1
|
Ning J, Chi S, Zhang Y, Qiao L. Clinical characteristics and prognostic factors of pulmonary tuberculosis with interstitial changes. BMC Infect Dis 2025; 25:624. [PMID: 40301766 PMCID: PMC12039248 DOI: 10.1186/s12879-025-10970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) remains a significant global public health challenge, particularly in its manifestation as interstitial lung disease. This form complicates clinical presentation, increasing the difficulty of diagnosis and treatment. However, studies on PTB with interstitial changes are relatively scarce, and their clinical significance and prognostic value have not been fully explored. The objective of the present study was to identify the key factors affecting clinical characteristics and prognosis in these patients. METHODS This retrospective study analyzed data from patients diagnosed with PTB with Interstitial Changes at Zigong First People's Hospital in Sichuan Province between January 2014 and January 2024. Sixteen patients meeting strict inclusion and exclusion criteria were enrolled. Clinical characteristics and key prognostic factors were identified using descriptive statistics and random forest analysis, with partial dependence plots generated to illustrate the independent contributions of each variable to adverse outcomes. RESULTS Among the 16 patients studied, 75.0% were male and 25.0% were female. The average number of pathogen species detected was 1.56 ± 0.73, and 31.3% of patients presented with fever symptoms at admission. Hospital stay durations ranged from 8 to 67 days, with a mean of 22.00 ± 16.02 days. Regarding drug resistance, 25.0% of patients exhibited rifampicin resistance, and approximately 31.2% had underlying diseases. Ultimately, 11 patients (68.8%) recovered, while 5 (31.2%) died. The random forest model identified age, rifampicin resistance, and the number of pathogen species as the main determinants of prognosis. Advanced age and drug resistance were significantly associated with a higher risk of death, and patients infected with multiple pathogens experienced worse outcomes. CONCLUSIONS This study enhances our understanding of the clinical characteristics and prognosis of tuberculosis patients presenting with interstitial lung disease, particularly identifying advanced age, rifampicin resistance, and a higher number of pathogen species as key prognostic factors. These findings provide valuable insights for the development of personalized treatment strategies and precision medicine approaches for this patient group.
Collapse
Affiliation(s)
- Junjie Ning
- Pediatric Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Shenglin Chi
- Department of tuberculosis, First People's Hospital, Zigong City, Zigong, Sichuan Province, China
| | - Yuanwei Zhang
- Department of tuberculosis, First People's Hospital, Zigong City, Zigong, Sichuan Province, China
| | - Lina Qiao
- Pediatric Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Fu H, Liu H, Sun W, Zhang H, Zhu H. Diagnostic value of neutrophil-to-lymphocyte ratio, fibrinogen-to-albumin ratio and red blood cell distribution width in tuberculosis combined with other bacterial infections. BMC Pulm Med 2025; 25:134. [PMID: 40133856 PMCID: PMC11934451 DOI: 10.1186/s12890-025-03588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE To investigate the clinical significance of the neutrophil-to-lymphocyte ratio (NLR), fibrinogen-to-albumin ratio (FAR), and red blood cell distribution width (RDW) in pulmonary tuberculosis (PTB) associated with other bacterial lung infections. METHODS A total of 74 patients with PTB complicated with other bacterial lung infections, who were admitted to the Sixth People's Hospital of Nantong City (Nantong, China) from January 2021 to December 2023, were included in this study as the PTB with infection complication group. A comparison group of 96 patients with uncomplicated PTB, admitted to the same hospital during the same period, was used as the PTB without infection complication group. The NLR, FAR, and RDW values in peripheral blood were determined and compared between the two groups. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of these indicators for early detection of PTB complicated with other bacterial infections. RESULTS The NLR, FAR, and RDW values were significantly higher in the PTB with infection complication group compared to the PTB without infection complication group, with differences reaching statistical significance (P < 0.05). NLR value showed a positive correlation with white blood cell count, C-reactive protein levels, and D-dimer levels. ROC curve analysis indicated that the area under the curve (AUC) values for diagnosing PTB with bacterial infection using blood NLR, FAR, and RDW were 0.861, 0.818, and 0.799, respectively. The combined AUC value of these three indicators was 0.982. The validation results showed that the diagnostic sensitivity (98.6%) and specificity (89.58%) of the combination of NLR, FAR, and RDW were higher than those of each indicator alone. CONCLUSION The combined assessment of blood NLR, FAR, and RDW values has high clinical diagnostic value for diagnosing PTB complicated with other bacterial infections.
Collapse
Affiliation(s)
- Haiyang Fu
- Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, 500 Yonghe Road, Nantong, 226011, Jiangsu, China
| | - Haimei Liu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, 500 Yonghe Road, Nantong, 226011, Jiangsu, China
| | - Wenqiang Sun
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, 500 Yonghe Road, Nantong, 226011, Jiangsu, China
| | - Haiyun Zhang
- Department of Laboratory, Dalian Municipal Women and Children's Medical Center, Dalian Liaoning, 116012, Liaoning, China.
| | - Huiming Zhu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, 500 Yonghe Road, Nantong, 226011, Jiangsu, China.
