1
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
4
|
Jeong SH, Lee HS, Chung SJ, Yoo HS, Jung JH, Baik K, Baik JS, Sohn YH, Lee PH. Association of cholesterol level with dopamine loss and motor deficits in Parkinson disease: A cross-sectional study. Eur J Neurol 2023; 30:107-115. [PMID: 36209467 DOI: 10.1111/ene.15592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Cholesterol is vital in neuronal function; however, the influence of cholesterol levels on parkinsonism is unclear. This study investigated the relationship between baseline total cholesterol (TC) levels, dopamine loss, and motor symptoms in drug-naïve Parkinson disease (PD). METHODS This cross-sectional study enrolled 447 drug-naïve patients with PD who underwent dopamine transporter (DAT) imaging. Multivariate linear regression was used to investigate the effect of cholesterol levels on Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) total score and each subscore after adjusting for the covariates. An interaction analysis was performed to examine the interaction between TC levels and statin use on the UPDRS-III scores. RESULTS No significant correlation was found between TC levels and DAT availability after adjusting for potential confounders. Multivariate linear regression showed that TC levels were significantly and negatively associated with the UPDRS-III total score (β = -0.116, p = 0.013) and bradykinesia subscore (β = -0.145, p = 0.011). Dichotomized analysis according to TC levels showed that TC levels were significantly associated with UPDRS-III total score, and rigidity, bradykinesia, and axial subscores only in the low TC group. There was an interaction effect between TC levels and statin use for the axial subscores (β = -0.523, p = 0.025). Subgroup analysis showed that TC levels were significantly and negatively associated with the axial subscore in statin users; however, no association was found in statin nonusers. CONCLUSIONS This study suggests that TC levels affect parkinsonian motor symptoms, especially in subjects with low cholesterol status, whereas the severity of axial motor symptoms is negatively associated with TC levels only in statin users.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Inje Universitiy Busan Paik Hospital, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Sam Baik
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
7
|
Membrane lipid organization and nicotinic acetylcholine receptor function: A two-way physiological relationship. Arch Biochem Biophys 2022; 730:109413. [DOI: 10.1016/j.abb.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
8
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
9
|
Free Cholesterol Affects the Function and Localization of Human Na +/Taurocholate Cotransporting Polypeptide (NTCP) and Organic Cation Transporter 1 (OCT1). Int J Mol Sci 2022; 23:ijms23158457. [PMID: 35955590 PMCID: PMC9368832 DOI: 10.3390/ijms23158457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with obesity. They are accompanied by increased levels of free cholesterol in the liver. Most free cholesterol resides within the plasma membrane. We assessed the impact of adding or removing free cholesterol on the function and localization of two hepatocellular uptake transporters: the Na+/taurocholate cotransporting polypeptide (NTCP) and the organic cation transporter 1 (OCT1). We used a cholesterol-MCD complex (cholesterol) to add cholesterol and methyl-β-cyclodextrin (MCD) to remove cholesterol. Our results demonstrate that adding cholesterol decreases NTCP capacity from 132 ± 20 to 69 ± 37 µL/mg/min and OCT1 capacity from 209 ± 66 to 125 ± 26 µL/mg/min. Removing cholesterol increased NTCP and OCT1 capacity to 224 ± 65 and 279 ± 20 µL/mg/min, respectively. In addition, adding cholesterol increased the localization of NTCP within lipid rafts, while adding or removing cholesterol increased OCT1 localization in lipid rafts. These results demonstrate that increased cholesterol levels can impair NTCP and OCT1 function, suggesting that the free cholesterol content of the liver can alter bile acid and drug uptake into the liver. This could explain the increased plasma bile acid levels in NAFLD and NASH patients and potentially lead to altered drug disposition.
