1
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
2
|
Zhang T, Li M, Lu J, Wang J, Zhang M, Panichayupakaranant P, Chen H. Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review. Molecules 2025; 30:665. [PMID: 39942768 PMCID: PMC11820715 DOI: 10.3390/molecules30030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Quinones, one of the oldest organic compounds, are of increasing interest due to their abundant presence in a wide range of natural sources and their remarkable biological activity. These compounds occur naturally in green leafy vegetables, fruits, herbs, animal and marine sources, and fermented products, and have demonstrated promising potential for use in health interventions, particularly in the prevention and management of type 2 diabetes (T2DM). This review aims to investigate the potential of quinones as a health intervention for T2DM from the multidimensional perspective of their sources, types, structure-activity relationship, glucose-lowering mechanism, toxicity reduction, and bioavailability enhancement. Emerging research highlights the hypoglycemic activities of quinones, mainly driven by their redox properties, which lead to covalent binding, and their structural substituent specificity, which leads to their non-covalent binding to biocomplexes. Quinones can improve insulin resistance and regulate glucose homeostasis by modulating mitochondrial function, inflammation, lipid profile, gastrointestinal absorption, and by acting as insulin mimetics. Meanwhile, increasing attention is being given to research focused on mitigating the toxicity of quinones during administration and enhancing their bioavailability. This review offers a critical foundation for the development of quinone-based health therapies and functional foods aimed at diabetes management.
Collapse
Affiliation(s)
- Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (T.Z.)
| |
Collapse
|
3
|
Akman F. A detailed TD-DFT and intermolecular interaction study of vitamin K in soluble, poorly soluble and insoluble solvents, as well as an ADME and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125130. [PMID: 39299070 DOI: 10.1016/j.saa.2024.125130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Vitamin K is one of the most important fat-soluble vitamins and while there are two main types of vitamin K in nature, known as K1 (phylloquinone) and K2 (menaquinones), there is also a synthetic type of vitamin K known as K3 (menadione). Recent studies have shown that it is crucial to know the non-covalent interactions, ADME and molecular docking of molecules in different solvent media. Therefore, we have performed some quantum chemical calculations, ADME and intra-and intermolecular interaction calculations of a number of K1, K2 and K3 such as K1-water (K1 + W), K1-methanol (K1 + M), K1-triacetin (K1 + T), K2-water (K2 + W), K2-methanol (K2 + M), K2-triacetin (K2 + T), K3-water (K3 + W), K3-methanol (K3 + M), K3-triacetin (K3 + T) performed by Density Functional Theory (DFT) and Multiwfn: A multifunctional wavefunction analyzer. Molecular structures, HOMO-LUMO energies, MEP and electronic properties have been calculated and described using DFT at the level of B3LYP/6-311G (d,p) level. The nature of the molecular interactions between vitamin K and solvents such as water, methanol and triacetin were also investigated using topological analyses such as atoms in molecule (AIM), non-covalent interaction index (NCI), reduced density gradient (RDG), Localized orbital locator (LOL) and electron localization function (ELF). In addition, FMO for electronic transitions, MEP for electrophilic and nucleophilic attack, ADME to investigate how a chemical is processed by a living organism, and Fukui functions to determine electron density are explained. Finally, molecular docking was used to determine the biological activity of the vitamin K.
Collapse
Affiliation(s)
- Feride Akman
- Vocational School of Food, Agriculture and Livestock, Bingol University, 12000 Bingol, Turkey; Chemistry Programme, Institute of Sciences, Bingol University, 12000 Bingol, Turkey.
| |
Collapse
|
4
|
Xu LY, Qiu YB, Zhang XM, Su C, Shi JS, Xu ZH, Li H. The efficient green bio-manufacturing of Vitamin K 2: design, production and applications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39660648 DOI: 10.1080/10408398.2024.2439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Vitamin K2, also known as methylnaphthoquinone, is a crucial fat-soluble nutrient necessary for the human body. The biological production of Vitamin K2 has received widespread attention due to its environmental friendliness and maneuverability in recent years. This review provides insights into the modular metabolic pathways of Vitamin K2, lays the foundation for microbial metabolic flow balancing, cofactor engineering and dynamic regulation, and realizes the production of Vitamin K2 by synthesizing artificial cells from scratch. With the intensive development of modern fermentation technology, methods for the preparation of Vitamin K2 using the fermentation strategies of co-culturing and biofilm reactors have emerged. In prokaryotes, the introduction of heptenyl pyrophosphate synthase (HepPPS) and mevalonate acid (MVA) pathway solved the problem of insufficient precursors for Vitamin K2 production but still did not meet the market demand. Therefore, enhancing expression through multi-combinatorial metabolic regulation and innovative membrane reactors is an entry point for future research. Due to the light-induced decomposition and water-insoluble nature of Vitamin K2, the secretion regulation and purification processing also need to be considered in the actual production. Also, it summarizes the research progress of Vitamin K2 in the food and pharmaceutical fields. Additionally, the future development trend and application prospect of Vitamin K2 are also discussed to provide guidance for Vitamin K2 biosynthesis and application.
