preventing viral and bacterial infections in specific groups, such as children, the elderly, and athletes, as well as in frail patients, such as those affected by autoimmune diseases, chronic diseases, or cancer. Several nutraceuticals, such as vitamins, mineral salts, polyunsaturated omega-3 fatty acids, many types of phytocompounds, and probiotic strains, have the most consolidated evidence in humans. In most cases, further large and long-term randomized clinical trials are needed to confirm the available preliminary positive data.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Science and Drug Technology, University of Turin, Turin 10125, Italy
| | - Valentina Di Micoli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Elisa Grandi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Federica Fogacci
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Arrigo F. G. Cicero
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria Policlinico S. Orsola-Malpighi, Bologna 40138, Italy
| |
Collapse
|
3
|
Beheshti M, Neisi N, Parsanahad M, Rasti M, Nashibi R, Cheraghian B. Correlation of vitamin D levels with serum parameters in Covid-19 patients. Clin Nutr ESPEN 2023; 55:325-331. [PMID: 37202065 DOI: 10.1016/j.clnesp.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND It is well-established that vitamins have many beneficial roles and protect humans against inflammatory diseases. Vitamin D, a lipid-soluble vitamin, plays a crucial role in viral infections. Therefore, this study aimed to investigate if serum 25(OH)D levels affect morbidity, mortality, and levels of inflammatory parameters in COVID-19 patients. METHODS 140 COVID-19 patients participated in this study (65 outpatients and 75 inpatients). Their blood samples were collected to determine TNFα, IL-6, D-dimer, zinc, Ca2+, and 25(OH)D levels. Patients with O2 saturation <93% were admitted and hospitalized in the infectious disease ward (inpatient group). Patients with O2 saturation >93% received routine treatment and were discharged (Outpatient group). RESULTS The serum levels of 25(OH)D in the inpatient group were significantly lower than those in the outpatient group (p < 0.001). Serum TNF-α, IL-6, and D-dimer levels in the inpatient group were significantly higher than those in the outpatient group (p < 0.001). Serum TNF-α, IL-6, and D-dimer levels were inversely correlated with 25(OH)D levels. No significant differences were observed in the serum levels of zinc and Ca2+ between the studied groups (p = 0.96, p = 0.41 respectively). Ten out of 75 patients in the inpatient group were admitted to ICU (intubated). Nine out of them lost their lives (the mortality rate in ICU-admitted patients was 90%). CONCLUSIONS The lower mortality and severity of COVID-19 patients with higher 25(OH)D levels represented that this vitamin alleviates the severity of COVID-19.
Collapse
Affiliation(s)
- Masoud Beheshti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Department of Medical Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Department of Medical Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Parsanahad
- Infectious and Tropical Diseases Research Center, Health Research Institute, Department of Medical Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Bahman Cheraghian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Contreras-Bolívar V, García-Fontana B, García-Fontana C, Muñoz-Torres M. Vitamin D and COVID-19: where are we now? Postgrad Med 2023; 135:195-207. [PMID: 34886758 PMCID: PMC8787834 DOI: 10.1080/00325481.2021.2017647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
The pandemic caused by the SARS-CoV-2 virus has triggered great interest in the search for the pathophysiological mechanisms of COVID-19 and its associated hyperinflammatory state. The presence of prognostic factors such as diabetes, cardiovascular disease, hypertension, obesity, and age influence the expression of the disease's clinical severity. Other elements, such as 25-hydroxyvitamin D (25(OH)D3) concentrations, are currently being studied. Various studies, mostly observational, have sought to demonstrate whether there is truly a relationship between 25(OH)D3 levels and the acquisition and/or severity of the disease. The objective of this study was to carry out a review of the current data that associate vitamin D status with the acquisition, evolution, and/or severity of infection by the SARS-CoV-2 virus and to assess whether prevention through vitamin D supplementation can prevent infection and/or improve the evolution once acquired. Vitamin D system has an immunomodulatory function and plays a significant role in various bacterial and viral infections. The immune function of vitamin D is explained in part by the presence of its receptor (VDR) and its activating enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1) in immune cells. The vitamin D, VDR, and Retinoid X Receptor complex allows the transcription of genes with antimicrobial activities, such as cathelicidins and defensins. COVID-19 characteristically presents a marked hyperimmune state, with the release of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. Thus, there are biological factors linking vitamin D to the cytokine storm, which can herald some of the most severe consequences of COVID-19, such as acute respiratory distress syndrome. Hypovitaminosis D is widespread worldwide, so the prevention of COVID-19 through vitamin D supplementation is being considered as a possible therapeutic strategy easy to implement. However, more-quality studies and well-designed randomized clinical trials are needed to address this relevant question.