Collapse
|
10
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
11
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021; 23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
Collapse
Affiliation(s)
- Héctor Buena Maizón
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
13
|
Paz ML, Barrantes FJ. Cholesterol in myasthenia gravis. Arch Biochem Biophys 2021; 701:108788. [PMID: 33548213 DOI: 10.1016/j.abb.2021.108788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The cholinergic neuromuscular junction is the paradigm peripheral synapse between a motor neuron nerve ending and a skeletal muscle fiber. In vertebrates, acetylcholine is released from the presynaptic site and binds to the nicotinic acetylcholine receptor at the postsynaptic membrane. A variety of pathologies among which myasthenia gravis stands out can impact on this rapid and efficient signaling mechanism, including autoimmune diseases affecting the nicotinic receptor or other synaptic proteins. Cholesterol is an essential component of biomembranes and is particularly rich at the postsynaptic membrane, where it interacts with and modulates many properties of the nicotinic receptor. The profound changes inflicted by myasthenia gravis on the postsynaptic membrane necessarily involve cholesterol. This review analyzes some aspects of myasthenia gravis pathophysiology and associated postsynaptic membrane dysfunction, including dysregulation of cholesterol metabolism in the myocyte brought about by antibody-receptor interactions. In addition, given the extensive therapeutic use of statins as the typical cholesterol-lowering drugs, we discuss their effects on skeletal muscle and the possible implications for MG patients under chronic treatment with this type of compound.
Collapse
Affiliation(s)
- Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA, CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
15
|
Barrantes FJ. Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis. Neural Regen Res 2021; 16:242-246. [PMID: 32859770 PMCID: PMC7896218 DOI: 10.4103/1673-5374.290880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles. The classical form of this autoimmune disease is characterized by the presence of antibodies against the most abundant protein in the neuromuscular junction, the nicotinic acetylcholine receptor. Other variants of the disease involve autoimmune attack of non-receptor scaffolding proteins or enzymes essential for building or maintaining the integrity of this peripheral synapse. This review summarizes the participation of the above proteins in building the neuromuscular junction and the destruction of this cholinergic synapse by autoimmune aggression in myasthenia gravis. The review also covers the application of a powerful biophysical technique, superresolution optical microscopy, to image the nicotinic receptor in live cells and follow its motional dynamics. The hypothesis is entertained that anomalous nanocluster formation by antibody crosslinking may lead to accelerated endocytic internalization and elevated turnover of the receptor, as observed in myasthenia gravis.
Collapse
|
16
|
Borroni V, Kamerbeek C, Pediconi MF, Barrantes FJ. Lovastatin Differentially Regulates α7 and α4 Neuronal Nicotinic Acetylcholine Receptor Levels in Rat Hippocampal Neurons. Molecules 2020; 25:molecules25204838. [PMID: 33092257 PMCID: PMC7587943 DOI: 10.3390/molecules25204838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal α7 and α4β2 are the predominant nicotinic acetylcholine receptor (nAChR) subtypes found in the brain, particularly in the hippocampus. The effects of lovastatin, an inhibitor of cholesterol biosynthesis, on these two nAChRs endogenously expressed in rat hippocampal neuronal cells were evaluated in the 0.01-1 µM range. Chronic (14 days) lovastatin treatment augmented cell-surface levels of α7 and α4 nAChRs, as measured by fluorescence microscopy and radioactive ligand binding assays. This was accompanied in both cases by an increase in total protein receptor levels as determined by Western blots. At low lovastatin concentrations (10-100 nM), the increase in α4 nAChR in neurites was higher than in neuronal cell somata; the opposite occurred at higher (0.5-1 µM) lovastatin concentrations. In contrast, neurite α7 nAChRs raised more than somatic α7 nAChRs at all lovastatin concentrations tested. These results indicate that cholesterol levels homeostatically regulate α7 and α4 nAChR levels in a differential manner through mechanisms that depend on statin concentration and receptor localization. The neuroprotective pleomorphic effects of statins may act by reestablishing the homeostatic equilibrium.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - Constanza Kamerbeek
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - María F. Pediconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo, Buenos Aires 1600 C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
17
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
18
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
19
|
Hong Y, Liang X, Gilhus NE. AChR antibodies show a complex interaction with human skeletal muscle cells in a transcriptomic study. Sci Rep 2020; 10:11230. [PMID: 32641696 PMCID: PMC7343820 DOI: 10.1038/s41598-020-68185-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Acetylcholine receptor (AChR) antibodies are the most important pathogenic marker in patients with myasthenia gravis (MG). The antibodies bind to AChRs on the postsynaptic membrane, and this leads to receptor degradation, destruction, or functional blocking with impaired signal at the neuromuscular junction. In this study, we have explored the effects of AChR antibodies binding to mature human myotubes with agrin-induced AChR clusters and pathways relevant for AChR degradation using bulk RNA sequencing. Protein-coding RNAs and lncRNAs were examined by RNA sequencing analysis. AChR antibodies induced marked changes of the transcriptomic profiles, with over 400 genes differentially expressed. Cholesterol metabolic processes and extracellular matrix organization gene sets were influenced and represent AChR-trafficking related pathways. Muscle contraction and cellular homeostasis gene sets were also affected, and independently of AChR trafficking. Furthermore, we found changes in a protein-coding RNA and lncRNA network, where expression of lncRNA MEG3 correlated closely with protein-coding genes for cellular homeostasis. We conclude that AChR antibodies induce an active response in human skeletal muscle cells which affects key intra- and extracellular pathways.
