1
|
Liu S, Wang Y, Xu C. Suppressive effects of lemon myrtle extract against the colonization and virulence factors of Candida spp. J Oral Biosci 2025:100657. [PMID: 40127778 DOI: 10.1016/j.job.2025.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVES Candida species (Candida spp.) are among the most common opportunistic pathogens inhabiting the oral cavity and frequently cause infection in immunocompromised individuals. Conventional antibiotic treatments for Candida infections face significant challenges, including the emergence of antimicrobial resistance. This highlights the urgent need for alternative therapeutic strategies, particularly those leveraging natural products. METHODS In this study, we evaluated the inhibitory effects of an aqueous lemon myrtle extract on the colonization and virulence of six Candida spp., including microbial adhesion, biofilm formation, extracellular polysaccharide production, hyphal production, and several invasion-associated virulence factors. RESULTS The extract significantly reduced Candida adhesion to hard surfaces and inhibited biofilm formation. Additionally, it suppressed the production of insoluble extracellular polysaccharides and various invasion-associated virulence factors, including phospholipase, ergosterol, protease, and hyphal formation. CONCLUSIONS These findings provide a better understanding of the potential role of lemon myrtle extract as a natural therapeutic agent for controlling Candida colonization and mitigating its invasive capabilities. This study provides a foundation for further exploration of lemon myrtle as a promising alternative for the management of Candida infections.
Collapse
Affiliation(s)
- Siyuan Liu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yi Wang
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
2
|
Chandni, Ahmad SS, Saloni A, Bhagat G, Ahmad S, Kaur S, Khan ZS, Kaur G, Abdi G. Phytochemical characterization and biomedical potential of Iris kashmiriana flower extracts: a promising source of natural antioxidants and cytotoxic agents. Sci Rep 2024; 14:24785. [PMID: 39433747 PMCID: PMC11494189 DOI: 10.1038/s41598-024-58362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/28/2024] [Indexed: 10/23/2024] Open
Abstract
Iris kashmiriana belongs to the family Iridaceae and is an important endemic medicinal plant of Kashmir. The current study was designed to determine the phytoconstituents, antioxidant, and cytotoxic potential of ethyl acetate (IRK-ETH) and methanol (IRK-MTH) extracts of Iris kashmiriana flowers. IRK-MTH extract demonstrated maximum radical scavenging activity in DPPH, ABTS, and Superoxide anion radical antioxidant assays with IC50 values of 73.15 μg/ml, 79.05 μg/ml, and 86.52 μg/ml respectively. IRK-ETH and IRK-MTH extracts possessed phenolic (70.9 and 208.5 mgGAE/gdw) and flavonoid (487.7 and 40.55 mgRE/gdw) contents respectively. In MTT assay IRK-ETH demonstrated the highest cytotoxicity towards the MCF-7 cell line with a GI50 value of 49.13 μg/ml. Phase contrast and fluorescence microscopic studies in MCF-7 cells revealed that IRK-ETH extract caused condensation of chromatin, rounding of cells, and nuclear condensation in cells which shows the apoptotic potential of the extract. GCMS analysis for phytochemical characterization revealed the presence of 9 compounds in both extracts which have been reported to possess antibacterial, cytotoxic, and anti-oxidant activities. HPLC analysis confirmed the presence of different polyphenols in both extracts with IRK-MTH extract having maximum polyphenols like epicatechin, rutin, quercetin, vanillic acid, sinapic acid, caffeic acid, chlorogenic acid and ellagic acid. These findings suggest that the flowers of Iris kashmiriana possess very good antioxidant and cytotoxic potential owing to its rich phytoconstituents.
Collapse
Affiliation(s)
- Chandni
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat Ahmad
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India
| | - Ambika Saloni
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India
| | - Sajad Ahmad
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Science, Guru Nanak Dev University, Amritsar, India.
| | - Zakir Showkat Khan
- Department of Food Science Technology, Guru Nanak Dev University, Amritsar, India
- Uttaranchal University, Dehradun, India
| | - Gurjeet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Perian Gulf University, Bushehr, Iran
| |
Collapse
|
3
|
Padmavathi AR, Reddy GKK, Murthy PS, Nancharaiah YV. New arsenals for old armour: Biogenic nanoparticles in the battle against drug-resistant Candidaalbicans. Microb Pathog 2024; 194:106800. [PMID: 39025380 DOI: 10.1016/j.micpath.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Candida albicans is a common commensal fungus and fourth most frequent causative agent of nosocomial infections including life-threatening invasive candidiasis in humans. The effectiveness of present antifungal therapies using azoles, polyenes, flucytosine and echinocandins has plateaued in managing fungal infections. The limitations of these antifungal drugs are related to polymorphic morphology, biofilm formation, emergence of drug-resistant strains and production of several virulence factors. Development of new antifungal agents, which can particularly afflict multiple cellular targets and limiting evolving resistant strains are needed. Recently, metal nanoparticles have emerged as a source of new antifungal agents for antifungal formulations. Furthermore, green nanotechnology deals with the use of biosynthetic routes that offer new avenue for synthesizing antifungal nanoparticles coupled with less toxic chemical inventory and environmental sustainability. This article reviews the recent developments on C. albicans pathogenesis, biofilm formation, drug resistance, mode of action of antifungal drugs and antifungal activities of metal nanoparticles. The antifungal efficacy and mode of action of metal nanoparticles are described in the context of prospective therapeutic applications.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
4
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Saha P, Hegde M, Chakraborty K, Singha A, Mukerjee N, Ghosh D, Kunnumakkara AB, Khan MS, Ahmad MI, Ghosh A, Kumer A, Sil SK. Targeted inhibition of colorectal cancer proliferation: The dual-modulatory role of 2,4-DTBP on anti-apoptotic Bcl-2 and Survivin proteins. J Cell Mol Med 2024; 28:e18150. [PMID: 38494866 PMCID: PMC10945088 DOI: 10.1111/jcmm.18150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.