Collapse
Affiliation(s)
- Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Granada, Spain
| | - Beatriz García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Granada, Spain
- CIBERFES. Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Granada, Spain
- CIBERFES. Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), Granada, Spain
- CIBERFES. Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Cañari B, Moya-Salazar J, Bussalleu D, Contreras-Pulache H. Does the use of cysteine-rich whey protein supplements (Inmunocal®) improve the health well-being of COVID-19 patients? A qualitative study. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
<b>Introduction:</b> In the context of SARS-CoV-2 infection, it has been proposed that oxidative stress may contribute to the management of COVID-19 severity. The impact on the well-being of patients with COVID-19 using cysteine-providing supplements has not yet been evaluated and there is a need to understand the benefits and limitations they may offer.<br />
<b>Aim:</b> The aim of this study is to understand the experiences of improved well-being with cysteine-rich whey protein supplementation (Immunocal®) in patients with COVID-19.<br />
<b>Methods:</b> A qualitative study was conducted by conducting semi-structured interviews with four participants taking Immunocal® while they had COVID-19. Participants were randomly recruited through internet networking. Ethical approval was obtained from the University ethics committee. Participants were informed of the study objectives two days in advance and consent was obtained before interviews began. We used the 16-item “Use of Immunocal supplement for COVID-19” (USIC-19) questionnaire to inquire about COVID-19 behavior (time of illness, symptoms, and severity of illness) and the experience of using the supplement during illness. Confidentiality was maintained throughout this study.<br />
<b>Results:</b> All participants presented mild discomfort such as headache, weakness, and tiredness when they had COVID-19 impacting most of them emotionally. The use of Immunocal® produced a partial improvement in all patients as only two continued to experience fatigue. Immunocal® improved the mood (50%) and physical health of the participants. In addition, participants reported that the supplement was recommended and dosed primarily by a consultant and that they did not feel hesitant to use it because of previous experiences of friends and family. The daily dosage of half of the participants was two sachets and all felt the need to consume the supplement which resulted in daily use.<br />
<b>Conclusion:</b> Following the daily dosage indications of the consultants, the participants who have consumed Inmunocal® have presented a partial improvement of the symptoms related to COVID-19, however, they feel the need to consume the supplement daily to improve their quality of life.
Collapse
Affiliation(s)
- Betsy Cañari
- South American Center for Research in Education and Public Health, Universidad Norbert Wiener, Lima, PERU
| | - Jeel Moya-Salazar
- South American Center for Research in Education and Public Health, Universidad Norbert Wiener, Lima, PERU
- Hospital Nacional Docente Madre Niño San Bartolomé, Lima, PERU
| | | | - Hans Contreras-Pulache
- South American Center for Research in Education and Public Health, Universidad Norbert Wiener, Lima, PERU
| |
Collapse
|
6
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
7
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
8
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
9
|
Li B, Yang S, Hou N. Could vitamin D supplementation play a role against COVID-19? Front Immunol 2022; 13:967215. [PMID: 36172345 PMCID: PMC9511139 DOI: 10.3389/fimmu.2022.967215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bi Li
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, China
| | - Shuangshuang Yang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
12
|
Sanlier N, Guney-Coskun M. Vitamin D, the immune system, and its relationship with diseases. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022; 70:39. [PMCID: PMC9573796 DOI: 10.1186/s43054-022-00135-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Vitamin D is classified as an immunomodulatory hormone that is synthesized because of skin exposure to sunlight. It is known to come into play during the regulation of hormone secretion, immune functions, cell proliferation, and differentiation. Its deficiency can cause many diseases and their associated pleiotropic effects. In addition, in relation to its eminent function as regards adaptive immune response and innate immune response, vitamin D level is associated with immune tolerance. Methods Literature search prior to May 2021 was conducted through selected websites, including the MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and EFSA. Results Vitamin D is found effective for the regulation of hormone secretion, immune functions, and cell proliferation along with differentiation. Its role as an immune modulator is based on the presence of receptors on many immune cells and the synthesis of its active metabolite from these cells. Vitamin D, an immune system modulator, inhibits cell proliferation and stimulates cell differentiation. A fair number of immune system diseases, encompassing autoimmune disorders alongside infectious diseases, can occur because of low serum vitamin D levels. Supplementation of vitamin D has positive effects in lessening the severity nature of disease activity; there exists no consensus on the dose to be used. Conclusion It is figured out that a higher number of randomized controlled trials are essential to evaluate efficacy pertaining to clinical cases, treatment duration, type, and dose of supplementation and pathophysiology of diseases, immune system functioning, and the effect of vitamin D to be administered.