Collapse
Affiliation(s)
- Li-Yang Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Yi-Bin Qiu
- School of Food and Light Industry, Nanjing University of Technology, Nanjing, PR China
| | - Xiao-Mei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Jing-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- School of Light Industry Science and Engineering, Sichuan University, Sichuan, PR China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| |
Collapse
|
5
|
Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189057. [PMID: 38158025 DOI: 10.1016/j.bbcan.2023.189057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Several clinical trials and experimental studies have recently shown that vitamin K (VK) supplementation benefits the human body. Specifically, VK participates in coagulation and is associated with cellular senescence and cancer. VK has a potential anticancer effect in various cancers, such as pancreatic and prostate cancers. Through anti-inflammatory and antioxidant effects, VK can prevent senescence and inhibit cancer metastasis. Therefore, cancer prognosis can be improved by preventing cellular senescence. In addition, VK can inhibit the proliferation, growth, and differentiation of cancer cells through various mechanisms, including induction of c-myc and c-fos genes, regulation of B-cell lymphoma-2 (Bcl-2) and p21 genes, and angiogenesis inhibition. This review aims to discuss the relationship among VK, cellular senescence, and cancer metastasis and thus may improve comprehension of the specific functions of VK in human health. The potential application of VK as an adjuvant therapy for cancer (or in combination with traditional chemotherapy drugs or other vitamins) has also been highlighted.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jialu Li
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Nianxuan Shen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, China.
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China.
| |
Collapse
|
6
|
Wang H, Ma Y. The Potential of Vitamin K as a Regulatory Factor of Bone Metabolism-A Review. Nutrients 2023; 15:4935. [PMID: 38068793 PMCID: PMC10708186 DOI: 10.3390/nu15234935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin K (VK), a fat-soluble vitamin, is essential for the clotting of blood because of its role in the production of clotting factors in the liver. Moreover, researchers continue to explore the role of VK as an emerging novel bioactive molecule with the potential function of improving bone health. This review focuses on the effects of VK on bone health and related mechanisms, covering VK research history, homologous analogs, dietary sources, bioavailability, recommended intake, and deficiency. The information summarized here could contribute to the basic and clinical research on VK as a natural dietary additive and drug candidate for bone health. Future research is needed to extend the dietary VK database and explore the pharmacological safety of VK and factors affecting VK bioavailability to provide more support for the bone health benefits of VK through more clinical trials.
Collapse
Affiliation(s)
- Huakai Wang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Nongkenan Road No. 40, Hefei 230031, China
| | - Yongxi Ma
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
El-Baky NA, Amara AAAF, Redwan EM. Nutraceutical and therapeutic importance of clots and their metabolites. NUTRACEUTICALS 2023:241-268. [DOI: 10.1016/b978-0-443-19193-0.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Pilot scale production of Crocosphaera chwakensis CCY0110 and evaluation of its biomass nutritional potential. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
10
|
Production of Vitamin K by Wild-Type and Engineered Microorganisms. Microorganisms 2022; 10:microorganisms10030554. [PMID: 35336129 PMCID: PMC8954062 DOI: 10.3390/microorganisms10030554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that mainly exists as phylloquinone or menaquinone in nature. Vitamin K plays an important role in blood clotting and bone health in humans. For use as a nutraceutical, vitamin K is produced by natural extraction, chemical synthesis, and microbial fermentation. Natural extraction and chemical synthesis methods for vitamin K production have limitations, such as low yield of products and environmental concerns. Microbial fermentation is a more sustainable process for industrial production of natural vitamin K than two other methods. Recent advanced genetic technology facilitates industrial production of vitamin K by increasing the yield and productivity of microbial host strains. This review covers (i) general information about vitamin K and microbial host, (ii) current titers of vitamin K produced by wild-type microorganisms, and (iii) vitamin K production by engineered microorganisms, including the details of strain engineering strategies. Finally, current limitations and future directions for microbial production of vitamin K are also discussed.