Collapse
Affiliation(s)
- Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Xiao Liang
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Kumar GA, Chattopadhyay A. Statin-Induced Chronic Cholesterol Depletion Switches GPCR Endocytosis and Trafficking: Insights from the Serotonin 1A Receptor. ACS Chem Neurosci 2020; 11:453-465. [PMID: 31880914 DOI: 10.1021/acschemneuro.9b00659] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is a key regulatory mechanism adopted by G protein-coupled receptors (GPCRs) to modulate downstream signaling responses within a stringent spatiotemporal regime. Although the role of membrane lipids has been extensively studied in the context of the function, organization, and dynamics of GPCRs, their role in receptor endocytosis remains largely unexplored. Cholesterol, the predominant sterol in higher eukaryotes, plays a crucial role in maintaining the structure and organization of cell membranes and is involved in essential cellular processes in health and disease. The serotonin1A receptor is a representative GPCR involved in neuronal development and in neuropsychiatric disorders such as anxiety and depression. We recently combined quantitative flow cytometric and confocal microscopic approaches to demonstrate that the serotonin1A receptor undergoes clathrin-mediated endocytosis upon agonist stimulation and subsequently traffics along the endosomal recycling pathway. In this work, we show that statin-induced chronic cholesterol depletion switches the endocytic pathway of the serotonin1A receptor from clathrin- to caveolin-mediated endocytosis. Interestingly, under these conditions, a significant proportion of endocytosed receptors is rerouted toward lysosomal degradation. To the best of our knowledge, these results constitute one of the first comprehensive reports on the role of membrane cholesterol in GPCR endocytosis and trafficking. These results are significant in our overall understanding of the modulatory effects of membrane lipids on GPCR endocytosis and trafficking and could provide novel insight in developing therapeutic interventions against neuropsychiatric disorders such as depression.
Collapse
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
21
|
Mosqueira A, Camino PA, Barrantes FJ. Antibody‐induced crosslinking and cholesterol‐sensitive, anomalous diffusion of nicotinic acetylcholine receptors. J Neurochem 2019; 152:663-674. [DOI: 10.1111/jnc.14905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Alejo Mosqueira
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| | - Pablo A. Camino
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| |
Collapse
|
22
|
Kever L, Cherezova A, Zenin V, Negulyaev Y, Komissarchik Y, Semenova S. Downregulation of TRPV6 channel activity by cholesterol depletion in Jurkat T cell line. Cell Biol Int 2019; 43:965-975. [PMID: 31141273 DOI: 10.1002/cbin.11185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
Abstract
Transient receptor potential vanilloid 6 (TRPV6) channels are key players in calcium metabolism of healthy and cancerous cells. Nevertheless, the mechanisms controlling abundance of these channels in plasma membrane of the cells to regulate Ca2+ transport is still poorly understood. In this study, we provide the first evidence that TRPV6 calcium channels and Ca 2+ influx in Jurkat T cell line are modulated by cholesterol, a main lipid component of the plasma membrane. Using patch-clamp technique, we found that activity of TRPV6 channels decreased by cholesterol sequestration with methyl-β-cyclodextrin (MβCD). Continuous measurement of intracellular Ca2+ revealed a reduction of Ca2+ influx into Jurkat cells following cholesterol depletion. Immunofluorescence and immunoelectron microscopy analyses of MβCD-treated cells detected the lower surface expression of the TRPV6 proteins in comparison with control cells. In general, our data showed that cholesterol regulates TRPV6 channel activity and TRPV6-mediated Ca2+ influx in cells, apparently affecting the localization and density of the calcium channels in the plasma membrane of Jurkat T cells.