Collapse
Affiliation(s)
- Nevin Sanlier
- Nutrition and Dietetics Department, Faculty of Health Science, Ankara Medipol University, Ankara, 06050 Turkey
| | - Merve Guney-Coskun
- grid.411781.a0000 0004 0471 9346Nutrition and Dietetics Department, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
13
|
Afzal M, Kazmi I, Al-Abbasi FA, Alshehri S, Ghoneim MM, Imam SS, Nadeem MS, Al-Zahrani MH, Alzarea SI, Alquraini A. Current Overview on Therapeutic Potential of Vitamin D in Inflammatory Lung Diseases. Biomedicines 2021; 9:1843. [PMID: 34944659 PMCID: PMC8698997 DOI: 10.3390/biomedicines9121843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory lung disorders (ILDs) are one of the world's major reasons for fatalities and sickness, impacting millions of individuals of all ages and constituting a severe and pervasive health hazard. Asthma, lung cancer, bronchiectasis, pulmonary fibrosis acute respiratory distress syndrome, and COPD all include inflammation as a significant component. Microbe invasions, as well as the damage and even death of host cells, can cause and sustain inflammation. To counteract the negative consequences of irritants, the airways are equipped with cellular and host defense immunological systems that block the cellular entrance of these irritants or eliminate them from airway regions by triggering the immune system. Failure to activate the host defense system will trigger chronic inflammatory cataracts, leading to permanent lung damage. This damage makes the lungs more susceptible to various respiratory diseases. There are certain restrictions of the available therapy for lung illnesses. Vitamins are nutritional molecules that are required for optimal health but are not produced by the human body. Cholecalciferol (Vitamin D) is classified as a vitamin, although it is a hormone. Vitamin D is thought to perform a function in bone and calcium homeostasis. Recent research has found that vitamin D can perform a variety of cellular processes, including cellular proliferation; differentiation; wound repair; healing; and regulatory systems, such as the immune response, immunological, and inflammation. The actions of vitamin D on inflammatory cells are dissected in this review, as well as their clinical significance in respiratory illnesses.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.); (S.I.A.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.); (S.I.A.)
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| |
Collapse
|
14
|
Association of Low Molecular Weight Plasma Aminothiols with the Severity of Coronavirus Disease 2019. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9221693. [PMID: 34557267 PMCID: PMC8455204 DOI: 10.1155/2021/9221693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Objective Aminothiols (glutathione (GSH), cysteinylglycine (CG)) may play an important role in the pathogenesis of coronavirus disease 2019 (COVID-19), but the possible association of these indicators with the severity of COVID-19 has not yet been investigated. Methods The total content (t) and reduced forms (r) of aminothiols were determined in patients with COVID-19 (n = 59) on admission. Lung injury was characterized by computed tomography (CT) findings in accordance with the CT0-4 classification. Results Low tGSH level was associated with the risk of severe COVID-19 (tGSH ≤ 1.5 μM, mild vs. moderate/severe: risk ratio (RR) = 3.09, p = 0.007) and degree of lung damage (tGSH ≤ 1.8 μM, CT < 2 vs. CT ≥ 2: RR = 2.14, p = 0.0094). The rGSH level showed a negative association with D-dimer levels (ρ = -0.599, p = 0.014). Low rCG level was also associated with the risk of lung damage (rCG ≤ 1.3 μM, CT < 2 vs. CT ≥ 2: RR = 2.28, p = 0.001). Levels of rCG (ρ = -0.339, p = 0.012) and especially tCG (ρ = -0.551, p = 0.004) were negatively associated with platelet count. In addition, a significant relationship was found between the advanced oxidation protein product level and tGSH in patients with moderate or severe but not in patients with mild COVID-19. Conclusion Thus, tGSH and rCG can be seen as potential markers for the risk of severe COVID-19. GSH appears to be an important factor to oxidative damage prevention as infection progresses. This suggests the potential clinical efficacy of correcting glutathione metabolism as an adjunct therapy for COVID-19.