Collapse
Affiliation(s)
- Partha Saha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Kanak Chakraborty
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Achinta Singha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Nobendu Mukerjee
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Deepshikha Ghosh
- Cell Biology and Physiology DivisionCSIR‐Indian Institute of Chemical BiologyKolkataWest BengalIndia
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Md Irshad Ahmad
- Department of Structural Biology, School of MedicineUTHEALTH Science CenterSan AntonioTexasUSA
| | - Arabinda Ghosh
- Department of Computational Biology and BiotechnologyMahapurusha Srimanta Sankaradeva ViswavidalayaGuwahatiAssamIndia
| | - Ajoy Kumer
- Department of Chemistry, College of Arts and SciencesIUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Samir Kumar Sil
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| |
Collapse
|
6
|
Kushveer JS, Sharma R, Samantaray M, Amutha R, Sarma VV. Purification and evaluation of 2, 4-di-tert butylphenol (DTBP) as a biocontrol agent against phyto-pathogenic fungi. Fungal Biol 2023; 127:1067-1074. [PMID: 37344008 DOI: 10.1016/j.funbio.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
A fungal strain, Marasmiellus sp (PUK64), isolated from the mangrove forests in Muthupet, Tamil Nadu, East coast of India, along with others were screened for the search of potent bioactive compounds. A phenolic compound, 2,4-di-tert-butylphenol (DTBP), was isolated from the most promising strain PUK64 and its chemical structure was ascertained. DTBP demonstrated remarkable antifungal activity against the phytopathogenic fungi Aspergillus oryzae, Curvularia lunata and Fusarium verticillioides. In an in-vitro experimental setup, DTBP suppressed the growth of all three fungi, among which F. verticillioides was found to be highly susceptible. This effect relates with the inhibition of spore germination and hyphal growth that we observed. DTBP showed high affinity with the F. verticillioides's β-tubulin protein (determined by ligand-protein docking) as compared to the standard fungicide carbendazim (CBZ). Molecular docking and simulation studies of DTBP with target β-tubulin further confirmed the potential of β-tubulin binding in F. verticillioides. To our knowledge, this is the first report on DTBP-mediated biocontrol of phytopathogenic fungi, produced by Marasmiellus sp. PUK64 that can be potent inhibitor of β-tubulin protein of F. verticillioides.
Collapse
Affiliation(s)
- J S Kushveer
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Rahul Sharma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - R Amutha
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | |
Collapse
|
7
|
Ahmedi S, Manzoor N. Candida phospholipases as potential target for natural antifungals. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:281-296. [DOI: 10.1016/b978-0-323-95699-4.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Lakshmipathy K, Thirunavookarasu N, Kalathil N, Chidanand DV, Rawson A, Sunil CK. Effect of different thermal and
non‐thermal
pre‐treatments on bioactive compounds of aqueous ginger extract obtained using vacuum‐assisted conductive drying system. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Nirmal Thirunavookarasu
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Najma Kalathil
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Duggonahally Veeresh Chidanand
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Ashish Rawson
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | | |
Collapse
|
9
|
Yang L, Zhong L, Ma Z, Sui Y, Xie J, Liu X, Ma T. Antifungal effects of alantolactone on Candida albicans: An in vitro study. Biomed Pharmacother 2022; 149:112814. [PMID: 35290888 DOI: 10.1016/j.biopha.2022.112814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
The human fungal pathogen Candida albicans can cause many kinds of infections, including biofilm infections on medical devices, while the available antifungal drugs are limited to only a few. In this study, alantolactone (Ala) demonstrated antifungal activities against C. albicans, as well as other Candida species, with a MIC of 72 μg/mL. Ala could also inhibit the adhesion, yeast-to-hyphal transition, biofilm formation and development of C. albicans. The exopolysaccharide of biofilm matrix and extracellular phospholipase production could also be reduced by Ala treatment. Ala could increase permeability of C. albicans cell membrane and ROS contribute to the anti-biofilm activity of Ala. Overall, the present study suggests that Ala may provide a promising candidate for developing antifungal drugs against C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
10
|
Effect of Dough-Related Parameters on the Antimold Activity of Wickerhamomyces anomalus Strains and Mold-Free Shelf Life of Bread. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to assess the antimold capacity of three Wickerhamomyces anomalus strains, both in vitro and in situ, and to identify the responsible volatile organic compounds. For that purpose, two substrates were applied; the former included brain heart infusion broth, adjusted to six initial pH values (3.5, 4.0, 4.5, 5.0, 5.5, 6.0) and supplemented with six different NaCl concentrations (0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%), while the latter was a liquid dough, fortified with the six aforementioned NaCl concentrations. After a 24 h incubation at 30 °C, the maximum antimold activity was quantified for all strains at 5120 AU/mL, obtained under different combinations of initial pH value and NaCl concentration. A total of twelve volatile compounds were detected; ethanol, ethyl acetate, isoamyl alcohol and isoamyl acetate were produced by all strains. On the contrary, butanoic acid-ethyl ester, acetic acid-butyl ester, ethyl caprylate, 3-methyl-butanoic acid, 2,4-di-tert-butyl-phenol, benzaldehyde, nonanal and octanal were occasionally produced. All compounds exhibited antimold activity; the lower MIC was observed for 2,4-di-tert-butyl-phenol and benzaldehyde (0.04 and 0.06 μL/mL of headspace, respectively), while the higher MIC was observed for butanoic acid-ethyl ester and ethyl caprylate (5.14 and 6.24 μL/mL of headspace, respectively). The experimental breads made with W. anomalus strains LQC 10353, 10346 and 10360 gained an additional period of 9, 10 and 30 days of mold-free shelf life, compared to the control made by commercially available baker’s yeast. Co-culture of the W. anomalus strains with baker’s yeast did not alter the shelf-life extension, indicating the suitability of these strains as adjunct cultures.
