1
|
Whitehead KA, Deisenroth T, Preuss A, Liauw CM, Verran J. Lateral force removal of fungal spores to demonstrate how surface properties affect fungal spore retention. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210344. [PMID: 35909364 DOI: 10.1098/rsta.2021.0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Microbial biofouling on polymer surfaces can lead to their biodeterioration. This may result in deterioration of the surface, leading to cracking and fracturing. Fungal spores from Aspergillus niger 1957, Aspergillus niger 1988 and Aureobasidium pullulans were tested to determine their strength of attachment on three surfaces, p(γ-MPS-co-MMA), p(γ-MPS-co-LMA) and spin-coated poly(methyl methacrylate) (PMMAsc), using lateral force measurements. The results demonstrate that A. niger 1957 and A. niger 1988 spores were most easily removed from the p(γ-MPS-co-MMA) surface, which was the surface with the highest Ra value. The A. niger 1957 and A. pullulans spores were most difficult to remove from the PMMAsc surface, which was the hardest surface. A. niger 1988 spores were the most difficult to remove from p(γ-MPS-co-LMA), the most hydrophobic surface. The results with A. pullulans were difficult to elucidate since the spores bound to all three surfaces and were removed with similar rates of force. The lateral force results demonstrate that spore attachment to a surface is a multi-factorial process, and independent surface and microbial factors influence spore binding. Thus, each environmental scenario needs to be considered on an individual basis, since a solution to one biofouling issue will probably not translate across to other systems. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
| | - Ted Deisenroth
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY, USA
| | - Andrea Preuss
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY, USA
| | | | - Joanna Verran
- Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
2
|
Piazza V, Gambardella C, Costa E, Miroglio R, Faimali M, Garaventa F. Cold storage effects on lethal and sublethal responses of Amphibalanus amphitrite Nauplii. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1078-1086. [PMID: 35838933 PMCID: PMC9458687 DOI: 10.1007/s10646-022-02571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Bioassays are extensively used in ecotoxicology and there is a constant need for even more sensitive, reliable and easy to rear and obtain model organisms. Larvae of the crustacean Amphibalanus amphitrite are a good ecotoxicological model, for their high sensitivity to a wide range of toxicants and emerging contaminants. A standardized protocol for this toxicity bioassay has been recently proposed. Nevertheless, a limit of this model organism is the lack of resting stages and the need to use larvae immediately after their release from adults, thus increasing laboratory efforts related to the maintenance of adults. The aim of this work is to verify if short-term cold storage of A. amphitrite larvae prior to use in ecotoxicological tests may affect the ecotoxicological responses of these organisms. Three end-points (mortality, immobilization and swimming speed alteration) were measured on nauplii after storing them at 4 ± 1 °C for different times (24, 72 and 120 h) before bioassay set-up. Bioassays were set up using: (i) clean filtered natural sea water (0.22 µm FNSW), (ii) a reference toxicant (Cadmium Nitrate) and (iii) an environmental matrix (sediment elutriate). Results show that mortality, differently from the other two endpoints, was not affected by cold-storage. Even after 5 days of larvae storage at 4 ± 1 °C before bioassay set up, mortality data were comparable to those obtained for non-cold-stored organisms. Moreover, larval sensitivity to the reference toxicant and sediment elutriate did not change. Regarding the other two end points, low cadmium concentrations significantly changed immobility and swimming activity in cold-stored nauplii compared to larvae used immediately after larval release. In conclusion, short-term cold storage of A. amphitrite nauplii before bioassay set up is an appropriate procedure in ecotoxicological testing if mortality is the endpoint to be considered for final evaluation.
Collapse
Affiliation(s)
- Veronica Piazza
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy.
| | - Chiara Gambardella
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Elisa Costa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Roberta Miroglio
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Marco Faimali
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Francesca Garaventa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| |
Collapse
|
3
|
Biocide vs. Eco-Friendly Antifoulants: Role of the Antioxidative Defence and Settlement in Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antifoulant paints were developed to prevent and reduce biofouling on surfaces immersed in seawater. The widespread use of these substances over the years has led to a significant increase of their presence in the marine environment. These compounds were identified as environmental and human threats. As a result of an international ban, research in the last decade has focused on developing a new generation of benign antifoulant paints. This review outlines the detrimental effects associated with biocide versus eco-friendly antifoulants, highlighting what are effective antifoulants and why there is a need to monitor them. We examine the effects of biocide and eco-friendly antifoulants on the antioxidative defence mechanism and settlement in a higher sessile organism, specifically the Mediterranean mussel, Mytilus galloprovincialis. These antifoulants can indirectly assess the potential of these two parameters in order to outline implementation of sustainable antifoulants.