Collapse
Affiliation(s)
- Lyudmila Kever
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
| | - Alena Cherezova
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
- Department of Physiology, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, GA, USA
| | - Valery Zenin
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
| | - Yuri Negulyaev
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
| | - Yan Komissarchik
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, 194064, Saint-Petersburg, Russia
| |
Collapse
|
23
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
24
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
25
|
Saha AK, Mousavi M, Dallo SF, Evani SJ, Ramasubramanian AK. Influence of membrane cholesterol on monocyte chemotaxis. Cell Immunol 2017; 324:74-77. [PMID: 29241586 DOI: 10.1016/j.cellimm.2017.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Abstract
Cholesterol content influences several important physiological functions due to its effect on membrane receptors. In this work, we tested the hypothesis that cellular cholesterol alters chemotactic response of monocytes to Monocyte Chemoattractant Protein-1 (MCP-1) due to their effect on the receptor, CCR2. We used Methyl-β-cyclodextrin (MβCD) to alter the baseline cholesterol in human monocytic cell line THP-1, and evaluated their chemotactic response to MCP-1. Compared to untreated cells, cholesterol enrichment increased the number of monocytes transmigrated in response to MCP-1 while depletion had opposite effect. Using imaging flow cytometry, we established that these differences were due to alterations in expression levels, but not the surface distribution, of CCR2.
Collapse
Affiliation(s)
- Amit K Saha
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Marzieh Mousavi
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Shatha F Dallo
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shankar J Evani
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Anand K Ramasubramanian
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA 95192, USA.
| |
Collapse
|
26
|
Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:509-519. [PMID: 29154925 DOI: 10.1016/j.bbadis.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a chronic neurodegenerative disease affecting upper and lower motor neurons, with unknown aetiology. Lipid rafts, cholesterol enriched microdomains of the plasma membrane, have been linked to neurodegenerative disorders like ALS. The NMDA-receptor subcellular localization in lipid rafts is known to play many roles, from modulating memory strength to neurotoxicity. In this study, performed on the widely used G93A mouse model of ALS, we have shown an equal content of total membrane cholesterol in Control and G93A cortical cultures. Moreover, by electrophysiological studies, we have recorded NMDA- and AMPA-evoked currents which were not significantly different between the two neuronal populations. To study the role of membrane cholesterol on glutamate receptor functionality, we have analysed NMDA and AMPA receptors following cholesterol membrane depletion by methyl-β-cyclodextrin (MβCD). Interestingly, MβCD chronic treatment has provoked a significant reduction of NMDA-evoked currents in both cellular populations which was dose- and time-dependent but significantly higher in ALS neurons compared to Control. The different MβCD effect on NMDA-evoked currents was not due to a different membrane receptor subunit composition but seemed to cause in both neuronal populations a NMDA receptor membrane redistribution. MβCD treatment effect was receptor-specific since no alterations in the two neuronal populations were detected on AMPA receptors. These results lead us to speculate for an altered proteomic composition of lipid rafts in cortical mutated neurons and suggest the need for further studies on the lipid rafts composition and on their interaction with membrane receptors in ALS cortices.
Collapse
|
27
|
Vasilyeva NA, Murzina GB, Kireev II, Pivovarov AS. Influence of Membrane Receptor Lateral Diffusion on the Short-Term Depression of Acetylcholine-Induced Current in Helix Neurons. Cell Mol Neurobiol 2017; 37:1443-1455. [PMID: 28236056 PMCID: PMC11482138 DOI: 10.1007/s10571-017-0475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
We have studied how various drugs increasing the rate of nicotinic acetylcholine receptors (nAChRs) lateral diffusion affect the depression of ACh-induced current in land snail Helix lucorum neurons responsible for defensive behavior. The acetylcholine (ACh) iontophoretic application protocol imitated the behavioral habituation protocol for the intact animal. We found that the drugs decreasing cholesterol level in cell membranes as methyl-β-cyclodextrin 1 mM and Ro 48-8071 2 µM, and polyclonal antibodies to actin-binding proteins as spectrin 5 µg/ml and merlin 2.5 µg/ml have changed the dynamic of ACh-current depression. The nAChRs lateral diffusion coefficient was obtained by fluorescence recovery after photobleaching. A curve fitting model specially created for analysis of short-term choline sensitivity depression in snail neurons helped us evaluate separately the contribution of nAChRs lateral diffusion, their endocytosis and exocytosis to observed effects during electrophysiological experiments. Taken together, we hypothesize that nAChRs lateral diffusion plays an important role in the cellular correlate of habituation in land snail Helix lucorum neurons.