Collapse
|
11
|
Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Arch Microbiol 2021; 204:34. [PMID: 34927220 DOI: 10.1007/s00203-021-02698-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The discovery of new antimicrobials is the prime target in the fight against antimicrobial resistance. The continuous search for new lead compounds from bacteria of untapped and extreme ecosystems such as mangroves is currently being undertaken. This study describes the metabolite profiling of the Streptomyces euryhalinus culture extract. Previously, Streptomyces euryhalinus was isolated from the mangrove forest of Indian Sundarbans as a novel microorganism. The antimicrobial mechanism of action of Streptomyces euryhalinus culture extract against bacteria and fungi has been analyzed in this study. The gas chromatography-mass spectrometry profile of the ethyl acetate extract bacterial culture displayed the presence of several bioactive compounds with antibacterial, antifungal and antioxidant properties. The bacterial extract showed significant antimicrobial activity in terms of zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration. Moreover, substantial capacity to alter or damage the inner membrane as well as the outer membrane of the gram-positive and gram-negative bacteria was exhibited by the bacterial extract. This membrane alteration or damaging potential of the extract is the mechanism of action. Biofilm formation inhibition property of the extract also signified its antimicrobial action, and possible use against resistant bacteria. The extract has shown notable activity against the virulence factors like prevention of hemolysis in bacteria and inhibition of secreted aspartyl proteinase in fungi. These functions of the bacterial extract have revealed the extent of its action in the prevention of infection by terminating the secretory virulence factors and by damaging the tissue.
Collapse
|
12
|
Enhancement of the Antioxidant and Antimicrobial Activities of Porphyran through Chemical Modification with Tyrosine Derivatives. Molecules 2021; 26:molecules26102916. [PMID: 34068969 PMCID: PMC8156949 DOI: 10.3390/molecules26102916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.
Collapse
|
13
|
Chen Y, Shukurova MK, Asikin Y, Kusano M, Watanabe KN. Characterization of Volatile Organic Compounds in Mango Ginger ( Curcuma amada Roxb.) from Myanmar. Metabolites 2020; 11:21. [PMID: 33396947 PMCID: PMC7824228 DOI: 10.3390/metabo11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Curcuma amada Roxb. (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones: ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, β-bisabolene, teresantalol, β-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5-27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.
Collapse
Affiliation(s)
- Yanhang Chen
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; (Y.C.); (M.K.S.)
| | - Musavvara Kh. Shukurova
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; (Y.C.); (M.K.S.)
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
| | - Miyako Kusano
- Faculty of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuo N. Watanabe
- Faculty of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate, an antifungal metabolite of Alcaligenes faecalis strain MT332429 optimized through response surface methodology. Appl Microbiol Biotechnol 2020; 104:10755-10768. [PMID: 33090249 DOI: 10.1007/s00253-020-10962-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
In the current study, a soil bacterial isolate F2 expressed a significant antagonistic activity against Candida albicans ATCC 10231 and Aspergillus niger clinical isolate confirmed through cross streak, dual culture, and agar well diffusion methods. The isolate F2 was identified using phenotypic and molecular approaches as Alcaligenes (A.) faecalis MT332429. The identification and structural characterization of the antifungal compound was performed using advanced spectroscopic techniques including UV absorbance, 1H and 13C NMR and 2D NMR (COSY, HSQC, and HMBC) and was identified as octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate. Response surface methodology (RSM) using a central composite design was employed to optimize the nutritional and cultural variables affecting the antifungal metabolite yield. The optimum conditions were found to be temperature 30 °C, agitation 150 rpm, glucose 1 g/l, peptone 2 g/l, and pH 8. A confirmatory experiment was performed to assess the accuracy of the optimization procedure, where an increase in the antifungal metabolite production by about 2.48-fold was obtained. To the best of our knowledge, this is the first report of octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate recovered from the culture broth of A. faecalis MT332429 with a promising antifungal activity along with its optimized production through RSM. KEY POINTS: • A novel soil bacterial isolate, F2, identified as Alcaligenes faecalis MT332429, showed significant antagonistic activity against Candida albicans ATCC 10231 and Aspergillus niger clinical isolate. • This stable fungicidal extracellular metabolite was identified as octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate. • Optimization using central composite design resulted in 2.48-fold increase in production reaching 213.82 μg/ml.