Collapse
|
15
|
Ul Afshan F, Nissar B, Chowdri NA, Ganai BA. Relevance of vitamin D 3 in COVID-19 infection. GENE REPORTS 2021; 24:101270. [PMID: 34250314 PMCID: PMC8260490 DOI: 10.1016/j.genrep.2021.101270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 virus, the main culprit for COVID-19 disaster, has triggered a gust of curiosity both in the mechanism of action of this infection as well as potential risk factors for disease generation and regimentation. The prime focus of the present review, which is basically a narrative one, is in utilizing the current concepts of vitamin D3 as an agent with myriad functions, one of them being immunocompetence and a promising weapon for both innate and adaptive immunity against COVID-19 infection. Some of the manifestations of SARS-CoV-2 virus such as Acute Respiratory Distress Syndrome (ARDS) overlap with the pathophysiological effects that are overcome due to already established role of vitamin D3 e.g., amelioration of cytokine outburst. Additionally, the cardiovascular complications due to COVID-19 infection may also be connected to vitamin D3 levels and the activity of its active forms. Eventually, we summarise the clinical, observational and epidemiological data of the respiratory diseases including COVID-19 disease and try to bring its association with the potential role of vitamin D3, in particular, the activity of its active forms, circulating levels and its supplementation, against dissemination of this disease.
Collapse
Affiliation(s)
- Falaque Ul Afshan
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | - Bushra Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | | | - Bashir Ahmad Ganai
- Centre For Research and Development, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| |
Collapse
|
16
|
Hermel M, Sweeney M, Ni YM, Bonakdar R, Triffon D, Suhar C, Mehta S, Dalhoumi S, Gray J. Natural Supplements for COVID19-Background, Rationale, and Clinical Trials. J Evid Based Integr Med 2021; 26:2515690X211036875. [PMID: 34384258 PMCID: PMC8369961 DOI: 10.1177/2515690x211036875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.
Collapse
Affiliation(s)
- Melody Hermel
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Megan Sweeney
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Yu-Ming Ni
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Robert Bonakdar
- 540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Douglas Triffon
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Christopher Suhar
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Sandeep Mehta
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Sarah Dalhoumi
- 540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - James Gray
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| |
Collapse
|
17
|
Gatera VA, Lesmana R, Musfiroh I, Judistiani RTD, Setiabudiawan B, Abdulah R. Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammatory Cytokines. Med Sci Monit Basic Res 2021; 27:e931481. [PMID: 34103463 PMCID: PMC8202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Studies have shown that lung inflammation affects lung function, with life-threatening results. Vitamin D may play an important role in inhibiting inflammatory cytokines. Vitamin D deficiency is related to several lung problems, including respiratory distress syndrome, alveolar inflammation, epithelial damage, and hypoxia. Few studies have evaluated the benefits of vitamin D in preventing inflammation in alveolar cells. MATERIAL AND METHODS We developed a cell inflammation model induced by lipopolysaccharide (LPS) treatment. The effects of vitamin D on LPS-induced inflammation in A549 cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the anti-inflammatory mechanism of vitamin D was evaluated using western blot analysis. RESULTS Our results indicated that vitamin D promoted A549 cell survival following LPS-induced inflammation by downregulating nuclear factor nuclear factor kappa light chain enhancer of activated B cells, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-6, and IL-12. CONCLUSIONS Our results indicated that vitamin D has the potential to manage lung inflammation, although further studies are needed.
Collapse
Affiliation(s)
- Vesara A. Gatera
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy, Faculty of Health, Singaperbangsa University, Karawang, Indonesia
| | - Ronny Lesmana
- Division of Physiology, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Budi Setiabudiawan
- Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
18
|
Clemente-Suárez VJ, Ramos-Campo DJ, Mielgo-Ayuso J, Dalamitros AA, Nikolaidis PA, Hormeño-Holgado A, Tornero-Aguilera JF. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021; 13:1924. [PMID: 34205138 PMCID: PMC8228835 DOI: 10.3390/nu13061924] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) has shocked world health authorities generating a global health crisis. The present study discusses the main finding in nutrition sciences associated with COVID-19 in the literature. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding nutrition interventions and nutrition-related factors during the COVID-19 pandemic. The main search engines used in the present research were PubMed, SciELO, and Google Scholar. We found how the COVID-19 lockdown promoted unhealthy dietary changes and increases in body weight of the population, showing obesity and low physical activity levels as increased risk factors of COVID-19 affection and physiopathology. In addition, hospitalized COVID-19 patients presented malnutrition and deficiencies in vitamin C, D, B12 selenium, iron, omega-3, and medium and long-chain fatty acids highlighting the potential health effect of vitamin C and D interventions. Further investigations are needed to show the complete role and implications of nutrition both in the prevention and in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, 080002 Barranquilla, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain;
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain;
| |
Collapse
|
19
|
Brito DTM, Ribeiro LHC, Daltro CHDC, Silva RDB. The possible benefits of vitamin D in COVID-19. Nutrition 2021; 91-92:111356. [PMID: 34352586 PMCID: PMC8149468 DOI: 10.1016/j.nut.2021.111356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
Molecular studies have demonstrated the importance of the exacerbated immune response to SARS-CoV-2 infection, called the cytokine storm, in more severe COVID-19. The pathophysiology is complex and involves several homeostatic factors; among them, a deficit of vitamin D draws attention because of its high frequency in the population. Some evidence suggests that people with low serum vitamin D levels have worse outcomes, often requiring intensive care. This review analyzed the studies available in the global literature addressing the benefits of vitamin D in COVID-19, relating serum levels to the severity of the disease, and indicating vitamin D as a possible prophylactic and therapy in infection.
