1
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wang W, Ye X, Wang S. Bibliometric analysis of global research on vitamins and cancer between 2003 and 2022. Medicine (Baltimore) 2024; 103:e37108. [PMID: 39686412 DOI: 10.1097/md.0000000000037108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Vitamins are essential nutrients that play an indispensable role in maintaining the vital functions of the human body. A growing number of studies have shown a link between vitamins and cancer. However, there is no systematic review and bibliometric analysis in this field. This study aims to summarize the hotspots and emerging research topics in this field of vitamins and cancer research. METHODS Articles on the topic of vitamins and cancer published between 2003 and 2022 were retrieved from the Web of Science core collection database (WOSCC) on May 1, 2023. Subsequently, we conducted VOSviewer and CiteSpace to examine the annual output distribution, countries/regions, institutions, journals, authors, co-cited references, and keywords. RESULTS A total of 3166 publications were extracted using a timespan of 2003 to 2022. The number of publications has grown rapidly over the past 20 years. Most publications were from the United States; Harvard University was the most active institutions; Giovannucci stood out among authors with the highest number of publications, citations and H-index; Cancer Epidem Biomar published the most papers in this field; the highest cited reference was published in Nat Rev Cancer, authored by Feldman in 2014. Breast cancer was the most common type of cancer, while vitamin D was a research hotspot in this field. Oxidative stress may be the primary anticancer mechanism of vitamins, while also involving epithelial-mesenchymal transition, apoptosis, polymorphism, and calcium metabolism. "nanoparticle" may be the new focus of attention in the next few years. CONCLUSION This study presented an overview of the major research directions of vitamins and cancer by bibliometric methods over the past 2 decades. The results could reveal the research trends and the hotspots in the field and provide helpful information for clinical treatments of cancer.
Collapse
Affiliation(s)
- Wen Wang
- Department of Preventive Treatment Center, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, People's Republic of China
| | - Xiangming Ye
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Sisi Wang
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Zhang X, He Y, Li X, Shraim R, Xu W, Wang L, Farrington SM, Campbell H, Timofeeva M, Zgaga L, Vaughan-Shaw P, Theodoratou E, Dunlop MG. Circulating 25-hydroxyvitamin D and survival outcomes of colorectal cancer: evidence from population-based prospective cohorts and Mendelian randomisation. Br J Cancer 2024; 130:1585-1591. [PMID: 38480934 PMCID: PMC11058806 DOI: 10.1038/s41416-024-02643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND To investigate the association between circulating 25-hydroxyvitamin D (25-OHD) and colorectal cancer (CRC) survival outcomes. METHODS We conducted analyses among the Study of Colorectal Cancer in Scotland (SOCCS) and the UK Biobank (UKBB). Both cancer-specific survival (CSS) and overall survival (OS) outcomes were examined. The 25-OHD levels were categorised into three groups, and multi-variable Cox-proportional hazard models were applied to estimate hazard ratios (HRs). We performed individual-level Mendelian randomisation (MR) through the generated polygenic risk scores (PRS) of 25-OHD and summary-level MR using the inverse-variance weighted (IVW) method. RESULTS We observed significantly poorer CSS (HR = 0.65,95%CI = 0.55-0.76,P = 1.03 × 10-7) and OS (HR = 0.66,95%CI = 0.58-0.75,P = 8.15 × 10-11) in patients with the lowest compared to those with the highest 25-OHD after adjusting for covariates. These associations remained across patients with varied tumour sites and stages. However, we found no significant association between 25-OHD PRS and either CSS (HR = 0.98,95%CI = 0.80-1.19,P = 0.83) or OS (HR = 1.07,95%CI = 0.91-1.25,P = 0.42). Furthermore, we found no evidence for causal effects by conducting summary-level MR analysis for either CSS (IVW:HR = 1.04,95%CI = 0.85-1.28,P = 0.70) or OS (IVW:HR = 1.10,95%CI = 0.93-1.31,P = 0.25). CONCLUSION This study supports the observed association between lower circulating 25-OHD and poorer survival outcomes for CRC patients. Whilst the genotype-specific association between better outcomes and higher 25-OHD is intriguing, we found no support for causality using MR approaches.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- School of Public Health and the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rasha Shraim
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, Dublin, Republic of Ireland
| | - Wei Xu
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lina Zgaga
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, Dublin, Republic of Ireland
| | - Peter Vaughan-Shaw
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Li H, Ruan Y, Liu C, Fan X, Yao Y, Dai Y, Song Y, Jiang D, Sun N, Jiao G, Chen Z, Fan S, Meng F, Yang H, Zhang Y, Li Z. VDR promotes pancreatic cancer progression in vivo by activating CCL20-mediated M2 polarization of tumor associated macrophage. Cell Commun Signal 2024; 22:224. [PMID: 38600588 PMCID: PMC11005177 DOI: 10.1186/s12964-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
- Heilongjiang Province Key Laboratory of molecular Oncology, Harbin, China
| | - Yisheng Dai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Jiang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangtao Jiao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Fanfei Meng
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China.