| |
Collapse
|
3
|
Goetz MJ, Park KS, Joshi M, Gottlieb AP, Dowling DJ, Mitragotri S. An ionic liquid-based adjuvant for modulating cellular and humoral immune responses. J Control Release 2024; 376:632-645. [PMID: 39437967 DOI: 10.1016/j.jconrel.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Vaccination is an important strategy for the prevention of infectious diseases worldwide. Adjuvants can be incorporated in vaccine formulations to enhance the resultant immune response and subsequently confer more robust protection upon natural infection. While adjuvants have exciting potential to improve vaccination, the landscape of materials employed in clinical adjuvants is small and its expansion is needed to facilitate vaccine development against current and future infectious diseases. This study introduces the first ionic liquid (IL) adjuvant comprised of choline and sorbic acid (ChoSorb) to produce an antigen-specific cellular as well as humoral immune response against multiple antigens. The abilities of ChoSorb as a vaccine adjuvant is evaluated and characterized through material analysis, innate immune responses, and adaptive responses to both a model and clinical grade antigen. With the robust immune responses generated by ChoSorb and the accompanying mechanistic insights, this study introduces ILs as a new class of adjuvant materials for future vaccine design.
Collapse
Affiliation(s)
- Morgan J Goetz
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Kyung Soo Park
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Maithili Joshi
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Alexander P Gottlieb
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute of Biologically Inspired Engineering, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Rogozynski NP, Dixon B. The Th1/Th2 paradigm: A misrepresentation of helper T cell plasticity. Immunol Lett 2024; 268:106870. [PMID: 38788801 DOI: 10.1016/j.imlet.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
For decades, the Th1/2 paradigm has been used to classify immune responses as either Th1 or Th2-biased. However, in recent years, a staggering amount of evidence has emerged to support rejection of the classical Th1/Th2 paradigm, such as the discoveries of new helper T cell subsets, helper T cell plasticity and protective mixed-Th1/Th2 responses. This opinion piece investigates the shortcomings of classical Th1/Th2 paradigm in the context of recent works, with the goal of facilitating the development of newer models to represent the diversity of Th cells.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
5
|
Karbalaei M, Mosavat A, Soleimanpour S, Farsiani H, Ghazvini K, Amini AA, Sankian M, Rezaee SA. Production and Evaluation of Ag85B:HspX:hFcγ1 Immunogenicity as an Fc Fusion Recombinant Multi-Stage Vaccine Candidate Against Mycobacterium tuberculosis. Curr Microbiol 2024; 81:127. [PMID: 38575759 DOI: 10.1007/s00284-024-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
An urgent need is to introduce an effective vaccine against Mycobacterium tuberculosis (M.tb) infection. In the present study, a multi-stage M.tb immunodominant Fcγ1 fusion protein (Ag85B:HspX:hFcγ1) was designed and produced, and the immunogenicity of purified protein was evaluated. This recombinant fusion protein was produced in the Pichia pastoris expression system. The HiTrap-rPA column affinity chromatography purified and confirmed the fusion protein using ELISA and Western blotting methods. The co-localisation assay was used to confirm its proper folding and function. IFN-γ, IL-12, IL-4, and TGF-β expression in C57BL/6 mice then evaluated the immunogenicity of the construct in the presence and absence of BCG. After expression optimisation, medium-scale production and the Western blotting test confirmed suitable production of Ag85B:HspX:hFcγ1. The co-localisation results on antigen-presenting cells (APCs) showed that Ag85B:HspX:hFcγ1 properly folded and bound to hFcγRI. This strong co-localisation with its receptor can confirm inducing proper Th1 responses. The in vivo immunisation assay showed no difference in the expression of IL-4 but a substantial increase in the expression of IFN-γ and IL-12 (P ≤ 0.02) and a moderate increase in TGF-β (P = 0.05). In vivo immunisation assay revealed that Th1-inducing pathways have been stimulated, as IFN-γ and IL-12 strongly, and TGF-β expression moderately increased in Ag85B:HspX:hFcγ1 group and Ag85B:HspX:hFcγ1+BCG. Furthermore, the production of IFN-γ from splenocytes in the Ag85B:HspX:hFcγ1 group was enormously higher than in other treatments. Therefore, this Fc fusion protein can make a selective multi-stage delivery system for inducing appropriate Th1 responses and is used as a subunit vaccine alone or in combination with others.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Ali Amini
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Immunology Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
6
|
Shaukat SN, Eugenin E, Nasir F, Khanani R, Kazmi SU. Identification of immune biomarkers in recent active pulmonary tuberculosis. Sci Rep 2023; 13:11481. [PMID: 37460564 DOI: 10.1038/s41598-023-38372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Tuberculosis (TB) has remained an unsolved problem and a major public health issue, particularly in developing countries. Pakistan is one of the countries with the highest tuberculosis infection rates globally. However, methods or biomarkers to detect early signs of TB infection are limited. Here, we characterized the mRNA profiles of immune responses in unstimulated Peripheral blood mononuclear cells obtained from treatment naïve patients with early signs of active pulmonary tuberculosis without previous history of clinical TB. We identified a unique mRNA profile in active TB compared to uninfected controls, including cytokines such as IL-27, IL-15, IL-2RA, IL-24, and TGFβ, transcription factors such as STAT1 and NFATC1 and immune markers/receptors such as TLR4, IRF1, CD80, CD28, and PTGDR2 from an overall 84 different transcripts analyzed. Among 12 significant differentially expressed transcripts, we identified five gene signatures which included three upregulated IL-27, STAT1, TLR4 and two downregulated IL-24 and CD80 that best discriminate between active pulmonary TB and uninfected controls with AUC ranging from 0.9 to 1. Our data identified a molecular immune signature associated with the early stages of active pulmonary tuberculosis and it could be further investigated as a potential biomarker of pulmonary TB.