Collapse
Affiliation(s)
- Natalia A Vasilyeva
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Galina B Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Igor I Kireev
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, building 40, Moscow, Russia, 119234
| | - Arkady S Pivovarov
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234.
| |
Collapse
|
28
|
Ayee MAA, LeMaster E, Shentu TP, Singh DK, Barbera N, Soni D, Tiruppathi C, Subbaiah PV, Berdyshev E, Bronova I, Cho M, Akpa BS, Levitan I. Molecular-Scale Biophysical Modulation of an Endothelial Membrane by Oxidized Phospholipids. Biophys J 2017; 112:325-338. [PMID: 28122218 DOI: 10.1016/j.bpj.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The influence of two bioactive oxidized phospholipids on model bilayer properties, membrane packing, and endothelial cell biomechanics was investigated computationally and experimentally. The truncated tail phospholipids, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), are two major oxidation products of the unsaturated phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine. A combination of coarse-grained molecular dynamics simulations, Laurdan multiphoton imaging, and atomic force microscopy microindentation experiments was used to determine the impact of POVPC and PGPC on the structure of a multicomponent phospholipid bilayer and to assess the consequences of their incorporation on membrane packing and endothelial cell stiffness. Molecular simulations predicted differential bilayer perturbation effects of the two oxidized phospholipids based on the chemical identities of their truncated tails, including decreased bilayer packing, decreased bilayer bending modulus, and increased water penetration. Disruption of lipid order was consistent with Laurdan imaging results indicating that POVPC and PGPC decrease the lipid packing of both ordered and disordered membrane domains. Computational predictions of a larger membrane perturbation effect by PGPC correspond to greater stiffness of PGPC-treated endothelial cells observed by measuring cellular elastic moduli using atomic force microscopy. Our results suggest that disruptions in membrane structure by oxidized phospholipids play a role in the regulation of overall endothelial cell stiffness.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tzu Pin Shentu
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dev K Singh
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nicolas Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dheeraj Soni
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Papasani V Subbaiah
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | | | - Michael Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
29
|
Brannigan G. Direct Interactions of Cholesterol With Pentameric Ligand-Gated Ion Channels: Testable Hypotheses From Computational Predictions. CURRENT TOPICS IN MEMBRANES 2017; 80:163-186. [DOI: 10.1016/bs.ctm.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Baenziger JE, Domville JA, Therien JD. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors. CURRENT TOPICS IN MEMBRANES 2017; 80:95-137. [DOI: 10.1016/bs.ctm.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
32
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
33
|
Balajthy A, Somodi S, Pethő Z, Péter M, Varga Z, Szabó GP, Paragh G, Vígh L, Panyi G, Hajdu P. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Arch 2016; 468:1403-18. [DOI: 10.1007/s00424-016-1851-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
|
34
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
35
|
Kamerbeek CB, Mateos MV, Vallés AS, Pediconi MF, Barrantes FJ, Borroni V. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor. Int J Biochem Cell Biol 2016; 74:1-11. [PMID: 26898898 DOI: 10.1016/j.biocel.2016.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity.
Collapse
Affiliation(s)
- Constanza B Kamerbeek
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Ana S Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - María F Pediconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research UCA-CONICET, Faculty of Medical Sciences, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Virginia Borroni
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
36
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Oyola-Cintrón J, Caballero-Rivera D, Ballester L, Baéz-Pagán CA, Martínez HL, Vélez-Arroyo KP, Quesada O, Lasalde-Dominicci JA. Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components. J Biol Chem 2015; 290:26790-800. [PMID: 26354438 DOI: 10.1074/jbc.m115.678573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.