Collapse
|
20
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
21
|
K NK, Patil P, Bhandary SK, Haridas V, N SK, E S, Shetty P. Is butyrate a natural alternative to dexamethasone in the management of CoVID-19? F1000Res 2021; 10:273. [PMID: 34046165 PMCID: PMC8108555 DOI: 10.12688/f1000research.51786.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (CoVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 has affected more than 100 million lives. Severe CoVID-19 infection may lead to acute respiratory distress syndrome and death of the patient, and is associated with hyperinflammation and cytokine storm. The broad spectrum immunosuppressant corticosteroid, dexamethasone, is being used to manage the cytokine storm and hyperinflammation in CoVID-19 patients. However, the extensive use of corticosteroids leads to serious adverse events and disruption of the gut-lung axis. Various micronutrients and probiotic supplementations are known to aid in the reduction of hyperinflammation and restoration of gut microbiota. The attenuation of the deleterious immune response and hyperinflammation could be mediated by short chain fatty acids produced by the gut microbiota. Butyric acid, the most extensively studied short chain fatty acid, is known for its anti-inflammatory properties. Additionally, butyric acid has been shown to ameliorate hyperinflammation and reduce oxidative stress in various pathologies, including respiratory viral infections. In this review, the potential anti-inflammatory effects of butyric acid that aid in cytokine storm depletion, and its usefulness in effective management of critical illness related to CoVID-19 have been discussed.
Collapse
Affiliation(s)
- Nithin K. K
- Division of Proteomics and Cancer Biology, Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - Prakash Patil
- Central Research Laboratory, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - Satheesh Kumar Bhandary
- Department of ENT, Justice K S Hegde Charitable Hospital, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - Vikram Haridas
- Arthritis Superspeciality Center, Hublic, Karnataka, 580020, India
| | - Suchetha Kumari N
- Department of Biochemistry/Central Research Laboratory, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - Sarathkumar E
- Division of Proteomics and Cancer Biology, Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - Praveenkumar Shetty
- Department of Biochemistry/Central Research Laboratory, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| |
Collapse
|
22
|
Easty DJ, Farr CJ, Hennessy BT. New Roles for Vitamin D Superagonists: From COVID to Cancer. Front Endocrinol (Lausanne) 2021; 12:644298. [PMID: 33868174 PMCID: PMC8045760 DOI: 10.3389/fendo.2021.644298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a potent steroid hormone that induces widespread changes in gene expression and controls key biological pathways. Here we review pathophysiology of vitamin D with particular reference to COVID-19 and pancreatic cancer. Utility as a therapeutic agent is limited by hypercalcemic effects and attempts to circumvent this problem have used vitamin D superagonists, with increased efficacy and reduced calcemic effect. A further caveat is that vitamin D mediates multiple diverse effects. Some of these (anti-fibrosis) are likely beneficial in patients with COVID-19 and pancreatic cancer, whereas others (reduced immunity), may be beneficial through attenuation of the cytokine storm in patients with advanced COVID-19, but detrimental in pancreatic cancer. Vitamin D superagonists represent an untapped resource for development of effective therapeutic agents. However, to be successful this approach will require agonists with high cell-tissue specificity.