Collapse
Affiliation(s)
- Sobia Naz Shaukat
- Immunology and Infectious Diseases Research Laboratory (IIDRL), Department of Microbiology, Karachi University, Karachi, Pakistan.
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan.
| | - Eliseo Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Faizan Nasir
- Department of Immunology, Dadabhoy Institute of Higher Education, Karachi, Pakistan
| | - Rafiq Khanani
- Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Shahana Urooj Kazmi
- Immunology and Infectious Diseases Research Laboratory (IIDRL), Department of Microbiology, Karachi University, Karachi, Pakistan
| |
Collapse
|
7
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
8
|
Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, Goletti D. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol 2023; 14:1146704. [PMID: 37292210 PMCID: PMC10246744 DOI: 10.3389/fimmu.2023.1146704] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas McClain Noonan
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alan L. Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| |
Collapse
|
9
|
Gyawali S, López-Cervantes JP, Jõgi NO, Mustafa T, Johannessen A, Janson C, Holm M, Modig L, Cramer C, Gislason T, Svanes C, Shigdel R. Previous tuberculosis infection associated with increased frequency of asthma and respiratory symptoms in a Nordic-Baltic multicentre population study. ERJ Open Res 2023; 9:00011-2023. [PMID: 37228275 PMCID: PMC10204863 DOI: 10.1183/23120541.00011-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background Tuberculosis (TB) infection induces profound local and systemic, immunological and inflammatory changes that could influence the development of other respiratory diseases; however, the association between TB and asthma is only partly understood. Our objective was to study the association of TB with asthma and respiratory symptoms in a Nordic-Baltic population-based study. Methods We included data from the Respiratory Health in Northern Europe (RHINE) study, in which information on general characteristics, TB infection, asthma and asthma-like symptoms were collected using standardised postal questionnaires. Asthma was defined based on asthma medication usage and/or asthma attacks 12 months prior to the study, and/or by a report of ≥three out of five respiratory symptoms in the last 12 months. Allergic/nonallergic asthma were defined as asthma with/without nasal allergy. The associations of TB with asthma outcomes were analysed using logistic regressions with adjustments for age, sex, smoking, body mass index and parental education. Results We included 8379 study participants aged 50-75 years, 61 of whom reported having had TB. In adjusted analyses, participants with a history of TB had higher odds of asthma (OR 1.99, 95% CI 1.13-3.47). The associations were consistent for nonallergic asthma (OR 2.17, 95% CI 1.16-4.07), but not for allergic asthma (OR 1.20, 95% CI 0.53-2.71). Conclusion We found that in a large Northern European population-based cohort, persons with a history of TB infection more frequently had asthma and asthma symptoms. We speculate that this may reflect long-term effects of TB, including direct damage to the airways and lungs, as well as inflammatory responses.
Collapse
Affiliation(s)
- Sanjay Gyawali
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Juan Pablo López-Cervantes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Nils Oskar Jõgi
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Mathias Holm
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Modig
- Department of Public Health and Clinical Medicine, Sustainable health, Umeå University, Umeå, Sweden
| | - Christine Cramer
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland
- University of Iceland, Medical faculty, Reykjavik Iceland
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- These authors contributed equally to this work as senior authors
| | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- These authors contributed equally to this work as senior authors
| |
Collapse
|
10
|
Xu Y, Wu Y, Hu Y, Xu M, Liu Y, Ding Y, Chen J, Huang X, Wen L, Li J, Zhu C. Bacteria-based multiplex system eradicates recurrent infections with drug-resistant bacteria via photothermal killing and protective immunity elicitation. Biomater Res 2023; 27:27. [PMID: 37024953 PMCID: PMC10080897 DOI: 10.1186/s40824-023-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The high mortality associated with drug-resistant bacterial infections is an intractable clinical problem resulting from the low susceptibility of these bacteria to antibiotics and the high incidence of recurrent infections. METHODS Herein, a photosynthetic bacteria-based multiplex system (Rp@Al) composed of natural Rhodopseudomonas palustris (Rp) and Food and Drug Administration-approved aluminum (Al) adjuvant, was developed to combat drug-resistant bacterial infections and prevent their recurrence. We examined its photothermal performance and in vitro and in vivo antibacterial ability; revealed its protective immunomodulatory effect; verified its preventative effect on recurrent infections; and demonstrated the system's safety. RESULTS Rp@Al exhibits excellent photothermal properties with an effective elimination of methicillin-resistant Staphylococcus aureus (MRSA). In addition, Rp@Al enhances dendritic cell activation and further triggers a T helper 1 (TH1)/TH2 immune response, resulting in pathogen-specific immunological memory against recurrent MRSA infection. Upon second infection, Rp@Al-treated mice show significantly lower bacterial burden, faster abscess recovery, and higher survival under near-lethal infection doses than control mice. CONCLUSIONS This innovative multiplex system, with superior photothermal and immunomodulatory effects, presents great potential for the treatment and prevention of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Youcui Xu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yuting Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Chen
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Xiaowan Huang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Longping Wen