Collapse
|
15
|
Wu J, Wu D, Zhao Y, Si Y, Mei L, Shao J, Wang T, Yan G, Wang C. Sodium New Houttuyfonate Inhibits Candida albicans Biofilm Formation by Inhibiting the Ras1-cAMP-Efg1 Pathway Revealed by RNA-seq. Front Microbiol 2020; 11:2075. [PMID: 32983053 PMCID: PMC7477049 DOI: 10.3389/fmicb.2020.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
Here, we aim to investigate the antifungal effect and mechanism of action of sodium new houttuyfonate (SNH) against Candida albicans. Microdilution analysis results showed that SNH possesses potent inhibitory activity against C. albicans SC5314, with a MIC80 of 256 μg/mL. Furthermore, we found that SNH can effectively inhibit the initial adhesion of C. albicans. Inverted microscopy, crystal violet staining, scanning electron microscopy and confocal laser scanning microscopy results showed that morphological changes during the transition from yeast to hypha and the biofilm formation of C. albicans are repressed by SNH treatment. We also found that SNH can effectively inhibit the biofilm formation of clinical C. albicans strains (Z103, Z3044, Z1402, and Z1407) and SNH in combination with fluconazole, berberine chloride, caspofungin and itraconazole antifungal agents can synergistically inhibit the biofilm formation of C. albicans. Eukaryotic transcriptome sequencing and qRT-PCR results showed that SNH treatment resulted in significantly down-regulated expression in several biofilm formation related genes in the Ras1-cAMP-Efg1 pathway (ALS1, ALA1, ALS3, EAP1, RAS1, EFG1, HWP1, and TEC1) and significantly up-regulated expression in yeast form-associated genes (YWP1 and RHD1). We also found that SNH can effectively reduce the production of key messenger cAMP in the Ras1-cAMP-Efg1 pathway. Furthermore, using Galleria mellonella as an in vivo model we found that SNH can effectively treat C. albicans infection in vivo. Our presented results suggest that SNH exhibits potential antibiofilm effects related to inhibiting the Ras1-cAMP-Efg1 pathway in the biofilm formation of C. albicans.
Collapse
Affiliation(s)
- Jiadi Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Yeye Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanqing Si
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Tianming Wang
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Guiming Yan
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| |
Collapse
|
16
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 PMCID: PMC7418596 DOI: 10.3389/fmicb.2020.01668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO’s critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
17
|
Turchetti G, Garzoli S, Laghezza Masci V, Sabia C, Iseppi R, Giacomello P, Tiezzi A, Ovidi E. Antimicrobial Testing of Schinus molle (L.) Leaf Extracts and Fractions Followed by GC-MS Investigation of Biological Active Fractions. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25081977. [PMID: 32340306 PMCID: PMC7221938 DOI: 10.3390/molecules25081977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
Abstract
Schinus molle (L.) is a dioecious plant of the Anacardiaceae family, originating in South America and currently widespread in many regions throughout the world. In this work leaf extracts and derived low-pressure column chromatography (LPCC) fractions of S. molle L. male and female plants were investigated for the antimicrobial activity. Leaf extracts were tested on microbes Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Bacillus subtilis. Furthermore, the extracts showing antimicrobial activity were fractionated by LPCC and the obtained fractions tested on the same microorganism strains. Positive fractions were investigated by gas-chromatography/mass spectrometry (GC-MS) and were seen to be rich in sesquiterpenes, sesquiterpenoids and other terpens. The obtained effects highlighted the antimicrobial properties of S. molle (L.) leaf compounds and revealed their importance as a source of bioactive molecules of potential pharmaceutical interest. To our knowledge, this is the first paper reporting investigations on the chemical composition of the extracts and derived positive fractions from Schinus molle (L.) plants grown in central Italy
Collapse
Affiliation(s)
- Giovanni Turchetti
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (G.T.); (V.L.M.); (A.T.); (E.O.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-064-991-3611
| | - Valentina Laghezza Masci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (G.T.); (V.L.M.); (A.T.); (E.O.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.S.); (R.I.)