Collapse
Affiliation(s)
- David J. Easty
- Department of Medical Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bryan T. Hennessy
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| |
Collapse
|
23
|
Silberstein M. COVID-19 and IL-6: Why vitamin D (probably) helps but tocilizumab might not. Eur J Pharmacol 2021; 899:174031. [PMID: 33722593 PMCID: PMC7954769 DOI: 10.1016/j.ejphar.2021.174031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Interleukin 6 (IL-6), which is involved in the cytokine storm phenomenon, is a therapeutic target in COVID-19, but monoclonal receptor antibody therapeutic agents such as tocilizumab have demonstrated mixed results. Could Vitamin D, which modulates IL-6, be more effective than currently deployed IL-6 antagonists, including tocilizumab, thereby presenting a useful therapeutic option in COVID-19? A narrative review of published trials examining the effect of Vitamin D administration in COVID-19 patients was conducted, and the theoretical basis for the use of tocilizumab as an IL-6 antagonist was compared with the immunomodulatory effect of Vitamin D on IL-6 production. Four of the six included studies reported a positive effect of Vitamin D on outcomes. While tocilizumab non-selectively blocks both anti-inflammatory and pro-inflammatory actions of IL-6, Vitamin D lowers immune cell IL-6 production, potentially reducing pro-inflammatory effects, but does not specifically target IL-6 receptors, avoiding any deleterious effect on the anti-inflammatory actions of IL-6. Vitamin D may have advantages over tocilizumab as an IL-6 immunomodulator, and, given that it is safe if administered under clinical supervision, there is a strong rationale for its use.
Collapse
Affiliation(s)
- Morry Silberstein
- School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
24
|
Gavioli EM, Miyashita H, Hassaneen O, Siau E. An Evaluation of Serum 25-Hydroxy Vitamin D Levels in Patients with COVID-19 in New York City. J Am Coll Nutr 2021; 41:201-206. [PMID: 33605826 PMCID: PMC7898298 DOI: 10.1080/07315724.2020.1869626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Deterioration of patients from COVID-19 is associated with cytokine release syndrome attributed to an elevation in pro-inflammatory cytokines. Vitamin D reduces proinflammatory cytokines, and has the possibility of reducing complications from respiratory tract illnesses. METHOD This was a retrospective, observational, cohort study of patients with COVID-19 disease within a New York City Health System. Adult patients were included if they tested positive for SARS-CoV-2, and had a serum 25-hydroxy vitamin D level (25(OH)D) within the three previous months prior to their detected SARS-CoV-2 test. Patients were compared and evaluated based upon their 25(OH)D levels. The primary endpoints were hospitalization, need for oxygen support, and 90-day mortality. RESULTS 437 COVID-19 patients were included [67 (IQR: 56-79) years] within this cohort. Deficient plasma 25(OH)D levels (<20 ng/ml) were associated with an increased likelihood of oxygen support [OR:2.23 (95% CI: 1.46-3.44, p = 0.0002)] from COVID-19. Deficient plasma 25(OH)D levels were not independently associated with 90-day mortality or risk of hospitalization. Hospitalization rates (98%), oxygen support (93%), and mortality rates (49%) were highest in patients who had 25(OH)D levels less than 10 ng/ml when compared to other 25(OH)D levels. CONCLUSION Serum 25-hydroxy vitamin D levels may affect the need for oxygen support therapy in patients with COVID-19.
Collapse
Affiliation(s)
- Elizabeth Marie Gavioli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA.,Mount Sinai Beth Israel, New York, New York, USA
| | | | - Omar Hassaneen
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Evan Siau
- Mount Sinai Beth Israel, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
Jain SK, Micinski D, Parsanathan R. l-Cysteine Stimulates the Effect of Vitamin D on Inhibition of Oxidative Stress, IL-8, and MCP-1 Secretion in High Glucose Treated Monocytes. J Am Coll Nutr 2021; 40:327-332. [PMID: 33596158 DOI: 10.1080/07315724.2020.1850371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - David Micinski
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
26
|
Simić T. Significance of thiol-disulfide balance in SARS-CoV-2 infection. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-32874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Studies of the molecular mechanisms regarding interaction of different viruses with receptors on the host cell surface have shown that the viral entry depends on the specific relationship between free thiol (SH) groups and disulfides on the virus surface, as well as the thiol disulfide balance on the host cell surface. The presence of oxidizing compounds or alkylating agents, which disturb the thiol-disulfide balance on the surface of the virus, can also affect its infectious potential. Disturbed thiol-disulfide balance may also influence protein-protein interactions between SARS-CoV-2 protein S and ACE2 receptors of the host cell. This review presents the basic mechanisms of maintaining intracellular and extracellular thiol disulfide balance and previous experimental and clinical evidence in favor of impaired balance in SARS-CoV-2 infection. Besides, the results of the clinical application or experimental analysis of compounds that induce changes in the thiol disulfide balance towards reduction of disulfide bridges in proteins of interest in COVID-19 infection are presented.