Collapse
|
4
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
5
|
Longo C, Trani R, Nonnis Marzano C, Mercurio M, Lazic T, Cotugno P, Santobianchi E, Gravina MF. Anti-fouling activity and toxicity of the Mediterranean alien sponge Paraleucilla magna Klautau, Monteiro & Borojevic, 2004 (Porifera, Calcarea). PeerJ 2021; 9:e12279. [PMID: 34733587 PMCID: PMC8544254 DOI: 10.7717/peerj.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Poriferans, as sessile organisms without rigid external covering, use secondary metabolites for protection from predators and fouling organisms. The present study tested the antifouling activity of ethanolic extract of the Mediterranean alien calcareous sponge Paraleucilla magna towards juvenile mussels Mytilus galloprovincialis. Furthermore, toxicity tests on nauplii of brine shrimp Artemia salina and two microalgae strains, Nannochloropsis sp. and Tetraselmis suecica, were also conducted. A total attachment inhibition of M. galloprovincialis was achieved at a concentration of 400 µg/mL of sponge extract. The 50% mortality of A. salina nauplii was recorded at a concentration of 500 µg/mL of ethanolic extract. The growth inhibitory effect on both marine microalgae strains has been registered at a concentration of 300 µg/mL. Our results suggest promising natural antifouling activity and low toxicity of the ethanolic extract of P. magna that could be used as antifouling compound.
Collapse
Affiliation(s)
- Caterina Longo
- Department of Biology, University of Bari, Bari, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Roberta Trani
- Department of Biology, University of Bari, Bari, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Carlotta Nonnis Marzano
- Department of Biology, University of Bari, Bari, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Maria Mercurio
- Department of Biology, University of Bari, Bari, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Tamara Lazic
- Department of Biology, University of Bari, Bari, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | | | | | - Maria Flavia Gravina
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Yang H, Chang H, Zhang Q, Song Y, Jiang L, Jiang Q, Xue X, Huang W, Ma C, Jiang B. Highly Branched Copolymers with Degradable Bridges for Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16849-16855. [PMID: 32181634 DOI: 10.1021/acsami.9b22748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The antifouling properties of traditional self-polishing marine antifouling coatings are mainly achieved based on their hydrolysis-sensitive side groups or the degradable polymer main chains. Here, we prepared a highly branched copolymer for self-polishing antifouling coatings, in which the primary polymer chains are bridged by degradable fragments (poly-ε-caprolactone, PCL). Owing to the partial or complete degradation of PCL fragments, the remaining coating on the surface can be broken down and eroded by seawater. Finally, the polymeric surface is self-polished and self-renewed. The designed highly branched copolymers were successfully prepared by reversible complexation mediated polymerization (RCMP), and their primary main chains had an Mn of approximately 3410 g·mol-1. The hydrolytic degradation results showed that the degradation of the copolymer was controlled, and the degradation rate increased with increasing contents of degradable fragments. The algae settlement assay tests indicated that the copolymer itself has some antibiofouling ability. Moreover, the copolymer can serve as a controlled release matrix for antifoulant 4,5-dichloro-2-octylisothiazolone (DCOIT), and the release rate increases with the contents of degradable fragments. The marine field tests confirmed that these copolymer-based coatings exhibited excellent antibiofouling ability for more than 3 months. The current copolymer is derived from commonly used monomers and an easily conducted polymerization method. Hence, we believe this method may offer innovative insights into marine antifouling applications.