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
5
|
Bird RP. Vitamin D and cancer. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:92-159. [PMID: 38777419 DOI: 10.1016/bs.afnr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The role of vitamin D in the prevention of chronic diseases including cancer, has received a great deal of attention during the past few decades. The term "Cancer" represents multiple disease states with varying biological complexities. The strongest link between vitamin D and cancer is provided by ecological and studies like observational, in preclinical models. It is apparent that vitamin D exerts diverse biological responses in a tissue specific manner. Moreover, several human factors could affect bioactivity of vitamin D. The mechanism(s) underlying vitamin D initiated anti-carcinogenic effects are diverse and includes changes at the muti-system levels. The oncogenic environment could easily corrupt the traditional role of vitamin D or could ensure resistance to vitamin D mediated responses. Several researchers have identified gaps in our knowledge pertaining to the role of vitamin D in cancer. Further areas are identified to solidify the role of vitamin D in cancer control strategies.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
6
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Nagaria TD, Shinde RK, Shukla S, Acharya S, Acharya N, Jogdand SD. The Sunlight-Vitamin D Connection: Implications for Patient Outcomes in the Surgical Intensive Care Unit. Cureus 2023; 15:e46819. [PMID: 37954702 PMCID: PMC10636290 DOI: 10.7759/cureus.46819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
This review delves into the intricate relationship between Vitamin D and patient outcomes in the Surgical Intensive Care Unit (SICU). Vitamin D, known for its multifaceted roles in immune modulation, inflammation regulation, and maintenance of calcium homeostasis, emerges as a pivotal factor in the care of critically ill patients. Our exploration reveals a high prevalence of Vitamin D deficiency in the SICU, primarily attributable to limited sunlight exposure, comorbidities, and medication use. Importantly, Vitamin D status impacts infection rates, mortality, and length of stay in the SICU, making it a clinically relevant consideration. Mechanistic insights into the immunomodulatory and anti-inflammatory effects of Vitamin D shed light on its potential benefits in critical care. However, challenges, including accurate assessment, individualised supplementation, and ethical considerations regarding sunlight exposure, are evident. The prospect of personalised Vitamin D supplementation strategies offers promise for optimising patient care. In conclusion, the Sunlight-Vitamin D Connection holds significant potential to improve outcomes in the SICU, emphasising the importance of further research and tailored approaches for the well-being of critically ill individuals.