Collapse
Affiliation(s)
| | | | | | | | - Hernán L Martínez
- the California State University Dominguez Hills, Carson, California 90747
| | | | - Orestes Quesada
- Physical Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, 00931 and
| | | |
Collapse
|
38
|
Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 2015; 248:611-40. [PMID: 26063070 PMCID: PMC4515176 DOI: 10.1007/s00232-015-9802-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Toby W. Allen
- School of Applied Sciences & Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne, Vic, 3001, Australia; and Department of Chemistry, University of California, Davis. Davis, CA 95616, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Daniel Baum
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, E-18071 Granada, Spain
| | - Ran Friedman
- Linnæus University, Department of Chemistry and Biomedical Sciences & Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Hans-Christian Hege
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, IBPC and CNRS, Paris, France
| | - Marina A. Kasimova
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Antonios Kolocouris
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norbert Lindow
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Mahua Roy
- Department of Chemistry, University of California, Irvine
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- CNRS, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florentina Tofoleanu
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Sinisa Urban
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, 725 N. Wolfe Street, 507 Preclinical Teaching Building, Baltimore, MD 21205, USA
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy C. Smith
- Oak Ridge National Laboratory, PO BOX 2008 MS6309, Oak Ridge, TN 37831-6309, USA
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
39
|
Curthoys NM, Parent M, Mlodzianoski M, Nelson AJ, Lilieholm J, Butler MB, Valles M, Hess ST. Dances with Membranes: Breakthroughs from Super-resolution Imaging. CURRENT TOPICS IN MEMBRANES 2015; 75:59-123. [PMID: 26015281 PMCID: PMC5584789 DOI: 10.1016/bs.ctm.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological membrane organization mediates numerous cellular functions and has also been connected with an immense number of human diseases. However, until recently, experimental methodologies have been unable to directly visualize the nanoscale details of biological membranes, particularly in intact living cells. Numerous models explaining membrane organization have been proposed, but testing those models has required indirect methods; the desire to directly image proteins and lipids in living cell membranes is a strong motivation for the advancement of technology. The development of super-resolution microscopy has provided powerful tools for quantification of membrane organization at the level of individual proteins and lipids, and many of these tools are compatible with living cells. Previously inaccessible questions are now being addressed, and the field of membrane biology is developing rapidly. This chapter discusses how the development of super-resolution microscopy has led to fundamental advances in the field of biological membrane organization. We summarize the history and some models explaining how proteins are organized in cell membranes, and give an overview of various super-resolution techniques and methods of quantifying super-resolution data. We discuss the application of super-resolution techniques to membrane biology in general, and also with specific reference to the fields of actin and actin-binding proteins, virus infection, mitochondria, immune cell biology, and phosphoinositide signaling. Finally, we present our hopes and expectations for the future of super-resolution microscopy in the field of membrane biology.
Collapse
Affiliation(s)
- Nikki M. Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | | | - Andrew J. Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Jennifer Lilieholm
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Michael B. Butler
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Valles
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| |
Collapse
|
40
|
Barrantes FJ. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1796-805. [PMID: 25839355 DOI: 10.1016/j.bbamem.2015.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
41
|
Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L. Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 2015; 593:2279-93. [PMID: 25651798 DOI: 10.1113/jphysiol.2014.288209] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/30/2015] [Indexed: 01/14/2023] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.
Collapse
Affiliation(s)
| | | | - Jirina Borovska
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Katarina Lichnerova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Barbora Krausova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Krusek
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Ales Balik
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | | - Martin Horak
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | |
Collapse
|
42
|
Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1806-17. [PMID: 25791350 DOI: 10.1016/j.bbamem.2015.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 01/14/2023]
Abstract
Membrane lipids are potent modulators of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Lipids influence nAChR function by both conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable versus non-activatable conformations, as well as influencing the transitions between these conformational states. Of note, some membranes stabilize an electrically silent uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions. The uncoupled nAChR, however, does transition to activatable conformations in relatively thick lipid bilayers, such as those found in lipid rafts. In this review, we discuss current understanding of lipid-nAChR interactions in the context of increasingly available high resolution structural and functional data. These data highlight different sites of lipid action, including the lipid-exposed M4 transmembrane α-helix. Current evidence suggests that lipids alter nAChR function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These interactions have also been implicated in both the folding and trafficking of nAChRs to the cell surface. We review current mechanistic understanding of lipid-nAChR interactions, and highlight potential biological roles for lipid-nAChR interactions in modulating the synaptic response. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
43
|
Hénin J, Salari R, Murlidaran S, Brannigan G. A predicted binding site for cholesterol on the GABAA receptor. Biophys J 2014; 106:1938-49. [PMID: 24806926 DOI: 10.1016/j.bpj.2014.03.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/29/2022] Open
Abstract
Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism.