Collapse
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Faculty of Materials Science and Engineering, Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - He Chang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Qian Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yiye Song
- Changzhou University Huaide College, Jingjiang, Jiangsu 214500, P. R. China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
7
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
8
|
Sánchez-Lozano I, Hernández-Guerrero CJ, Muñoz-Ochoa M, Hellio C. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. Int J Mol Sci 2019; 20:E4863. [PMID: 31574976 PMCID: PMC6801554 DOI: 10.3390/ijms20194863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Biofouling causes major economic losses in the maritime industry. In our site study, the Bay of La Paz (Gulf of California), biofouling on immersed structures is a major problem and is treated mostly with copper-based antifouling paints. Due to the known environmental effect of such treatments, the search for environmentally friendly alternatives in this zone of high biodiversity is a priority to ensure the conservation and protection of species. The aim of this work was to link chemical ecology to marine biotechnology: indeed, the natural defense of macroalgae and sponge was evaluated against biofoulers (biofilm and macrofoulers) from the same geographical zone, and some coatings formulation was done for field assays. Our approach combines in vitro and field bioassays to ensure the selection of the best AF agent prospects. The 1st step consisted of the selection of macroalgae (5 species) and sponges (2 species) with surfaces harboring a low level of colonizers; then extracts were prepared and assayed for toxicity against Artemia, activity towards key marine bacteria involved in biofilm formation in the Bay of La Paz, and the potency to inhibit adhesion of macroorganisms (phenoloxidase assays). The most active and non-toxic extracts were further studied for biofouling activity in the adhesion of the bacteria involved in biofilm formation and through incorporation in marine coatings which were immersed in La Paz Bay during 40 days. In vitro assays demonstrated that extracts of Laurencia gardneri, Sargassum horridum (macroalgae), Haliclona caerulea and Ircinia sp. (sponges) were the most promising. The field test results were of high interest as the best formulation were composed of extracts of H. caerulea and S. horridum and led to a reduction of 32% of biofouling compared with the control.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claudia Judith Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Mauricio Muñoz-Ochoa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France.
| |
Collapse
|
9
|
Nolte KA, Koc J, Barros JM, Hunsucker K, Schultz MP, Swain GW, Rosenhahn A. Dynamic field testing of coating chemistry candidates by a rotating disk system. BIOFOULING 2018; 34:398-409. [PMID: 29734815 DOI: 10.1080/08927014.2018.1459578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Quick and reliable testing is crucial for the development of new fouling release (FR) coatings. Exposure of these coatings to natural multispecies communities is essential in evaluating their efficacy. To this end, we present a rotating disk setup for dynamic field exposure. To achieve a well-defined flow on the surface of the disk, an easy to use sample mounting system was developed that provides a smooth and even surface. We related the angular velocity of the disk to the wall shear stress on the surface with a hydrodynamic model. The wall shear stress was adjusted to values previously found to be suitable to discriminate dynamic diatom attachment on different coating chemistries in the lab. The effect of the dynamic conditions was shown by comparing polystyrene slides under static and dynamic exposure. Using a set of self-assembled monolayers, the discrimination potential of the assay in a multispecies environment was demonstrated.
Collapse
Affiliation(s)
- Kim A Nolte
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| | - Julian Koc
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| | - J M Barros
- b Naval Architecture & Ocean Engineering , United States Naval Academy , Annapolis , MD , USA
| | - Kelli Hunsucker
- c Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Michael P Schultz
- b Naval Architecture & Ocean Engineering , United States Naval Academy , Annapolis , MD , USA
| | - G W Swain
- c Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Axel Rosenhahn
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| |
Collapse
|
10
|
Pansch C, Jonsson PR, Berglin M, Pinori E, Wrange AL. A new flow-through bioassay for testing low-emission antifouling coatings. BIOFOULING 2017; 33:613-623. [PMID: 28792237 DOI: 10.1080/08927014.2017.1349897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing hydrodynamic drag on ships and damaging coatings on underwater surfaces, and thus are extensively used as models in AF research, mostly in static, laboratory-based systems. Reliable flow-through test assays for the screening of biocide-containing AF paints, however, are rare. Herein, a flow-through bioassay was developed to screen for diverse low-release biocide paints, and to evaluate their effects on pre- and post-settlement traits in barnacles. The assay distinguishes between the effects from direct surface contact and bulk-water effects, which are crucial when developing low-emission AF coatings. This flow-through bioassay adds a new tool for rapid laboratory-based first-stage screening of candidate compounds and novel AF formulations.