Collapse
Affiliation(s)
- Tapesh D Nagaria
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raju K Shinde
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Samarth Shukla
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Neema Acharya
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sangita D Jogdand
- Pharmacology and Therapeutics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
9
|
Morales-Guadarrama G, Méndez-Pérez EA, García-Quiroz J, Avila E, Larrea F, Díaz L. AZD4547 and calcitriol synergistically inhibited BT-474 cell proliferation while modified stemness and tumorsphere formation. J Steroid Biochem Mol Biol 2022; 223:106132. [PMID: 35659529 DOI: 10.1016/j.jsbmb.2022.106132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/02/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factor receptor (FGFR) overamplification/activation in cancer leads to increased cell proliferation. AZD4547, a FGFR selective inhibitor, hinders breast cancer cells growth. Although luminal B breast tumors may respond to chemotherapy and endocrine therapy, this subtype is associated with poor prognosis, inadequate response and/or acquired drug resistance. Calcitriol, the vitamin D most active metabolite, exerts anti-neoplastic effects and enhances chemotherapeutic drugs activity. In this study, we sought to decrease the concentration of AZD4547 needed to inhibit the luminal-B breast cancer cell line BT-474 proliferation by its combination with calcitriol. Anti-proliferative inhibitory concentrations, combination index and dose-reduction index were analyzed from Sulforhodamine B assays. Western blot and qPCR were used to study FGFR molecular targets. The compound's ability to inhibit BT-474 cells tumorigenic capacity was assessed by tumorspheres formation. Results: BT-474 cells were dose-dependently growth-inhibited by calcitriol and AZD4547 (IC50 = 2.9 nM and 3.08 μM, respectively). Calcitriol at 1 nM synergistically improved AZD4547 antiproliferative effects, allowing a 2-fold AZD4547 dose-reduction. Mechanistically, AZD4547 downregulated p-FGFR1, p-Akt and tumorsphere formation. Calcitriol also decreased tumorspheres, while induced cell differentiation. Both compounds inhibited MYC and CCND1 expression, as well as ALDH, a stemness marker that positively correlated with FGFR1 and negatively with VDR expression in breast cancer transcriptomic data. In conclusion, the drugs impaired self-aggregation capacity, reduced stemness features, induced cell-differentiation and when combined, synergistically inhibited cell proliferation. Overall, our results suggest that calcitriol, at low pharmacological doses, may be a suitable candidate to synergize AZD4547 effects in luminal B breast tumors, allowing to reduce dose and adverse effects.
Collapse
Affiliation(s)
- Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Edgar A Méndez-Pérez
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico.
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico.
| | - Euclides Avila
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico.
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico.
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
11
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
12
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
13
|
Zhang X, Li H, Lv X, Hu L, Li W, Zi M, He Y. Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life (Basel) 2022; 12:409. [PMID: 35330159 PMCID: PMC8951256 DOI: 10.3390/life12030409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the established therapeutics against tumors. As the major immunotherapy approach, immune checkpoint inhibitors (ICIs) achieved remarkable success in the treatment of malignancies. However, the clinical gains are far from universal and durable, because of the primary and secondary resistance of tumors to the therapy, or side effects induced by ICIs. There is an urgent need to find safe combinatorial strategies that enhance the response of ICIs for tumor treatment. Diets have an excellent safety profile and have been shown to play pleiotropic roles in tumor prevention, growth, invasion, and metastasis. Accumulating evidence suggests that dietary regimens bolster not only the tolerability but also the efficacy of tumor immunotherapy. In this review, we discussed the mechanisms by which tumor cells evade immune surveillance, focusing on describing the intrinsic and extrinsic mechanisms of resistance to ICIs. We also summarized the impacts of different diets and/or nutrients on the response to ICIs therapy. Combinatory treatments of ICIs therapy with optimized diet regimens own great potential to enhance the efficacy and durable response of ICIs against tumors, which should be routinely considered in clinical settings.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiupeng Lv
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Li Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Wen Li
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming 650011, China;
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
14
|
Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E, Manikandan P, Arun M, Anand AV. Therapeutic effects of vitamin D and cancer: An overview. FOOD FRONTIERS 2021; 2:417-425. [DOI: 10.1002/fft2.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
AbstractSince vitamin D's discovery, strenuous efforts to investigate its physiological exploit and deficiency on human health were done. Our body synthesizes fat‐soluble vitamin D when get exposed to sunlight. In recent years, experimental data indicate that sunlight exposure and an adequate level of circulating vitamin D can reduce the incidence of cancer. Several in vitro and in vivo studies also suggest vitamin D as a potentially valuable supplement for cancer treatment and prevention. Nevertheless, there need to be adequate clinical studies performed to substantiate the suppressive ability of vitamin D concerning cancer incidence. Thus, understanding the cellular mechanisms of vitamin D can be advantageous for preventing several chronic diseases. Consequently, this review concentrates on different studies that have been conducted to characterize the outcome of vitamin D in reducing cancer incidence and its medication by cellular progression mechanism.