Collapse
Affiliation(s)
- Jérôme Hénin
- Laboratoire de Biochimie Théorique, CNRS, IBPC, and Université Paris Diderot, Paris, France
| | - Reza Salari
- Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey
| | - Sruthi Murlidaran
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey
| | - Grace Brannigan
- Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey.
| |
Collapse
|
44
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
45
|
Baier C, Franco D, Gallegos C, Mongiat L, Dionisio L, Bouzat C, Caviedes P, Barrantes F. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor. Neuroscience 2014; 274:369-82. [DOI: 10.1016/j.neuroscience.2014.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/29/2014] [Accepted: 05/24/2014] [Indexed: 11/27/2022]
|
46
|
Almarza G, Sánchez F, Barrantes FJ. Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS One 2014; 9:e100346. [PMID: 24971757 PMCID: PMC4074099 DOI: 10.1371/journal.pone.0100346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 11/23/2022] Open
Abstract
To what extent do cholesterol-rich lipid platforms modulate the supramolecular organization of the nicotinic acetylcholine receptor (AChR)? To address this question, the dynamics of AChR particles at high density and its cholesterol dependence at the surface of mammalian cells were studied by combining total internal reflection fluorescence microscopy and single-particle tracking. AChR particles tagged with a monovalent ligand, fluorescent α-bungarotoxin (αBTX), exhibited two mobile pools: i) a highly mobile one undergoing simple Brownian motion (16%) and ii) one with restricted motion (∼50%), the rest being relatively immobile (∼44%). Depletion of membrane cholesterol by methyl-α-cyclodextrin increased the fraction of the first pool to 22% and 33% after 15 and 40 min, respectively; the pool undergoing restricted motion diminished from 50% to 44% and 37%, respectively. Monoclonal antibody binding results in AChR crosslinking-internalization after 2 h; here, antibody binding immobilized within minutes ∼20% of the totally mobile AChR. This proportion dramatically increased upon cholesterol depletion, especially during the initial 10 min (83.3%). Thus, antibody crosslinking and cholesterol depletion exhibited a mutually synergistic effect, increasing the average lifetime of cell-surface AChRs∼10 s to ∼20 s. The instantaneous (microscopic) diffusion coefficient D2-4 of the AChR obtained from the MSD analysis diminished from ∼0.001 µm2 s(-1) to ∼0.0001-0.00033 µm2 s(-1) upon cholesterol depletion, ∼30% of all particles falling into the stationary mode. Thus, muscle-type AChR exhibits heterogeneous motional regimes at the cell surface, modulated by the combination of intrinsic (its supramolecular organization) and extrinsic (membrane cholesterol content) factors.
Collapse
Affiliation(s)
- Gonzalo Almarza
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco Sánchez
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
47
|
Interaction between rosuvastatin and rocuronium in rat sciatic-gastrocnemius nerve-muscle preparation. J Anesth 2014; 28:727-32. [DOI: 10.1007/s00540-014-1792-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/11/2014] [Indexed: 01/02/2023]
|
48
|
Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. Cholesterol and cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:965-79. [DOI: 10.1586/erc.10.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Kamerbeek C, Borroni V, Pediconi M, Sato S, Kobayashi T, Barrantes F. Antibody-induced acetylcholine receptor clusters inhabit liquid-ordered and liquid-disordered domains. Biophys J 2013; 105:1601-11. [PMID: 24094401 PMCID: PMC3822676 DOI: 10.1016/j.bpj.2013.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/09/2013] [Accepted: 08/21/2013] [Indexed: 11/24/2022] Open
Abstract
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.
Collapse
Affiliation(s)
| | - Virginia Borroni
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| | - María F. Pediconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| | | | | | - Francisco J. Barrantes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
50
|
Yamamoto K, Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J Cell Sci 2013; 126:1227-34. [PMID: 23378020 DOI: 10.1242/jcs.119628] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|