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.S.); (R.I.)
| | - Pierluigi Giacomello
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy;
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (G.T.); (V.L.M.); (A.T.); (E.O.)
| | - Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (G.T.); (V.L.M.); (A.T.); (E.O.)
| |
Collapse
|
18
|
Zhao F, Wang P, Lucardi RD, Su Z, Li S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins (Basel) 2020; 12:E35. [PMID: 31935944 PMCID: PMC7020479 DOI: 10.3390/toxins12010035] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common toxic secondary metabolite produced by various groups of organisms. The biosources and bioactivities of 2,4-DTBP have been well investigated, but the phenol has not been systematically reviewed. This article provides a comprehensive review of 2,4-DTBP and its analogs with emphasis on natural sources and bioactivities. 2,4-DTBP has been found in at least 169 species of bacteria (16 species, 10 families), fungi (11 species, eight families), diatom (one species, one family), liverwort (one species, one family), pteridiphyta (two species, two families), gymnosperms (four species, one family), dicots (107 species, 58 families), monocots (22 species, eight families), and animals (five species, five families). 2,4-DTBP is often a major component of violate or essential oils and it exhibits potent toxicity against almost all testing organisms, including the producers; however, it is not clear why organisms produce autotoxic 2,4-DTBP and its analogs. The accumulating evidence indicates that the endocidal regulation seems to be the primary function of the phenols in the producing organisms.
Collapse
Affiliation(s)
- Fuqiang Zhao
- College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, Liaoning, China;
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Ping Wang
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| | - Rima D. Lucardi
- Southern Research Station, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA;
| | - Zushang Su
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| | - Shiyou Li
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| |
Collapse
|
19
|
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv 2020; 10:18451-18468. [PMID: 35685616 PMCID: PMC9122625 DOI: 10.1039/d0ra01484b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of potent antibiotics. In this review, we seek to give an overview of earlier reviews and molecular and structural understanding of bacteria resistance to antibiotics, while focusing on the recent bioinformatics approach to antibacterial drug discovery. Understanding the evolution of antibiotic resistance at the molecular level as a functional tool for bioinformatic-based drug design.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Centre for Trans-Sahara Disease, Vaccine and Drug Research
- Ibrahim Badamasi Babangida University
- Lapai
- Nigeria
| | - Abubakar A. Falaki
- Department of Microbiology
- School of Agriculture and Applied Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University Zaria
- Nigeria
| | - Monsurat M. Lawal
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu Natal
- Durban 4001
- South Africa
| |
Collapse
|
20
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
21
|
Padmavathi AR, P SM, Das A, Priya A, Sushmitha TJ, Pandian SK, Toleti SR. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. BIOFOULING 2020; 36:56-72. [PMID: 31997658 DOI: 10.1080/08927014.2020.1715371] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
The effects of two prominent copper oxide nanoparticles (CuO-NP and Cu2O-NP), with the oxidation state of Cu++ (cupric) and Cu+ (cuprous), on Candida albicans were evaluated. CuO-NP and Cu2O-NP were synthesized and characterized by XRD, FESEM, HR-TEM and Zeta potential. At sub-MIC (50 µg ml-1), both cupric and cuprous oxide NPs prevented yeast-to-hyphae switching and wrinkling behaviour in C. albicans. The mechanism for the antifungal action of the two NPs differed; CuO-NP significantly elicited reactive oxygen species, whereas membrane damage was more pronounced with Cu2O-NP. Real time PCR analysis revealed that CuO-NP suppressed the morphological switching of yeast-to-hyphae by down-regulating cph1, hst7 and ras1 and by up-regulation of the negative regulator tup1. In comparison, Cu2O-NP resulted in down-regulation of ras1 and up-regulation of the negative regulators nrg1 and tup1. Between the two NPs, CuO exhibited increased antifungal activity due to its stable oxidation state (Cu++) and its smaller dimensions compared with Cu2O-NP.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
| | - Sriyutha Murthy P
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Life sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Arindam Das
- Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
- Chemical sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | | | - Subba Rao Toleti
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Life sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
22
|
Anand S, Deighton M, Livanos G, Pang ECK, Mantri N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci Rep 2019; 9:18197. [PMID: 31796803 PMCID: PMC6890684 DOI: 10.1038/s41598-019-54679-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for new effective antifungal agents suitable for the treatment of superficial skin infections, since acquired resistance of fungi to currently available agents is increasing. The antifungal activity of mono-floral Agastache honey and commercially available honeys were tested against dermatophytes (T. mentagrophytes and T. rubrum) and C. albicans (ATCC 10231 and a clinical isolate) by agar well diffusion and micro-dilution (AWD and MD). In AWD and MD assays, Agastache honey was effective at 40% concentration against dermatophytes (zone diameter, 19.5–20 mm) and C. albicans with the same MIC and MFC values indicating fungicidal activity. Tea tree honey was effective at 80% concentration (zone diameter, 14 mm) against dermatophytes and at 40% concentration against T. mentagrophytes and C. albicans. Manuka was effective at 80% concentration only against T. mentagrophytes (zone diameter, 12 mm) and at 40% against T. rubrum and C. albicans with fungistatic activity. Similar to the AWD results, Jelly bush, Super Manuka, and Jarrah showed no activity against dermatophytes but showed some activity against C. albicans. Headspace volatiles of six honeys were isolated by SPME and identified by GC-MS. The characteristic chemical markers for each honey were as follows: Agastache- Phenol, 2,4-bis(1,1-dimethylethyl) and Estragole; Manuka and Tea-tree- Acetanisole and Methyl 3,5-dimethoxybenzoate; Jelly bush- Linalool and Nonanal; Super Manuka- Methyl 3,5-dimethoxybenzoate and Nonanal; Jarrah- Isophorone and Nonanoic acid. Overall, analysis of the bioactive compound content and antifungal activity of Agastache honey indicated possible use as an antifungal agent for management of superficial fungal infections.