Collapse
Affiliation(s)
- Jisha Elsa Varghese
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| | | | | | | | | | - Easwaran Murugesh
- Nutritional Improvement of Crops International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Meyyazhagan Arun
- Department of Life Sciences CHRIST (Deemed to be University) Karnataka India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| |
Collapse
|
15
|
Ghafouri-Fard S, Atarbashi-Moghadam S, Kholghi-Oskooei V, Ashrafi Hafez A, Taheri M. Expression of VDR-related lncRNAs in malignancies originated from salivary gland: A pilot study. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Li Y, Cook KL, Yu W, Jin L, Bouker KB, Clarke R, Hilakivi-Clarke L. Inhibition of Antiestrogen-Promoted Pro-Survival Autophagy and Tamoxifen Resistance in Breast Cancer through Vitamin D Receptor. Nutrients 2021; 13:nu13051715. [PMID: 34069442 PMCID: PMC8159129 DOI: 10.3390/nu13051715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023] Open
Abstract
We determined how vitamin D receptor (VDR) is linked to disease outcome in estrogen receptor-positive (ER+) breast cancer patients treated with tamoxifen (TAM). Breast cancer patients (n = 581) in four different datasets were divided into those expressing higher (above median) and lower levels of VDR in pretreatment ER+ tumors. Across all datasets, TAM-treated patients with higher pretreatment tumor VDR expression exhibited significantly longer recurrence-free survival. Ingenuity pathway analysis identified autophagy and unfolded protein response (UPR) as top differentially expressed pathways between high and low VDR-expressing ER+ cancers. Activation of VDR with vitamin D (VitD), either calcitriol or its synthetic analog EB1089, sensitized MCF-7-derived, antiestrogen-resistant LCC9 human breast cancer cells to TAM, and attenuated increased UPR and pro-survival autophagy. Silencing of VDR blocked these effects through the IRE1α-JNK pathway. Further, silencing of VDR impaired sensitivity to TAM in antiestrogen-responsive LCC1 cells, and prevented the effects of calcitriol and EB1089 on UPR and autophagy. In a preclinical mouse model, dietary VitD supplementation induced VDR activation and reduced carcinogen-induced ER+ mammary tumor incidence. In addition, IRE1α-JNK signaling was downregulated and survival autophagy was inhibited in mammary tumors of VitD-supplemented mice. Thus, activation of VDR is predictive of reduced risk of breast cancer recurrence in ER+ patients, possibly by inhibiting antiestrogen-promoted pro-survival autophagy.
Collapse
|
17
|
Sittipo P, Kim HK, Han J, Lee MR, Lee YK. Vitamin D 3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids. Stem Cell Res Ther 2021; 12:285. [PMID: 33985576 PMCID: PMC8117327 DOI: 10.1186/s13287-021-02361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vitamin D3 is important for normal function of the intestinal epithelial cells (IECs). In this study, we aimed to investigate the effects of vitamin D3 on the differentiation, stemness, and viability of healthy IECs in intestinal organoids. METHODS Intestinal organoids derived from mouse small intestine were treated with vitamin D3, and the effects on intestinal stemness and differentiation were evaluated using real-time PCR and immunofluorescence staining of the distinct lineage markers. Cell viability was analyzed using viability and apoptosis assays. RESULTS Vitamin D3 enhanced IEC differentiation into the distinct lineages of specialized IECs, including Paneth, goblet, and enteroendocrine cells and absorptive enterocytes. Decreased expression levels of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) and the presence of several LGR5-green fluorescent protein (GFP)-positive cells were observed in vitamin D3-treated organoids derived from LGR5-GFP mice. The formation of the crypt-villus structure was also inhibited by vitamin D3, suggesting that vitamin D3 suppresses intestinal cell stemness. Furthermore, the expression levels of unfolded protein response genes, C/EBP homologous protein (CHOP), and activating transcription factor 6 (ATF6) were upregulated in vitamin D3-treated organoids. Moreover, vitamin D3 promoted apoptotic cell death in intestinal cells, which may be associated with the decrease in intestinal stemness. LGR5 gene expression, ISC number, and apoptotic cell death were partially recovered in the presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), suggesting that intestinal stemness suppression and intestinal apoptosis occurred via ER stress activation. CONCLUSIONS Our study provides important insights into the effects of vitamin D3 on the induction of IEC differentiation and apoptotic cell death, and inhibition of intestinal stemness accompanied by ER stress augmentation.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Kyu Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Man Ryul Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