Collapse
|
11
|
Stephen NM, Maradagi T, Kavalappa YP, Sharma H, Ponesakki G. Seafood nutraceuticals: Health benefits and functional properties. RESEARCH AND TECHNOLOGICAL ADVANCES IN FOOD SCIENCE 2022:109-139. [DOI: 10.1016/b978-0-12-824369-5.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
13
|
Kholssi R, Ramos PV, Marks EA, Montero O, Rad C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zhang Z, Liu L, Liu C, Sun Y, Zhang D. New aspects of microbial vitamin K2 production by expanding the product spectrum. Microb Cell Fact 2021; 20:84. [PMID: 33849534 PMCID: PMC8042841 DOI: 10.1186/s12934-021-01574-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin K2 (menaquinone, MK) is an essential lipid-soluble vitamin with critical roles in blood coagulation and bone metabolism. Chemically, the term vitamin K2 encompasses a group of small molecules that contain a common naphthoquinone head group and a polyisoprenyl side chain of variable length. Among them, menaquinone-7 (MK-7) is the most potent form. Here, the biosynthetic pathways of vitamin K2 and different types of MK produced by microorganisms are briefly introduced. Further, we provide a new aspect of MK-7 production, which shares a common naphthoquinone ring and polyisoprene biosynthesis pathway, by analyzing strategies for expanding the product spectrum. We review the findings of metabolic engineering strategies targeting the shikimate pathway, polyisoprene pathway, and menaquinone pathway, as well as membrane engineering, which provide comprehensive insights for enhancing the yield of MK-7. Finally, the current limitations and perspectives of microbial menaquinone production are also discussed. This article provides in-depth information on metabolic engineering strategies for vitamin K2 production by expanding the product spectrum.
Collapse
Affiliation(s)
- Zimeng Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Chuan Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Abstract
Prevalent coagulopathy and thromboembolism are observed in severe COVID-19 patients with 40% of COVID-19 mortality being associated with cardiovascular complications. Abnormal coagulation parameters are related to poor prognosis in COVID-19 patients. Victims also displayed presence of extensive thrombosis in infected lungs. Vitamin K is well-known to play an essential role in the coagulation system. Latest study revealed an existing correlation between vitamin K deficiency and COVID-19 severity, highlighting a role of vitamin K, probably via coagulation modulation. In agreement, other recent studies also indicated that anti-coagulant treatments can reduce mortality in severe cases. Altogether, potential mechanisms linking COVID-19 with coagulopathy in which vitamin K may exert its modulating role in coagulation related with disease pathogenesis are established. In this review, we discuss the recent evidence supporting COVID-19 as a vascular disease and explore the potential benefits of using vitamin K against COVID-19 to improve disease outcomes.
Collapse
|
16
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
17
|
Abstract
Biocatalysis has undergone a remarkable transition in the last two decades, from being considered a niche technology to playing a much more relevant role in organic synthesis today. Advances in molecular biology and bioinformatics, and the decreasing costs for gene synthesis and sequencing contribute to the growing success of engineered biocatalysts in industrial applications. However, the incorporation of biocatalytic process steps in new or established manufacturing routes is not always straightforward. To realize the full synthetic potential of biocatalysis for the sustainable manufacture of chemical building blocks, it is therefore important to regularly analyze the success factors and existing hurdles for the implementation of enzymes in large scale small molecule synthesis. Building on our previous analysis of biocatalysis in the Swiss manufacturing environment, we present a follow-up study on how the industrial biocatalysis situation in Switzerland has evolved in the last four years. Considering the current industrial landscape, we record recent advances in biocatalysis in Switzerland as well as give suggestions where enzymatic transformations may be valuably employed to address some of the societal challenges we face today, particularly in the context of the current Coronavirus disease 2019 (COVID-19) pandemic.
Collapse
|
18
|
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microb Cell Fact 2020; 19:201. [PMID: 33138823 PMCID: PMC7607653 DOI: 10.1186/s12934-020-01459-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Elisabet Sané
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
19
|
Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Enzyme Microb Technol 2020; 141:109652. [DOI: 10.1016/j.enzmictec.2020.109652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/21/2022]
|
20
|
Braasch-Turi M, Crans DC. Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules 2020; 25:molecules25194477. [PMID: 33003459 PMCID: PMC7582351 DOI: 10.3390/molecules25194477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
Collapse
Affiliation(s)
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Ft. Collins, CO 80525, USA;
- Cell & Molecular Biology Program, Colorado State University, Ft. Collins, CO 80525, USA
- Correspondence:
| |
Collapse
|
21
|
Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, Schurgers L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020; 12:E1852. [PMID: 32575901 PMCID: PMC7353270 DOI: 10.3390/nu12061852] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin K and its essential role in coagulation (vitamin K [Koagulation]) have been well established and accepted the world over. Many countries have a Recommended Daily Intake (RDI) for vitamin K based on early research, and its necessary role in the activation of vitamin K-dependent coagulation proteins is known. In the past few decades, the role of vitamin K-dependent proteins in processes beyond coagulation has been discovered. Various isoforms of vitamin K have been identified, and vitamin K2 specifically has been highlighted for its long half-life and extrahepatic activity, whereas the dietary form vitamin K1 has a shorter half-life. In this review, we highlight the specific activity of vitamin K2 based upon proposed frameworks necessary for a bioactive substance to be recommended for an RDI. Vitamin K2 meets all these criteria and should be considered for a specific dietary recommendation intake.