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Altman A, Adams AA, McLeod KR, Vanzant ES. Interactions between animal temperament and exposure to endophytic tall fescue: Effects on cell-mediated and humoral immunity in beef heifers. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1086755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Two experiments (n=12 Angus heifers/experiment) investigated influences of animal temperament, as indicated by exit velocity (EV; determined at weaning) and consumption of toxic endophyte-infected tall fescue seed on peripheral lymphocyte production of interferon-γ. Heifers were selected from calves born on the University of Kentucky’s C. Oran Little Research Center. In experiment 1, calves were randomly selected from 50 heifers within a single calf crop. In experiment 2, calves with the 6 fastest and 6 slowest EV in the subsequent year’s calf crop were selected. In both experiments, heifers were assigned to either high or low EV treatments based on relative ranking, and endophyte treatments (toxic endophyte-infected, E+, or endophyte-free, E-, fescue seed) were balanced by body weight. Rations were restricted to 1.8 x NEm and common diet was top-dressed with fescue seed each morning. Experiment 1 had four phases (pre-endophyte treatment/thermoneutral, increased room temperature, increased room temperature/endophyte treatment, and post-endophyte/thermoneutral) and experiment 2 had two phases (increased room temperature/endophyte treatment and thermoneutral). During endophyte treatment phases, heifers were fed their respective treatment seed. During all other phases, all heifers received E- seed. In experiment 1, proportions of lymphocytes producing interferon-γ were decreased in E+ heifers during the heat/endophyte phase (P=0.03) whereas during the subsequent thermoneutral period this response was greater in high, compared with low, EV heifers on E- treatment, with no difference observed among E+ heifers (interaction P=0.08). Also during the recovery phase, average lymphocyte production of interferon-γ was higher in E+ heifers (P=0.01). Consistent with experiment 1 findings, during the recovery period of experiment 2, endophyte exposure increased the per cell production of interferon-γ (P<0.01). In this experiment, the difference was of sufficient magnitude to result in a concomitant increase (P=0.03) in total interferon-γ production during that period. These results indicate peripheral lymphocyte production of interferon-γ can be influenced by both EV and endophyte exposure following periods of increased ambient temperature humidity indices, though there was minimal indication of interactions between temperament and alkaloid exposure. This may imply that cattle with high exit velocities and those previously exposed to toxic endophyte-infected tall fescue are better poised against cell-mediated challenges.
Collapse
|
12
|
Sousa FDMD, Souza IDP, Amoras EDSG, Lima SS, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR, Queiroz MAF. Low levels of TNFA gene expression seem to favor the development of pulmonary tuberculosis in a population from the Brazilian Amazon. Immunobiology 2023; 228:152333. [PMID: 36630812 DOI: 10.1016/j.imbio.2023.152333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
TNF-α is a Th1 cytokine profile active in the control of Mycobacterium tuberculosis infection, IL-10 is associated with persistence of bacterial infection. The aim of the study was to investigate the association of TNFA -308G/A and IL10 -819C/T polymorphisms and TNFA and IL10 gene expression levels with pulmonary and extrapulmonary tuberculosis (n = 200) and control (n = 200). The individuals were submitted to genotyping and quantification of gene expression performed by real-time quantitative polymerase chain reaction (qPCR). No association was observed between the frequencies of polymorphisms evaluated and pulmonary tuberculosis. The frequency of polymorphic genotypes for TNFA -308G/A were associated with the extrapulmonary tuberculosis (p = 0.0445). The levels of TNFA expression were lower in the pulmonary tuberculosis group than in the control (p = 0.0009). There was a positive correlation between the levels of TNFA and IL10 in patients with pulmonary tuberculosis (r = 0.560; p = 0.0103). Reduced levels of TNFA expression may promote the formation of an anti-inflammatory microenvironment, favoring the persistence of the bacillus in the host, contributing to the establishment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Francisca Dayse Martins de Sousa
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Iury de Paula Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil.
| |
Collapse
|
13
|
Ren W, Li H, Guo C, Shang Y, Wang W, Zhang X, Li S, Pang Y. Serum Cytokine Biomarkers for Use in Diagnosing Pulmonary Tuberculosis versus Chronic Pulmonary Aspergillosis. Infect Drug Resist 2023; 16:2217-2226. [PMID: 37081946 PMCID: PMC10112472 DOI: 10.2147/idr.s403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Background Aspergillus fumigatus-induced chronic pulmonary aspergillosis (CPA), the most common pulmonary tuberculosis (TB) sequela, tends to occur after pulmonary infection with the intracellular pathogen Mycobacterium tuberculosis (Mtb). Timely and accurate detection of A. fumigatus infection of pulmonary TB patients would undoubtedly greatly improve patient prognosis. Currently, the galactomannan (GM) antigen test is commonly used to detect A. fumigatus infection but has poor sensitivity that renders this assay inadequate for use in clinical practice. Design or Methods Given the fact CPA and TB induce different host immune responses, we evaluated serum cytokine level profiles of CPA, TB patients and patients with both diseases (CPA-TB) for multiple cytokines and cytokine combinations. Results The results revealed significantly higher serum levels of numerous proinflammatory cytokines, including IL-1β, IL-6, IL-8, IL-12p70, IFN-α, IFN-γ and TNF-α, in peripheral blood of CPA-TB patients versus that of TB patients. IL-8 levels alone provided the best discriminatory performance for distinguishing between TB and either CPA-TB patients (AUC = 0.949) or CPA patients (AUC = 0.964). Moreover, both IL-8 and TNF-α (AUC = 0.996) levels could be used to distinguish between TB and CPA-TB patients. Likewise, IL-8, TNF-α and IL-6 levels together could be used to distinguish between CPA-TB and TB patients. Conclusion In this study, multiple cytokines were identified that may serve as potential biomarkers for use in detecting TB patients with CPA. Furthermore, our results should enhance understanding of how immune system dysfunctions influence susceptibility to Mtb and/or A. fumigatus infections.