Collapse
Affiliation(s)
- Sushil Anand
- The Pangenomics Group, School of Science, RMIT University, Melbourne, 3083, Victoria, Australia.
| | - Margaret Deighton
- The Pangenomics Group, School of Science, RMIT University, Melbourne, 3083, Victoria, Australia
| | - George Livanos
- Kenkay Pharmaceuticals Pty Ltd., Smeaton Grange, 2567, NSW, Australia
| | - Edwin Chi Kyong Pang
- The Pangenomics Group, School of Science, RMIT University, Melbourne, 3083, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, 3083, Victoria, Australia.
| |
Collapse
|
23
|
Zhang M, Yan H, Lu M, Wang D, Sun S. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence. Int J Antimicrob Agents 2019; 55:105804. [PMID: 31605727 DOI: 10.1016/j.ijantimicag.2019.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
The incidence of fungal infections has increased continuously in recent years, and drug resistance, especially resistance to fluconazole (FLC), has emerged. To overcome this challenge, research on the antifungal activities of non-antifungal agents has gained more attention. In this study, we determined the anti-Candida activity of ribavirin (RBV), an antiviral drug commonly used in the clinic, and found that RBV displayed potent antifungal activity when used alone or in combination with FLC in vitro and in vivo. In vitro, the MIC80 values of RBV were 2-4 µg/mL for FLC-susceptible Candida albicans and 8 µg/mL for FLC-resistant C. albicans. When RBV at a dose of 1 µg/mL was combined with FLC, significant synergistic effects were exhibited against FLC-resistant C. albicans, and the MICs of FLC decreased from >512 µg/mL to 0.25-1 µg/mL. Synergism was also exhibited against C. albicans biofilms. In vivo, RBV plus FLC significantly improved the survival of infected Galleria mellonella larvae compared with the FLC-treated group over a 4-day period and attenuated the damage of FLC-resistant C. albicans to G. mellonella larvae tissue. Furthermore, mechanistic studies indicated that the antifungal effects of RBV used alone or in combination with FLC might be associated with inhibition of biofilm formation, reduced extracellular phospholipase activity and inhibition of hyphal growth, but is not related to promotion of FLC uptake and inhibition of FLC efflux. These results provide a promising direction for overcoming drug resistance and for expanding the clinical application of existing drugs.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China; Department of Pharmacy, Tai'an Municipal Hospital, Tai'an, Shandong Province, China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China
| | - Mengjiao Lu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
24
|
Prasath KG, Sethupathy S, Pandian SK. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics 2019; 208:103503. [DOI: 10.1016/j.jprot.2019.103503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023]
|
25
|
Yang L, Liu X, Sui Y, Ma Z, Feng X, Wang F, Ma T. Lycorine Hydrochloride Inhibits the Virulence Traits of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1851740. [PMID: 31275963 PMCID: PMC6582861 DOI: 10.1155/2019/1851740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
The human opportunistic fungal pathogen Candida albicans causes a severe health burden while the biofilms formed by C. albicans present a kind of infections that are hard to cure, highlighting the pressing need for new antifungal drugs against C. albicans. This study was to explore the antifungal activities of lycorine hydrochloride (LH) against C. albicans. The minimal inhibitory concentration (MIC) of LH against C. albicans SC5314 was 64 μM. Below its MIC, LH demonstrated antivirulence property by suppressing adhesion, filamentation, biofilm formation, and development, as well as the production of extracellular phospholipase and exopolymeric substances (EPS). The cytotoxicity of LH against mammalian cells was low, with half maximal inhibitory concentrations (IC50) above 256 μM. Moreover, LH showed a synergistic effect with AmB, although its interaction with fluconazole, as well as caspofungin, was indifferent. Thus, our study reports the potential use of LH, alone or in combination with current antifungal drugs, to fight C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xuechao Feng
- College of Life Science, Northeast Normal University, Changchun 130024, China
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
26
|
Dioscin Inhibits Virulence Factors of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4651726. [PMID: 30598996 PMCID: PMC6287159 DOI: 10.1155/2018/4651726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Candida albicans infections present a heavy burden upon public health, with only a few drugs available, while biofilms formed by C. albicans worsen this situation. Dioscin has antitumor, anti-inflammatory, and hepatoprotective effects, and this study was conducted to evaluate the effects of dioscin on the biofilm formation and development, as well as other virulence factors of C. albicans such as morphological transition, adhesion, and extracellular secreted phospholipase. Our results showed dioscin inhibits these virulence factors and has low cytotoxicity against mammalian cells. Considering protective effects of dioscin against damage on liver and kidney, dioscin may be used as a potential candidate for antifungal development.