Collapse
|
27
|
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2020; 222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022]
Abstract
Glucose-6-phospate dehydrogenase (G6PD) deficiency is estimated to affect more than 400 million people world-wide. This X-linked genetic deficiency puts stress on red blood cells (RBC), which may be further augmented under certain pathophysiological conditions and drug treatments. These conditions can cause hemolytic anemia and eventually lead to multi-organ failure and mortality. G6PD is involved in the rate-limiting step of the pentose phosphate pathway, which generates reduced nicotinamide adenine dinucleotide phosphate (NADPH). In RBCs, the NADPH/G6PD pathway is the only source for recycling reduced glutathione and provides protection from oxidative stress. Susceptibility of G6PD deficient populations to certain drug treatments and potential risks of hemolysis are important public health issues. A number of clinical trials are currently in progress investigating clinical factors associated with G6PD deficiency, validation of new diagnostic kits for G6PD deficiency, and evaluating drug safety, efficacy, and pathophysiology. More than 25 clinical studies in G6PD populations are currently in progress or have just been completed that have been examined for clinical pharmacology and potential therapeutic implications of G6PD deficiency. The information on clinical conditions, interventions, purpose, outcome, and status of these clinical trials has been studied. A critical review of ongoing clinical investigations on pharmacology and therapeutics of G6PD deficiency should be highly important for researchers, clinical pharmacologists, pharmaceutical companies, and global public health agencies. The information may be useful for developing strategies for treatment and control of hemolytic crisis and potential drug toxicities in G6PD deficient patients.
Collapse
Affiliation(s)
- Kaitlyn Ryan
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| |
Collapse
|
28
|
Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med 2020; 161:84-91. [PMID: 33038530 PMCID: PMC7539020 DOI: 10.1016/j.freeradbiomed.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steve N Levine
- School of Medicine, Section of Endocrinology & Metabolism, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Joseph A Bocchini
- Department of Pediatrics, Tulane University, 2508 Bert Kouns Industrial Loop, Suite 103, Shreveport, LA 71118, USA
| | - Michael F Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Vitamin D, Skin, and Bone Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - John A Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
29
|
Parsanathan R, Achari AE, Manna P, Jain SK. l-Cysteine and Vitamin D Co-Supplementation Alleviates Markers of Musculoskeletal Disorders in Vitamin D-Deficient High-Fat Diet-Fed Mice. Nutrients 2020; 12:nu12113406. [PMID: 33171932 PMCID: PMC7694620 DOI: 10.3390/nu12113406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D (VD) deficiency is associated with musculoskeletal disorders. This study examines whether co-supplementation of l-cysteine (LC) and VD is better than monotherapy with LC or VD at alleviating musculoskeletal dyshomeostasis in the skeletal muscle of VD-deficient high-fat diet (HFD-VD-) fed mice. Mice were fed a healthy diet or an HFD; for VD-deficient animals, the mice were maintained on a HFD-VD-diet (16 weeks); after the first 8 weeks, the HFD-VD-diet-fed mice were supplemented for another 8 weeks with LC, VD-alone, or the same doses of LC + VD by oral gavage. Saline and olive oil served as controls. Myotubes were exposed with high-glucose, palmitate, Monocyte Chemoattractant Protein 1 (MCP-1), and Tumor Necrosis Factor (TNF), to mimic the in vivo microenvironment. In vitro deficiencies of glutathione and hydrogen sulfide were induced by knockdown of GCLC and CSE genes. Relative gene expression of biomarkers (myogenic: MyoD, Mef2c, Csrp3; muscle dystrophy: Atrogin1, Murf1, and Myostatin; bone modeling and remodeling: RANK, RANKL, OPG) were analyzed using qRT-PCR. Co-supplementatoin with LC + VD showed beneficial effects on gene expression of myogenic markers and OPG but reduced markers of dystrophy, RANK/RANKL in comparison to LC or VD alone-supplementation. In vitro myotubes treated with glutathione (GSH) precursors also showed a positive effect on OPG and the myogenesis genes, and inhibited RANK/RANKL and muscle-dystrophy markers. This study reveals that the co-supplementation of LC with VD significantly alleviates the markers of musculoskeletal disorders in the skeletal muscle better than monotherapy with LC or VD in HFD-VD-fed mice.