Collapse
Affiliation(s)
- Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Can Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Correspondence: Yu Pang; Shanshan Li, Email ;
| |
Collapse
|
14
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
15
|
Weng S, Zhang J, Ma H, Zhou J, Jia L, Wan Y, Cui P, Ruan Q, Shao L, Wu J, Wang H, Zhang W, Xu Y. B21 DNA vaccine expressing ag85b, rv2029c, and rv1738 confers a robust therapeutic effect against latent Mycobacterium tuberculosis infection. Front Immunol 2022; 13:1025931. [PMID: 36569899 PMCID: PMC9768437 DOI: 10.3389/fimmu.2022.1025931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Latent tuberculosis infection (LTBI) treatment is known to accelerate the decline in TB incidence, especially in high-risk populations. Mycobacterium tuberculosis (M. tb) expression profiles differ at different growth periods, and vaccines protective and therapeutic effects may increase when they include antigenic compositions from different periods. To develop a post-exposure vaccine that targets LTBI, we constructed four therapeutic DNA vaccines (A39, B37, B31, and B21) using different combinations of antigens from the proliferation phase (Ag85A, Ag85B), PE/PPE family (Rv3425), and latent phase (Rv2029c, Rv1813c, Rv1738). We compared the immunogenicity of the four DNA vaccines in C57BL/6j mice. The B21 vaccine stimulated the strongest cellular immune responses, namely Th1/Th17 and CD8+ cytotoxic T lymphocyte responses. It also induced the generation of strengthened effector memory and central memory T cells. In latently infected mice, the B21 vaccine significantly reduced bacterial loads in the spleens and lungs and decreased lung pathology. In conclusion, the B21 DNA vaccine can enhance T cell responses and control the reactivation of LTBI.
Collapse
Affiliation(s)
- Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmin Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| |
Collapse
|
16
|
Suo J, Wang X, Zhao R, Ma P, Ge L, Luo T. Mycobacterium tuberculosis PPE7 Enhances Intracellular Survival of Mycobacterium smegmatis and Manipulates Host Cell Cytokine Secretion Through Nuclear Factor Kappa B and Mitogen-Activated Protein Kinase Signaling. J Interferon Cytokine Res 2022; 42:525-535. [PMID: 36178924 DOI: 10.1089/jir.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The PE/PPE family proteins of Mycobacterium tuberculosis have been associated with its virulence and interaction with the host immune system. The highly virulent modern lineage of M. tuberculosis possesses a lineage-specific PPE gene (PPE7), which arises from an ancestral mutation and is rarely studied. Here we examined the role of PPE7 in mycobacterial pathogenicity and survival by expressing M. tuberculosis PPE7 in Mycobacterium smegmatis. We show that, PPE7 activates host inflammation by increasing expression of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6, while suppressing the expression of anti-inflammatory cytokines such as IL-10, possibly through the nuclear factor kappa B, ERK1/2, and p38 mitogen-activated protein kinase pathways. Overexpressing PPE7 in M. smegmatis could enhance bacterial intracellular survival of infected macrophages. Furthermore, higher level of bacterial persistence, higher levels of TNF-α, IL-1β, and IL-6 cytokines, and more injury in the lung, liver, and spleen tissues of infected mice has been discovered. In conclusion, PPE7 could manipulate host immune response and increase bacterial persistence.
Collapse
Affiliation(s)
- Jing Suo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
17
|
Lu Y, Ning H, Kang J, Bai G, Zhou L, Kang Y, Wu Z, Tian M, Zhao J, Ma Y, Bai Y. Cyclic-di-AMP Phosphodiesterase Elicits Protective Immune Responses Against Mycobacterium tuberculosis H37Ra Infection in Mice. Front Cell Infect Microbiol 2022; 12:871135. [PMID: 35811674 PMCID: PMC9256937 DOI: 10.3389/fcimb.2022.871135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Many antigens from Mycobacterium tuberculosis (M. tuberculosis) have been demonstrated as strong immunogens and proved to have application potential as vaccine candidate antigens. Cyclic di-AMP (c-di-AMP) as a bacterial second messenger regulates various bacterial processes as well as the host immune responses. Rv2837c, the c-di-AMP phosphodiesterase (CnpB), was found to be relative to virulence of M. tuberculosis and interference with host innate immune response. In this study, recombinant CnpB was administered subcutaneously to mice. We found that CnpB had strong immunogenicity and induced high levels of humoral response and lung mucosal immunity after M. tuberculosis intranasally infection. CnpB immunization stimulated splenocyte proliferation and the increasing number of activated NK cells but had little effects on Th1/Th2 cellular immune responses in spleens. However, CnpB induced significant Th1/Th2 cellular immune responses with a decreased number of T and B cells in the lungs, and significantly recruits of CD4+ and CD8+ T cells after M. tuberculosis attenuated strain H37Ra infection. Besides, we first reported that CnpB could stimulate IFN-β expression transitorily and inhibit the autophagy of macrophages in vitro. In mice intranasally infection model, CnpB immunization alleviated pathological changes and reduced M. tuberculosis H37Ra loads in the lungs. Thus, our results suggested that CnpB interferes with host innate and adaptive immune responses and confers protection against M. tuberculosis respiratory infection, which should be considered in vaccine development as well as a drug target.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yali Kang
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Zhengfeng Wu
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Maolin Tian
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Junhao Zhao
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Yueyun Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| |
Collapse
|
18
|
Agaronyan K, Sharma L, Vaidyanathan B, Glenn K, Yu S, Annicelli C, Wiggen TD, Penningroth MR, Hunter RC, Dela Cruz CS, Medzhitov R. Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity 2022; 55:895-911.e10. [PMID: 35483356 PMCID: PMC9123649 DOI: 10.1016/j.immuni.2022.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.