18
|
Soltanian S, Sheikhbahaei M. Effect of Menadione and Combination of Gemcitabine and Cisplatin on Cancer Stem Cells in Human Non-small Cell Lung Cancer (NSCLC) Cell Line A549. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:105-117. [PMID: 34400945 PMCID: PMC8170754 DOI: 10.22037/ijpr.2020.112373.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Chemotherapy-induced adverse effects and resistance of NSCLC to conventional drugs reduce the efficacy of current therapies. Tumors contain a small population of cancer stem cells (CSCs) that play a critical role in tumor initiation, maintenance, and drug resistance that finally lead to cancer recurrence. Therefore, CSC-targeting therapies can offer the best hope for developing curative cancer therapies. Vitamins have a high potential for cancer prevention and treatment. Vitamins also ameliorate the side effects which occur in chemo-radio therapy. Menadione (2-methyl-1,4-naphthoquinone/vitamin-K3) is a synthetic form of vitamin K that indicated antitumor activities. The purpose of this study was to evaluate the anti-CSCs effect of menadione and combination of cisplatin and gemcitabine as a first-line treatment in patients with NSCLC on the NSCLC cell line A549. MTT results displayed decreased cell survival after treatment with cisplatin/gemcitabine for 48 h treatment (IC50 values 0.25 µM for cisplatin and 5 µM for gemcitabine). Menadione also inhibited the cell growth in A549 cells (IC50: 16 µM). Quantitative RT-PCR showed significant downregulation of CSC markers (Oct4, Nanog, Sox2, Aldh1, Abcb1, CD44, and CD133) and Snail, epithelial-mesenchymal transition marker, after treatment with menadione and cisplatin/gemcitabine. Flow cytometry showed CD44-positive cells that constitute a high percentage (70%) of A549 cells reduced significantly after treatment with cisplatin/gemcitabine or menadione. However, A549 cells did not show a significant population positive for CD133 and ABCB1 (less than 0.05%), and these fractions did not change after treatment with two agents.
Collapse
|
19
|
Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers (Basel) 2020; 12:cancers12092413. [PMID: 32854355 PMCID: PMC7563562 DOI: 10.3390/cancers12092413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3 controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several cell types.
Collapse
|
20
|
DeSantis KA, Robilotto SL, Matson M, Kotb NM, Lapierre CM, Minhas Z, Leder AA, Abdul K, Facteau EM, Welsh J. VDR in salivary gland homeostasis and cancer. J Steroid Biochem Mol Biol 2020; 199:105600. [PMID: 31958633 PMCID: PMC7166159 DOI: 10.1016/j.jsbmb.2020.105600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The vitamin D receptor (VDR) and its ligand 1,25(OH)2D3 (1,25D) impact differentiation and exert anti-tumor effects in many tissues, but its role in salivary gland has yet to be defined. Using immunohistochemistry (IHC), we have detected strong VDR expression in murine and human salivary gland ducts. Compared to normal gland, VDR protein expression was retained in differentiated human pleomorphic adenoma (PA) but was undetectable in undifferentiated PA and in carcinomas, suggesting deregulation of VDR during salivary cancer progression. To gain insight into the potential role of VDR in salivary cancer, we assessed the effects of vitamin D in vivo and in vitro. Despite the presence of VDR in salivary gland, chronic dietary vitamin D restriction did not alter morphology of the salivary epithelium in C57/Bl6 mice. The localization of VDR in ductal epithelium prompted us to examine the effects of 1,25D in an established cell line (mSGc) derived from normal murine submandibular gland (SMG). This previously characterized cell line consists of multiple stem, progenitor and differentiated cell types as determined by mutually exclusive cellular expression of basal, ductal and myoepithelial markers. We demonstrated VDR expression and regulation of VDR target genes Vdr and Postn by 1,25D in mSGc, indicating functional ligand-mediated transcriptional activity. The effect of VDR signaling on epithelial differentiation markers was assessed by qPCR and IHC in mSGc cells treated with 1,25D. We found that 1,25D reduced mRNA expression of the basal cell progenitor marker keratin 5 (K5) and increased expression of the differentiated ductal cell marker keratin 7 (K7). Further, we found that 1,25D significantly decreased the number of proliferating cells, including proliferating K5+ cells. Characterization of cell cycle by Muse cytometry indicated 1,25D treatment decreased cells in S, G2, and M phase. The inhibition of K5+ cell proliferation by 1,25D is of particular interest because K5+ basal cells contribute to a wide variety of salivary tumor types. Our studies suggest that 1,25D alters cancer-relevant progenitor and differentiation markers in the salivary gland.