Collapse
|
30
|
Sestili P, Fimognari C. Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness? Front Pharmacol 2020; 11:579944. [PMID: 33117175 PMCID: PMC7577213 DOI: 10.3389/fphar.2020.579944] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
COVID-19 pandemic is posing an unprecedented sanitary threat: antiviral and host-directed medications to treat the disease are urgently needed. A great effort has been paid to find drugs and treatments for hospitalized, severely ill patients. However, medications used for the domiciliary management of early symptoms, notwithstanding their importance, have not been and are not presently regarded with the same attention and seriousness. In analogy with other airways viral infections, COVID-19 patients in the early phase require specific antivirals (still lacking) and non-etiotropic drugs to lower pain, fever, and control inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) and paracetamol (PAC) are widely used as non-etiotropic agents in common airways viral infections and hence are both theoretically repurposable for COVID-19. However, a warning from some research reports and National Authorities raised NSAIDs safety concerns because of the supposed induction of angiotensin-converting enzyme 2 (ACE2) levels (the receptor used by SARS-CoV2 to enter host airways cells), the increased risk of bacterial superinfections and masking of disease symptoms. As a consequence, the use of NSAIDs was, and is still, discouraged while the alternative adoption of paracetamol is still preferred. On the basis of novel data and hypothesis on the possible role of scarce glutathione (GSH) levels in the exacerbation of COVID-19 and of the GSH depleting activity of PAC, this commentary raises the question of whether PAC may be the better choice.
Collapse
Affiliation(s)
- Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Università degli Studi di Bologna, Rimini, Italy
| |
Collapse
|
31
|
Vyas N, Kurian SJ, Bagchi D, Manu MK, Saravu K, Unnikrishnan MK, Mukhopadhyay C, Rao M, Miraj SS. Vitamin D in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. J Am Coll Nutr 2020; 40:632-645. [PMID: 32870735 DOI: 10.1080/07315724.2020.1806758] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D deficiency (VDD) partly explains geographical differences in COVID-19 susceptibility, severity, and mortality. VDD among African-Americans, diabetics, hypertensive, and aged populations possibly explain the higher death rate, aggravated by cocooning. Vitamin D is pleiotropic, mediating bone metabolism, calcium homeostasis, and immune functions, whereas VDD is associated with inflammatory reactions and immune dysfunction, predisposing individuals to severe infections. Vitamin D modulates innate and adaptive immunity via the expression of genes that code antimicrobial peptides (AMPs). And the expression of cluster of differentiation (CD)14, the co-receptor for epidermal toll-like receptor (TLR)4. AMPs stimulate TLR2 in macrophages, increasing the conversion of vitamin D into its active form by cytochrome P450 27B1. Antiviral properties of vitamin D-induced AMPs can shift the polarization of the adaptive immune response from helper T cells (Th)1 to the more regulatory Th2 responses that suppress immune over-reactivity by preventing cytokine storm, which is already demonstrated during the Spanish flu episode. Vitamin D induces antiviral effects by both direct and indirect mechanisms via AMPs, immunomodulation, the interplay between major cellular and viral elements, induction of autophagy and apoptosis, variation of genetic and epigenetic factors. The crosstalk between vitamin D and intracellular signaling pathways may operate as a primary regulatory action on viral gene transcription. VDD may increase the likelihood of infection with enveloped viruses, including retrovirus, hepatitis, and dengue. Global data correlates severe VDD with COVID-19 associated coagulopathy, disrupted immune response and mortality, reduced platelet count, and prolonged prothrombin time, suggesting benefits from supplementation.Key teaching pointsVitamin D induces antiviral effects by direct and indirect mechanisms via AMPs, immunomodulation, induction of autophagy, etc.Epidemiology of VDD partly explains geographical differences in COVID-19 susceptibility, severity, and mortality.Global data correlates severe VDD with COVID-19 associated coagulopathy, disrupted immune response and mortality, reduced platelet count, and prolonged prothrombin time, together suggesting benefits from supplementation.Many clinical trials are underway globally to delineate the role of vitamin D in both prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Navya Vyas
- Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasis Bagchi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Mohan K Manu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Chiranjay Mukhopadhyay
- Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
32
|
Abstract
Coronavirus Disease 2019 (COVID-19) pandemic remains a major public health threat in most countries. The causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can lead to acute respiratory distress syndrome and result in mortality in COVID-19 patients. Vitamin D is an immunomodulator hormone with established effectiveness against various upper respiratory infections. Vitamin D can stall hyper-inflammatory responses and expedite healing process of the affected areas, primarily in the lung tissue. Thus, there are ecological and mechanistic reasons to promote exploration of vitamin D action in COVID-19 patients. As no curative drugs are available currently for COVID-19, we feel that the potential of vitamin D to alter the course of disease severity needs to be investigated. Clinical studies may be undertaken to address the value of vitamin D supplementation in deficient, high-risk COVID-19 patients.
Collapse
Affiliation(s)
- Mradul Mohan
- Parasite-Host Biology Group, National Institute of Malaria Research, New Delhi, India
| | - Jerin Jose Cherian
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Amit Sharma
- Parasite-Host Biology Group, National Institute of Malaria Research, New Delhi, India
- Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|