Collapse
|
27
|
Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Front Microbiol 2018; 9:2835. [PMID: 30534118 PMCID: PMC6275436 DOI: 10.3389/fmicb.2018.02835] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
In recent decades, fungal infections have incredibly increased with Candida genus as the major cause of morbidity and mortality in hospitalized and immunocompromised patients. Most of the Candida species are proficient in biofilm formation on implanted medical devices as well as human tissues. Biofilm related Candida infections are very difficult to treat using common antifungal agents owing to their increased drug resistance. To address these issues, the present study investigated the antibiofilm and antivirulent properties of Syzygium cumini derived quinic acid in combination with known antifungal compound undecanoic acid. Initially, antibiofilm potential of S. cumini leaf extract was assessed and the active principles were identified through gas chromatography and mass spectrometry analysis. Among the compounds identified, quinic acid was one of the major compounds. The interaction between quinic acid and undecanoic acid was found to be synergistic in the Fractional inhibitory concentration index (≤0.5). Results of in vitro assays and gene expression analysis suggested that the synergistic combinations of quinic acid and undecanoic acid significantly inhibited virulence traits of Candida spp. such as the biofilm formation, yeast-to-hyphal transition, extracellular polymeric substances production, filamentation, secreted hydrolases production and ergosterol biosynthesis. In addition, result of in vivo studies using Caenorhabditis elegans demonstrated the non-toxic nature of QA-UDA combination and antivirulence effect against Candida spp. For the first time, synergistic antivirulence ability of quinic acid and undecanoic acid was explored against Candida spp. Thus, results obtained from the present study suggest that combination of phytochemicals might be used an alternate therapeutic strategy for the prevention and treatment of biofilm associated Candida infection.
Collapse
|
28
|
Antifungal Effects of Saponin Extract from Rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6095307. [PMID: 29853962 PMCID: PMC5949152 DOI: 10.1155/2018/6095307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023]
Abstract
Candida albicans is the most common fungal pathogen causing serious diseases, while there are only a paucity of antifungal drugs. Therefore, the present study was performed to investigate the antifungal effects of saponin extract from rhizomes of Dioscorea panthaica Prain et Burk (Huangshanyao Saponin extract, HSE) against C. albicans. HSE inhibits the planktonic growth and biofilm formation and development of C. albicans. 16–64 μg/mL of HSE could inhibit adhesion to polystyrene surfaces, transition from yeast to filamentous growth, and production of secreted phospholipase and could also induce endogenous reactive oxygen species (ROS) production and disrupt cell membrane in planktonic cells. Inhibitory activities against extracellular exopolysaccharide (EPS) production and ROS production in preformed biofilms could be inhibited by 64–256 μg/mL of HSE. Cytotoxicity against human Chang's liver cells is low, with a half maximal inhibitory concentration (IC50) of about 256 μg/mL. In sum, our study suggested that HSE might be used as a potential antifungal therapeutic against C. albicans.
Collapse
|
29
|
Yang LF, Liu X, Lv LL, Ma ZM, Feng XC, Ma TH. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. J Mycol Med 2018; 28:36-44. [PMID: 29477784 DOI: 10.1016/j.mycmed.2017.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the antifungal activity of dracorhodin perchlorate (DP) against planktonic growth and virulence factors of Candida albicans. METHODS Microdilution method based on CLSI-M27-A3 was used to test the antifungal susceptibility of DP. The activity of DP against biofilm formation and development of C. albicans was quantified by XTT assay and visualized by confocal laser scanning microscope. The effect of DP on the morphological transition of C. albicans induced by four kinds of hyphal-inducing media at 37°C for 4hours was observed under microscope. The rescue experiment by adding exogenous cAMP analog was performed to investigate the involvement of cAMP in the yeast to hyphal transition and biofilm formation of C. albicans. Egg yolk emulsion agar was used to determine the inhibition of DP on the phospholipase production of C. albicans. Human JEG-3 and HUVEC cell lines, as well as the nematode Caenorhabditis elegans was used to assess the toxicity of DP. RESULTS The minimum inhibitory concentration (MIC) of DP is 64μM while the antifungal activity was fungistatic. As low as a concentration at 16μM, DP could inhibit the yeast to hyphal transition in liquid RPMI-1640, Spider, GlcNAc and 10% FBS-containing Sabouroud Dextrose medium, as well as on the solid spider agar. Exogenous cAMP analog could rescue part of biofilm viability of C. albicans. DP could inhibit the production of phospholipase. The toxicity of DP against human cells and C. elegans is low. CONCLUSION DP could inhibit the planktonic growth and virulent factors in multiple stages, such as yeast to hyphal transition, adhesion, biofilm formation and production of phospholipase of C. albicans.
Collapse
Affiliation(s)
- L F Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130024, China.
| | - X Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China.
| | - L L Lv
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Z M Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University Changchun 130041, China.
| | - X C Feng
- College of Life Science, Northeast Normal University, Changchun 130041, China.