Collapse
Affiliation(s)
- Karen Agaronyan
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lokesh Sharma
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bharat Vaidyanathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Keith Glenn
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Charles Annicelli
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Talia D Wiggen
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mitchell R Penningroth
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles S Dela Cruz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Kanaparthi KJ, Afroz S, Minhas G, Moitra A, Khan RA, Medikonda J, Naz S, Cholleti SN, Banerjee S, Khan N. Immunogenic profiling of Mycobacterium tuberculosis DosR protein Rv0569 reveals its ability to switch on Th1 based immunity. Immunol Lett 2022; 242:27-36. [PMID: 35007662 DOI: 10.1016/j.imlet.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a multifaceted bacterial pathogen known to infect more than 2 billion people globally. However, a majority of the individuals (>90%) show no overt clinical symptoms of active Tuberculosis (TB) and, it is reported that M.tb in these individuals resides in the latent form. Therefore, huge burden of latently infected population poses serious threat to human health. Inconsistent efficacy of BCG vaccine and poor understanding of latency-associated determinants contribute to the failure of combating M.tb. The discovery of DosR as the master regulator of dormancy, opened new avenues to understand the pathophysiology of the bacterium. Though the specific functions of various DosR genes are yet to be discovered, they have been reported as potent T-cell activators and could elicit strong protective immune responses. Rv0569 is a DosR-encoded conserved hypothetical protein overexpressed during dormancy. However, it is not clearly understood how this protein modulates the host immune response. In the present study, we have demonstrated that Rv0569 has a high antigenic index and induces enhanced secretion of Th1 cytokines IL-12p40 and TNF-α as compared to Th2 cytokine IL-10 in macrophages. Mechanistically, Rv0569 induced the transcription of these pro-inflammatory signatures through the activation of NF-κB pathway. Further, immunization of mice with DosR protein Rv0569 switched the immune response towards Th1-biased cytokine pattern, characterized by the enhanced production of IFN-γ, IL-12p40, and TNF-α. Rv0569 augmented the expansion of antigen-specific IFN-γ and IL-2 producing effector CD4+ and CD8+ T-cells which are hallmarks of Th1 biased protective immunity. Additionally, IgG2a/IgG1 and IgG2b/IgG1 ratio in the serum of immunized mice further confirmed the ability of Rv0569 to skew Th1 biased immune response. In conclusion, we emphasize that Rv0569 has the ability to generate signals to switch on Th1-dominated responses and further suggest that it could be a potential vaccine candidate against latent M.tb infection.
Collapse
Affiliation(s)
- Kala Jyothi Kanaparthi
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sumbul Afroz
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Gillipsie Minhas
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Anurupa Moitra
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Rafiq Ahmad Khan
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Jayashankar Medikonda
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Saima Naz
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sai Nikhith Cholleti
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India.; Department of Animal Biology, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India..
| |
Collapse
|
21
|
Ramser A, Greene E, Wideman R, Dridi S. Local and Systemic Cytokine, Chemokine, and FGF Profile in Bacterial Chondronecrosis with Osteomyelitis (BCO)-Affected Broilers. Cells 2021; 10:3174. [PMID: 34831397 PMCID: PMC8620240 DOI: 10.3390/cells10113174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Complex disease states, like bacterial chondronecrosis with osteomyelitis (BCO), not only result in physiological symptoms, such as lameness, but also a complex systemic reaction involving immune and growth factor responses. For the modern broiler (meat-type) chickens, BCO is an animal welfare, production, and economic concern involving bacterial infection, inflammation, and bone attrition with a poorly defined etiology. It is, therefore, critical to define the key inflammatory and bone-related factors involved in BCO. In this study, the local bone and systemic blood profile of inflammatory modulators, cytokines, and chemokines was elucidated along with inflammasome and key FGF genes. BCO-affected bone showed increased expression of cytokines IL-1β, while BCO-affected blood expressed upregulated TNFα and IL-12. The chemokine profile revealed increased IL-8 expression in both BCO-affected bone and blood in addition to inflammasome NLRC5 being upregulated in circulation. The key FGF receptor, FGFR1, was significantly downregulated in BCO-affected bone. The exposure of two different bone cell types, hFOB and chicken primary chondrocytes, to plasma from BCO-affected birds, as well as recombinant TNFα, resulted in significantly decreased cell viability. These results demonstrate an expression of proinflammatory and bone-resorptive factors and their potential contribution to BCO etiology through their impact on bone cell viability. This unique profile could be used for improved non-invasive detection of BCO and provides potential targets for treatments.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
22
|
Zhao Y, Zhang J, Xue B, Zhang F, Xu Q, Ma H, Sha T, Peng L, Li F, Ding J. Serum levels of inhibitory costimulatory molecules and correlations with levels of innate immune cytokines in patients with pulmonary tuberculosis. J Int Med Res 2021; 49:3000605211036832. [PMID: 34463584 PMCID: PMC8414942 DOI: 10.1177/03000605211036832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To analyze serum levels of inhibitory costimulatory molecules and their
correlations with innate immune cytokine levels in patients with pulmonary
tuberculosis (PTB). Methods Data for 280 PTB patients and 280 healthy individuals were collected. Serum
levels of immune molecules were measured using ELISA. Univariate,
multivariate, subgroup, matrix correlation, and receiver operating
characteristic curve analyses were performed. Results Host, environment, lifestyle, clinical features, and medical history all