Collapse
Affiliation(s)
- Kara A DeSantis
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Samantha L Robilotto
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Mark Matson
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Noor M Kotb
- Graduate Program in Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Cathryn M Lapierre
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Undergraduate Research Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zenab Minhas
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Undergraduate Research Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alana A Leder
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Undergraduate Research Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Khushbakht Abdul
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Undergraduate Research Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Emily M Facteau
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Undergraduate Research Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - JoEllen Welsh
- Cancer Research Center, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| |
Collapse
|
21
|
Attia YM, Hammam OA, Ammar RA, Mansour MT, Elmazar MM. Crosstalk between aldehyde dehydrogenase-1 and chemoresistance in breast cancer: Insights into the role of vitamin D3. Life Sci 2020; 253:117733. [PMID: 32360127 DOI: 10.1016/j.lfs.2020.117733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022]
Abstract
AIMS Aldehyde dehydrogenase-1 (ALDH-1) is considered a signature of breast cancer stem cells and is linked to poor outcomes in breast cancer patients. This study aimed at investigating the effect of vitamin D3 on enhancing the tumor responsiveness to different conventional chemotherapeutic agents, viz., cisplatin, methotrexate, and doxorubicin. MAIN METHODS In vitro and in vivo experiments were performed using combinations of vitamin D3 and chemotherapeutic agents. Cell cycle analysis and apoptosis assays were performed. Moreover, ALDH-1 expression levels were estimated in cancer cell lines and solid tumors. For solid tumors, tumor volume and histopathological necrotic indices were estimated. Leukocyte presence was also evaluated in tumors using leukocyte common antigen (LCA). KEY FINDINGS Results showed a synergistic interaction between vitamin D3 and each of the chemotherapeutic agents on breast cancer cell lines as well as cell cycle arrest at G2/M phase. A decrease in ALDH-1 levels was reported in both breast cancer cells and in tumor tissues. Reductions in tumor volume were also observed in the groups which received the combination therapy. An influence on necrosis rather than apoptosis was also reported, as evidenced by necrotic indices and Bcl-2 expression in tumor sections, respectively. Increased local leukocytes in tumors was also evident, as indicated by increased expression of leukocyte common antigen (LCA). SIGNIFICANCE Overall, the present study shows that vitamin D3 has an impact on resistance to different chemotherapeutic agents which could be due to the inhibition of ALDH-1, suggesting its use as an adjuvant therapy in cancer patients receiving chemotherapy.
Collapse
Affiliation(s)
- Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Reham A Ammar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed T Mansour
- Virology and Immunology Department, Children's Cancer Hospital, 57357 Cairo, Egypt; Virology and Immunology Department, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed M Elmazar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
22
|
Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn's Disease Populations. Nutrients 2020; 12:nu12041139. [PMID: 32325778 PMCID: PMC7230517 DOI: 10.3390/nu12041139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Two trials separately measured the bioavailability and impact on inflammation of a supplement taken daily containing 510 mg Docosahexaenoic acid (DHA), 344 mg Eicosapentaenoic acid (EPA), and 1000 IU of vitamin D (25-hydroxyvitamin D; 25(OH)D), for healthy and Crohn’s disease (CD) populations. Both trials were double blinded, randomized, placebo-controlled with cross-over. Participants were randomly allocated to groups A (placebo then supplement) or B (supplement then placebo). Both included a washout. Fatty acid (N-3 PUFAs) and vitamin D serum levels, plasma C-reactive protein (CRP), and stool calprotectin were measured before and after each treatment period. Outcome measures were analyzed using generalized linear mixed models, including terms for treatment, period, and a treatment-by-period interaction. The supplement significantly increased serum levels in healthy and CD groups for EPA (p < 0.001 and p < 0.001, respectively), Docosapentaenoic acid (p < 0.001 and 0.005), DHA (p < 0.001 and 0.006), the omega-3 index (p < 0.001 and 0.001), and (vitamin D (p < 0.001 and 0.027). CRP and calprotectin measures showed no evidence of a treatment effect on inflammation; however, model estimation was imprecise for both outcomes, hence further research is required to elucidate potential inflammation effects. The nutrient supplement increased serum levels of key N-3 PUFAs and vitamin D in both populations, showing the preparation was readily bioavailable.