| | - T H Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
30
|
Subramenium GA, Swetha TK, Iyer PM, Balamurugan K, Pandian SK. 5-hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiol Res 2018; 207:19-32. [DOI: 10.1016/j.micres.2017.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/20/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
|
31
|
Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida
spp. J Basic Microbiol 2018; 58:343-357. [DOI: 10.1002/jobm.201700529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - Vivekanandham Amsa Devi
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | | | | | | |
Collapse
|
32
|
Shao J, Cui Y, Zhang M, Wang T, Wu D, Wang C. Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions. PHARMACEUTICAL BIOLOGY 2017; 55:355-359. [PMID: 27931143 PMCID: PMC6130526 DOI: 10.1080/13880209.2016.1237977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Fluconazole resistance is an intractable problem of treating Candida albicans, calling for more antifungal agents to enhance the activity of fluconazole. OBJECTIVE This work investigates the anti-C. albicans activities of sodium houttuyfonate (SH) and/or fluconazole and the associated mechanism. MATERIALS AND METHODS The minimum inhibitory concentrations (MICs) of SH and fluconazole both ranging from 0.5 to 1024 μg/mL were determined by broth microdilution method in 19 C. albicans isolates, and their fractional inhibitory concentration index (FICI) was evaluated by checkerboard assay. After MICSH and/or MICfluconazole treatments, the expressions of IFD6, PHR1, ZAP1, ADH5, BGL2, XOG1 and FKS1 were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in C. albicans 1601. RESULTS AND CONCLUSION The MICs of SH alone ranged from 32 to 256 μg/mL and decreased 2-16-fold in combination. SH showed strong synergism with fluconazole with FICI <0.13-0.5. In C. albicans 1601, we observed that (i) the expression of the seven genes increased notably in a range between 3.71- and 12.63-fold (p < 0.05) when SH was used alone, (ii) the combined use of SH and fluconazole slightly inhibited the expression of IFD6 and PHR1 by 1.23- and 1.35-fold (p > 0.05), but promoted evidently the expression of ZAP1, ADH5, XOG1 and FKS1 by 1.98-, 3.56-, 4.10- and 2.86-fold (p < 0.05). The results suggested SH to be a potential synergist to enhance the antifungal activity of fluconazole in C. albicans resistant isolates, and the underlying mechanism may be associated with β-1,3-glucan synthesis and transportation.
Collapse
Affiliation(s)
- Jing Shao
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - YanYan Cui
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - MengXiang Zhang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - TianMing Wang
- Laboratory of Biochemistry and Molecular Biology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - DaQiang Wu
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - ChangZhong Wang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
33
|
Wang J, Nong XH, Amin M, Qi SH. Hygrocin C from marine-derived Streptomyces sp. SCSGAA 0027 inhibits biofilm formation in Bacillus amyloliquefaciens SCSGAB0082 isolated from South China Sea gorgonian. Appl Microbiol Biotechnol 2017; 102:1417-1427. [PMID: 29189900 DOI: 10.1007/s00253-017-8672-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 11/25/2022]
Abstract
Several ansamycins have been reported to inhibit bacterial biofilm formation and accelerate the eradication of developed biofilms, but little is known about the effect of hygrocin C, an ansamycin, on bacterial biofilm formation. Here, hygrocin C was isolated from the marine-derived Streptomyces sp. SCSGAA 0027 and reported for the first time to be capable of inhibiting the biofilm formation of Staphylococcus aureus and Bacillus amyloliquefaciens SCSGAB0082 with the production of anti-microbial lipopeptides from South China Sea gorgonian Subergorgia suberosa at concentrations of less than minimum inhibitory concentrations. Moreover, hygrocin C also promoted the eradication of developed biofilms, affected the biofilm architecture, and lowered the extracellular polymeric matrix formation, cell motility, and surface hydrophobicity in B. amyloliquefaciens, which was in accordance with the inhibition of biofilm formation. Furthermore, transcriptome analysis revealed that hygrocin C altered the transcripts of several genes associated with bacterial chemotaxis and flagellar, two-component system and the synthesis of arginine and histidine, which are important for bacterial biofilm formation. In conclusion, hygrocin C could be used as a potential biofilm inhibitor against S. aureus and B. amyloliquefaciens. But further genetic investigations are needed to provide more details for elucidation of the molecular mechanisms responsible for the effects of hygrocin C on B. amyloliquefaciens biofilm formation.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Muhammad Amin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shu-Hua Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
34
|
Penicillenols from a deep-sea fungus Aspergillus restrictus inhibit Candida albicans biofilm formation and hyphal growth. J Antibiot (Tokyo) 2017. [DOI: 10.1038/ja.2017.45 pmid: 283776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Wang J, Yao QF, Amin M, Nong XH, Zhang XY, Qi SH. Penicillenols from a deep-sea fungus Aspergillus restrictus inhibit Candida albicans biofilm formation and hyphal growth. J Antibiot (Tokyo) 2017; 70:763-770. [PMID: 28377634 DOI: 10.1038/ja.2017.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
Abstract
Penicillenols (A1, A2, B1, B2, C1 and C2) were isolated from Aspergillus restrictus DFFSCS006, and could differentially inhibit biofilm formation and eradicate pre-developed biofilms of Candida albicans. Their structure-bioactivity relationships suggested that the saturation of hydrocarbon chain at C-8, R-configuration of C-5 and trans-configuration of the double bond between C-5 and C-6 of pyrrolidine-2,4-dione unit were important for their anti-biofilm activities. Penicillenols A2 and B1 slowed the hyphal growth and suppressed the transcripts of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4. Moreover, penicillenols A2 and B1 were found to act synergistically with amphotericin B against C. albicans biofilm formation.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qi-Feng Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Amin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Yong Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu-Hua Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| |
Collapse
|
36
|
Muthamil S, Pandian SK. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|