Collapse
Affiliation(s)
- Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland;
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| |
Collapse
|
22
|
Rai K, Agrawal SB. Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:773-792. [PMID: 32255939 PMCID: PMC7113363 DOI: 10.1007/s12298-020-00780-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 05/22/2023]
Abstract
In the present study sensitivity of a medicinal plant Eclipta alba L. (Hassk) (False daisy) was assessed under intermittent (IT) and continuous (CT) doses of elevated ultraviolet-B (eUV-B). Eclipta alba is rich in medicinally important phytochemical constituents, used against several diseases. The hypothesis of this study is that alterations in UV-B dose may modify the quantity and quality of medicinally valuable components with changes in the morphological and physiological parameters of test plant. To fulfill our hypothesis IT and CT of eUV-B (ambient ± 7.2 kJ m-2 day-2) was given for 130 and 240 h respectively to assess the impact of UV-B stress. Growth and physiological parameters were adversely affected under both the treatments with varying magnitude. The observation of leaf surfaces showed increase in stomatal and trichome densities suggesting the adaptive resilience of the plants against UV-B. Besides, biosynthesis of wedelolactone, a major medicinal compound of E. alba was observed to be stimulated under UV-B exposure. The essential oil content was reduced under IT while increased under CT. A total of 114 compounds were identified from oil extract of E. alba. n-Pentadecane (25.79%), n-Octadecane (12.98%), β-Farnesene (9.43%), α-Humulene (4.95%) (E)-Caryophyllene (4.87%), Phytol (4.25%), α-Copaene (2.26%), Humulene epoxide (1.46%), β-Pinene (1.07) and β-Caryophyllene oxide (1.06%) were identified as major components of oil. CT induced the synthesis of some medicinally important compounds such as α-terpineol, δ-cadinene, linolenic acid, methyl linoleate and myristic acid amide. Hence, the study revealed that continuous UV-B exposure of low intensity could be helpful for commercial exploitation of essential oil in E. alba.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
23
|
Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients 2020; 12:nu12010138. [PMID: 31947821 PMCID: PMC7019739 DOI: 10.3390/nu12010138] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Vitamin K health benefits have been recently widely shown to extend beyond blood homeostasis and implicated in chronic low-grade inflammatory diseases such as cardiovascular disease, osteoarthritis, dementia, cognitive impairment, mobility disability, and frailty. Novel and more efficient nutritional and therapeutic options are urgently needed to lower the burden and the associated health care costs of these age-related diseases. Naturally occurring vitamin K comprise the phylloquinone (vitamin K1), and a series of menaquinones broadly designated as vitamin K2 that differ in source, absorption rates, tissue distribution, bioavailability, and target activity. Although vitamin K1 and K2 sources are mainly dietary, consumer preference for diet supplements is growing, especially when derived from marine resources. The aim of this review is to update the reader regarding the specific contribution and effect of each K1 and K2 vitamers in human health, identify potential methods for its sustainable and cost-efficient production, and novel natural sources of vitamin K and formulations to improve absorption and bioavailability. This new information will contribute to foster the use of vitamin K as a health-promoting supplement, which meets the increasing consumer demand. Simultaneously, relevant information on the clinical context and direct health consequences of vitamin K deficiency focusing in aging and age-related diseases will be discussed.
Collapse
|
24
|
Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol 2019; 104:935-951. [DOI: 10.1007/s00253-019-10157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023]
|
25
|
Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:1620-1630. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
Collapse
Affiliation(s)
- Yanwei Ma
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark V. Somerville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R, Schurgers L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int J Mol Sci 2019; 20:E896. [PMID: 30791399 PMCID: PMC6413124 DOI: 10.3390/ijms20040896] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. This review is the first to highlight differences between isoforms vitamin K1 and K2 by means of source, function, and extrahepatic activity.
Collapse
Affiliation(s)
- Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | | | | | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland.
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Leon Schurgers
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| |
Collapse
|
27
|
Tarento TD, McClure DD, Vasiljevski E, Schindeler A, Dehghani F, Kavanagh JM. Microalgae as a source of vitamin K1. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|