influenced PTB. Serum levels of soluble programmed death ligand 1 (sPD-L1),
soluble T-cell immunoglobulin- and mucin-domain–containing molecule 3
(sTim-3), soluble galectin-9 (sGal-9), interleukin (IL)-4, and IL-33 were
significantly higher in patients with PTB, while levels of IL-12, IL-23,
IL-18, and interferon (IFN)-γ were significantly lower. Serum levels of
sTim-3 were higher in alcohol users. Levels of sTim-3 were negatively
correlated with those of IL-12. Levels of IL-12, IL-23, and IL-18 were
positively correlated with those of IFN-γ, while levels of IL-12 were
negatively correlated with those of IL-4. The areas under the curve of
sPD-L1, sTim-3, sGal-9, IL-12, IL-23, IL-18, IFN-γ, IL-4, and IL-33 for
identifying PTB were all >0.77. Conclusions Inhibitory costimulatory molecules may be targets for controlling PTB. Immune
molecules may be helpful for diagnosis of PTB.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.,Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jia Zhang
- Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Bing Xue
- Shihezi University School of Medicine, Shihezi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haimei Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Peng
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
23
|
Li X, Wang M, Ming S, Liang Z, Zhan X, Cao C, Liang S, Liu Q, Shang Y, Lao J, Zhang S, Kuang L, Geng L, Wu Z, Wu M, Gong S, Wu Y. TARM-1 Is Critical for Macrophage Activation and Th1 Response in Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:234-243. [PMID: 34183366 DOI: 10.4049/jimmunol.2001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
T cell-interacting activating receptor on myeloid cells 1 (TARM-1) is a novel leukocyte receptor expressed in neutrophils and macrophages. It plays an important role in proinflammatory response in acute bacterial infection, but its immunomodulatory effects on chronic Mycobacterium tuberculosis infections remain unclear. TARM-1 expression was significantly upregulated on CD14high monocytes from patients with active pulmonary tuberculosis (TB) as compared that on cells from patients with latent TB or from healthy control subjects. Small interfering RNA knockdown of TARM-1 reduced expression levels of proinflammatory cytokines IL-12, IL-18, IL-1β, and IL-8 in M. tuberculosis-infected macrophages, as well as that of HLA-DR and costimulatory molecules CD83, CD86, and CD40. Moreover, TARM-1 enhanced phagocytosis and intracellular killing of M. tuberculosis through upregulating reactive oxygen species. In an in vitro monocyte and T cell coculture system, blockade of TARM-1 activity by TARM-1 blocking peptide suppressed CD4+ T cell activation and proliferation. Finally, administration of TARM-1 blocking peptide in a mouse model of M. tuberculosis infection increased bacterial load and lung pathology, which was associated with decreased macrophage activation and IFN-γ production by T cell. Taken together, these results, to our knowledge, demonstrate a novel immune protective role of TARM-1 in M. tuberculosis infection and provide a potential therapeutic target for TB disease.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Manni Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zibin Liang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xiaoxia Zhan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Can Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Sipin Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaojuan Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yuqi Shang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Juanfeng Lao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Liangjian Kuang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Zhilong Wu
- The Fourth People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China; .,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| |
Collapse
|
24
|
Monreal-Escalante E, Sández-Robledo C, León-Gallo A, Roupie V, Huygen K, Hori-Oshima S, Arce-Montoya M, Rosales-Mendoza S, Angulo C. Alfalfa Plants (Medicago sativa L.) Expressing the 85B (MAP1609c) Antigen of Mycobacterium avium subsp. paratuberculosis Elicit Long-Lasting Immunity in Mice. Mol Biotechnol 2021; 63:424-436. [PMID: 33649932 PMCID: PMC7920848 DOI: 10.1007/s12033-021-00307-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Paratuberculosis, a contagious, untreatable, and chronic granulomatous enteritis that results in diarrhea, emaciation, and death in farmed ruminants (i.e., cattle, sheep, and goats). In this study, the Ag85B antigen from MAP was expressed in transgenic alfalfa as an attractive vaccine candidate. Agrobacterium-mediated transformation allowed the rescue of 56 putative transformed plants and transgenesis was confirmed in 19 lines by detection of the Ag85B gene (MAP1609c) by PCR. Line number 20 showed the highest Ag85B expression [840 ng Ag85B per gram of dry weight leaf tissue, 0.062% Total Soluble Protein (TSP)]. Antigenicity of the plant-made Ag85B was evidenced by its reactivity with a panel of sera from naturally MAP-infected animals, whereas immunogenicity was assessed in mice immunized by either oral or subcutaneous routes. The plant-made Ag85B antigen elicited humoral responses by the oral route when co-administered with cholera toxin as adjuvant; significant levels of anti-85B antibodies were induced in serum (IgG) and feces (IgA). Long-lasting immunity was evidenced at day 180 days post-first oral immunization. The obtained alfalfa lines expressing Ag85B constitute the first model of a plant-based vaccine targeting MAP. The initial immunogenicity assessment conducted in this study opens the path for a detailed characterization of the properties of this vaccine candidate.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
- CONACYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico
| | - Cristhian Sández-Robledo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
| | - Amalia León-Gallo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico
| | - Virginie Roupie
- Veterinary and Agrochemical Research Institute, VAR-CODA-CERVA, 1180, Brussels, Belgium
| | - Kris Huygen
- Scientific Service Immunology, Scientific Institute of Public Health WIV-ISP (Site Ukkel), 642 Engelandstraat, 1180, Brussels, Belgium
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California, 21387, Mexico
| | - Mario Arce-Montoya
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava Num. 6, Zona Universitaria., San Luis Potosí, San Luis Potosi, 78210, Mexico.