Collapse
Affiliation(s)
- Christian Pansch
- a Department of Marine Ecology , GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel , Germany
- b Department of Marine Sciences-Tjärnö , University of Gothenburg , Strömstad , Sweden
| | - Per R Jonsson
- b Department of Marine Sciences-Tjärnö , University of Gothenburg , Strömstad , Sweden
| | - Mattias Berglin
- c Bioscience and Materials , RISE Research Institutes of Sweden , Borås , Sweden
| | - Emiliano Pinori
- c Bioscience and Materials , RISE Research Institutes of Sweden , Borås , Sweden
| | - Anna-Lisa Wrange
- c Bioscience and Materials , RISE Research Institutes of Sweden , Borås , Sweden
| |
Collapse
|
11
|
Stafslien SJ, Sommer S, Webster DC, Bodkhe R, Pieper R, Daniels J, Vander Wal L, Callow MC, Callow JA, Ralston E, Swain G, Brewer L, Wendt D, Dickinson GH, Lim CS, Teo SLM. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings. BIOFOULING 2016; 32:949-968. [PMID: 27494780 DOI: 10.1080/08927014.2016.1211269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Stacy Sommer
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Dean C Webster
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Rajan Bodkhe
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Robert Pieper
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Justin Daniels
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Lyndsi Vander Wal
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Maureen C Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - James A Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - Emily Ralston
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Geoff Swain
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Lenora Brewer
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Dean Wendt
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Gary H Dickinson
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Chin-Sing Lim
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Serena Lay-Ming Teo
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| |
Collapse
|
12
|
Puniredd SR, Jańczewski D, Go DP, Zhu X, Guo S, Ming Teo SL, Chen Lee SS, Vancso GJ. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling. Chem Sci 2015; 6:372-383. [PMID: 28966763 PMCID: PMC5586206 DOI: 10.1039/c4sc02367f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023] Open
Abstract
Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved.
Collapse
Affiliation(s)
- Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dominik Jańczewski
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dewi Pitrasari Go
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Shifeng Guo
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Serena Lay Ming Teo
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - Serina Siew Chen Lee
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - G Julius Vancso
- Institute of Chemical and Engineering Sciences , ASTAR , 1, Pesek Road , Jurong Island , 627833 , Singapore . ; ; Tel: +31 53 489 2974
- MESA+ Institute for Nanotechnology , Materials Science and Technology of Polymers , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands
| |
Collapse
|
13
|
Berthet B. Reference Species. AQUATIC ECOTOXICOLOGY 2015:205-227. [DOI: 10.1016/b978-0-12-800949-9.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Hanssen KO, Cervin G, Trepos R, Petitbois J, Haug T, Hansen E, Andersen JH, Pavia H, Hellio C, Svenson J. The bromotyrosine derivative ianthelline isolated from the arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:684-694. [PMID: 25051957 DOI: 10.1007/s10126-014-9583-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro- and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1-10 μg/mL) and barnacle larval settlement (IC50 = 3.0 μg/mL). Moderate effects are recorded on M. edulis (IC50 = 45.2 μg/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 μg/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented.
Collapse
Affiliation(s)
- Kine O Hanssen
- Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery (MabCent), UiT The Arctic University of Norway, Breivika, Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Trepos R, Cervin G, Hellio C, Pavia H, Stensen W, Stensvåg K, Svendsen JS, Haug T, Svenson J. Antifouling compounds from the sub-arctic ascidian Synoicum pulmonaria: synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. JOURNAL OF NATURAL PRODUCTS 2014; 77:2105-2113. [PMID: 25181423 DOI: 10.1021/np5005032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The current study describes the antifouling properties of four members belonging to the recently discovered synoxazolidinone and pulmonarin families, isolated from the sub-Arctic sessile ascidian Synoicum pulmonaria collected off the Norwegian coast. Four simplified synthetic analogues were also prepared and included in the study. Several of the studied compounds displayed MIC values in the micro-nanomolar range against 16 relevant marine species involved in both the micro- and macrofouling process. Settlement studies on Balanus improvisus cyprids indicated a deterrent effect and a low toxicity for selected compounds. The two synoxazolidinones displayed broad activity and are shown to be among the most active natural antifouling bromotyrosine derivatives described. Synoxazolidinone C displayed selected antifouling properties comparable to the commercial antifouling product Sea-Nine-211. The pulmonarins prevented the growth of several bacterial strains at nanomolar concentrations but displayed a lower activity toward microalgae and no effect on barnacles. The linear and cyclic synthetic peptidic mimics also displayed potent antifouling activities mainly directed against bacterial adhesion and growth.
Collapse
Affiliation(s)
- Rozenn Trepos
- School of Biological Sciences, University of Portsmouth , Portsmouth PO1 2DY, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Di Fino A, Petrone L, Aldred N, Ederth T, Liedberg B, Clare AS. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). BIOFOULING 2014; 30:143-152. [PMID: 24313326 DOI: 10.1080/08927014.2013.852541] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.
Collapse
Affiliation(s)
- A Di Fino
- a School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne , UK
| | | | | | | | | | | |
Collapse
|
17
|
Muthukrishnan T, Abed RMM, Dobretsov S, Kidd B, Finnie AA. Long-term microfouling on commercial biocidal fouling control coatings. BIOFOULING 2014; 30:1155-1164. [PMID: 25390938 DOI: 10.1080/08927014.2014.972951] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.