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
25
|
Etna MP, Severa M, Licursi V, Pardini M, Cruciani M, Rizzo F, Giacomini E, Macchia G, Palumbo O, Stallone R, Carella M, Livingstone M, Negri R, Pellegrini S, Coccia EM. Genome-Wide Gene Expression Analysis of Mtb-Infected DC Highlights the Rapamycin-Driven Modulation of Regulatory Cytokines via the mTOR/GSK-3β Axis. Front Immunol 2021; 12:649475. [PMID: 33936070 PMCID: PMC8086600 DOI: 10.3389/fimmu.2021.649475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
In human primary dendritic cells (DC) rapamycin-an autophagy inducer and protein synthesis inhibitor-overcomes the autophagy block induced by Mycobacterium tuberculosis (Mtb) and promotes a Th1 response via IL-12 secretion. Here, the immunostimulatory activity of rapamycin in Mtb-infected DC was further investigated by analyzing both transcriptome and translatome gene profiles. Hundreds of differentially expressed genes (DEGs) were identified by transcriptome and translatome analyses of Mtb-infected DC, and some of these genes were found further modulated by rapamycin. The majority of transcriptome-associated DEGs overlapped with those present in the translatome, suggesting that transcriptionally stimulated mRNAs are also actively translated. In silico analysis of DEGs revealed significant changes in intracellular cascades related to cytokine production, cytokine-induced signaling and immune response to pathogens. In particular, rapamycin treatment of Mtb-infected DC caused an enrichment of IFN-β, IFN-λ and IFN-stimulated gene transcripts in the polysome-associated RNA fraction. In addition, rapamycin led to an increase of IL-12, IL-23, IL-1β, IL-6, and TNF-α but to a reduction of IL-10. Interestingly, upon silencing or pharmacological inhibition of GSK-3β, the rapamycin-driven modulation of the pro- and anti-inflammatory cytokine balance was lost, indicating that, in Mtb-infected DC, GSK-3β acts as molecular switch for the regulation of the cytokine milieu. In conclusion, our study sheds light on the molecular mechanism by which autophagy induction contributes to DC activation during Mtb infection and points to rapamycin and GSK-3β modulators as promising compounds for host-directed therapy in the control of Mtb infection.
Collapse
Affiliation(s)
- Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Manuela Pardini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Raffaella Stallone
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mark Livingstone
- Cytokine Signaling Unit, Inserm, Institut Pasteur, Paris, France
| | - Rodolfo Negri
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | | | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
He J, Li Y, Li H, Zhang C, Zhang J, Sun X, Zheng S. Correlation between serum 25-(OH)D 3 level and immune imbalance of Th1/Th2 cytokines in patients with Hashimoto's thyroiditis and its effect on autophagy of human Hashimoto thyroid cells. Exp Ther Med 2021; 21:458. [PMID: 33747191 PMCID: PMC7967875 DOI: 10.3892/etm.2021.9889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The study aimed to determine the relationship between serum 25-(OH)D3 and Th1/Th2 cytokine immune imbalance, and the effect of 25-(OH)D3 on the autophagy of human Hashimoto thyroid cells. Western blot analysis was used to detect the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and autophagy-associated protein mammalian target protein of rapamycin (mTOR) in thyroid tissues of 20 Hashimoto's thyroiditis (HT) patients and normal tissues of 20 benign thyroid adenomas. Nthy-ori3-1 cells (normal cells of human thyroid follicular epithelium) were treated with different concentrations of 25-(OH)D3 for 24 h. The expression of LC3, mTOR and caspase-3 protein in the cells was detected by western blot analysis. The apoptosis and proliferation levels were detected by flow cytometry and MTT assay, respectively. The levels of FT3, FT4 and IL-10 in the HT group were lower than those in the healthy control group. The serum levels of 25-(OH)D3, TPOAb and TGAb in the HT group were lower than those in the healthy control group. Serum 25-(OH)D3 level in the HT group was negatively correlated with IL-2 and IFN-γ, and positively correlated with IL-4. In Hashimoto's thyroiditis tissues, the expression of mTOR was higher while the expression of LC3B-II was lower than that of normal thyroid tissue. With the increase in 25-(OH)D3 concentration, the expression level of mTOR increased, the expression level of LC3B-II decreased and the apoptosis rate was significantly increased. The cell proliferation rate decreased with the increase in 25-(OH)D3 concentration. The serum 25-(OH)D3 level in HT hypothyroidism patients was significantly lower than that of the control group. Thus, 25-(OH)D3 may be involved in the disease progression by upregulating the levels of Th1 cytokines and downregulating the levels of Th2 cytokines. 25-(OH)D3 can inhibit autophagy of thyroid cells, induce apoptosis and participate in the pathogenesis of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Jing He
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yuanchun Li
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hui Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chunhui Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jian Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiaozhu Sun
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shumei Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
27
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|