Collapse
Affiliation(s)
- Thirumahal Muthukrishnan
- a Department of Marine Science and Fisheries , College of Agricultural and Marine Sciences, Sultan Qaboos University , Oman
| | | | | | | | | |
Collapse
|
18
|
Jellali R, Kromkamp JC, Campistron I, Laguerre A, Lefebvre S, Perkins RG, Pilard JF, Mouget JL. Antifouling action of polyisoprene-based coatings by inhibition of photosynthesis in microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6573-6581. [PMID: 23718890 DOI: 10.1021/es400161t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previous studies have demonstrated that ionic and non-ionic natural rubber-based coatings inhibit adhesion and growth of marine bacteria, fungi, microalgae, and spores of macroalgae. Nevertheless, the mechanism of action of these coatings on the different micro-organisms is not known. In the current study, antifouling activity of a series of these rubber-based coatings (one ionic and two non-ionic) was studied with respect to impacts on marine microalgal photosynthesis using pulse-amplitude-modulation (PAM) fluorescence. When grown in contact with the three different coatings, an inhibition of photosynthetic rate (relative electron transport rate, rETR) was observed in all of the four species of pennate diatoms involved in microfouling, Cocconeis scutellum, Amphora coffeaeformis, Cylindrotheca closterium, and Navicula jeffreyi. The percentage of inhibition ranged from 44% to 100% of the controls, depending on the species and the coating. The ionic coating was the most efficient antifouling (AF) treatment, and C. scutellum and A. coffeaeformis are the most sensitive and tolerant diatoms tested, respectively. Photosynthetic inhibition was reversible, as almost complete recovery of rETR was observed 48 h post exposure, after detachment of cells from the coatings. Thus, the antifouling activity seemed mostly due to an effect of contact with materials. It is hypothesized that photosynthetic activity was suppressed by coatings due to interference in calcium availability to the microalgal cells; Ca(2+) has been shown to be an essential micro/macro nutrient for photosynthesis, as well as being involved in cell adhesion and motility in pennate diatoms.
Collapse
Affiliation(s)
- Rachid Jellali
- UMR CNRS N° 6283, Méthodologie et Synthèse des Polymères, Département Méthodologie et Synthèse, Institut des Molécules et des Matériaux du Mans, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pinori E, Berglin M, Brive LM, Hulander M, Dahlström M, Elwing H. Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings. BIOFOULING 2011; 27:941-953. [PMID: 21929470 DOI: 10.1080/08927014.2011.616636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rosin-based coatings loaded with 0.1% (w/v) ivermectin were found to be effective in preventing colonization by barnacles (Balanus improvisus) both on test panels as well as on yachts for at least two fouling seasons. The leaching rate of ivermectin was determined by mass-spectroscopy (LC/MS-MS) to be 0.7 ng cm(-2) day(-1). This low leaching rate, as deduced from the Higuchi model, is a result of the low loading, low water solubility, high affinity to the matrix and high molar volume of the model biocide. Comparison of ivermectin and control areas of panels immersed in the field showed undisturbed colonisation of barnacles after immersion for 35 days. After 73 days the mean barnacle base plate area on the controls was 13 mm(2), while on the ivermectin coating it was 3 mm(2). After 388 days, no barnacles were observed on the ivermectin coating while the barnacles on the control coating had reached a mean of 60 mm(2). In another series of coated panels, ivermectin was dissolved in a cosolvent mixture of propylene glycol and glycerol formal prior to the addition to the paint base. This method further improved the anti-barnacle performance of the coatings. An increased release rate (3 ng cm(-2) day(-1)) and dispersion of ivermectin, determined by fluorescence microscopy, and decreased hardness of the coatings were the consequences of the cosolvent mixture in the paint. The antifouling mechanism of macrocyclic lactones, such as avermectins, needs to be clarified in further studies. Beside chronic intoxication as ivermectin is slowly released from the paint film even contact intoxication occurring inside the coatings, triggered by penetration of the coating by barnacles, is a possible explanation for the mode of action and this is under investigation.
Collapse
Affiliation(s)
- Emiliano Pinori
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. BIOFOULING 2011; 27:881-891. [PMID: 21882899 DOI: 10.1080/08927014.2011.611305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.
Collapse
Affiliation(s)
- Scott P Cooper
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|