Collapse
|
23
|
Han J, Guo X, Yu X, Liu S, Cui X, Zhang B, Liang H. 25-Hydroxyvitamin D and Total Cancer Incidence and Mortality: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2019; 11:nu11102295. [PMID: 31561503 PMCID: PMC6835972 DOI: 10.3390/nu11102295] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have suggested inconclusive associations between 25-hydroxyvitamin D and total cancer incidence and mortality. The aim of this study was to quantitatively assess these associations by combining results from prospective cohort studies. A systematic literature search was implemented in PubMed and Scopus databases in April 2019. Comparing the highest with the lowest categories, the multivariate-adjusted relative risks (RRs) and the corresponding 95% confidence intervals (CIs) were pooled using a random-effects model. A trend estimation was performed using a two-stage, dose-response, meta-analysis method. Twenty-three independent prospective studies were included for data synthesis. Eight studies investigated the association between 25-hydroxyvitamin D and the risk of cancer incidence (7511 events and 70,018 participants), and the summary estimate showed that 25-hydroxyvitamin D is marginally associated with cancer risk (Summary RR = 0.86; 95% CI: 0.73, 1.02; I2 = 70.8%; p = 0.001). Sixteen studies investigated the association between 25-hydroxyvitamin D and the risk of cancer mortality (8729 events and 101,794 participants), and a higher 25-hydroxyvitamin D concentration was inversely associated with the risk of cancer mortality (Summary RR = 0.81; 95% CI: 0.71, 0.93; I2 = 48.8%, p = 0.012). Dose-response analysis indicated that the risk of cancer incidence was reduced by 7% (RRs = 0.93; 95% CI: 0.91, 0.96), and the risk of cancer mortality was reduced by 2% (RRs = 0.98; 95% CI: 0.97, 0.99), with each 20 nmol/L increment of 25-hydroxyvitamin D concentration. This meta-analysis provides evidence that a higher 25-hydroxyvitamin D concentration is associated with a lower cancer incidence and cancer mortality.
Collapse
Affiliation(s)
- Jianmin Han
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Xiao Yu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Shuang Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Xinyue Cui
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Bo Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Hui Liang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
24
|
Markotic A, Langer S, Kelava T, Vucic K, Turcic P, Tokic T, Stefancic L, Radetic E, Farrington S, Timofeeva M, Rudan I, Campbell H, Dunlop M, Kirac I, Zgaga L. Higher Post-Operative Serum Vitamin D Level is Associated with Better Survival Outcome in Colorectal Cancer Patients. Nutr Cancer 2019; 71:1078-1085. [PMID: 30945952 DOI: 10.1080/01635581.2019.1597135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/10/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
Abstract
25-Hydroxyvitamin D (25-OHD) may have a prognostic value in colorectal cancer (CRC) patients. However, as 25-OHD concentration is strongly impacted by surgery, it is uncertain what is the most reliable time-point for 25-OHD assessment, pre- or post-operative. Therefore, we examined 515 CRC patients (AJCC I-III) who underwent surgery. Blood samples were collected either pre-operatively (n = 286; median = 1 day before surgery) or post-operatively (n = 229; median = 8 days). Serum 25-OHD concentration was determined by liquid chromatography-tandem mass spectrometry. Association between 25-OHD and survival was tested in the whole cohort, followed by stratified analyses in pre- and post-operatively sampled. Median 25-OHD in the cohort was 36.7 nmol/L and median follow-up time was 5.9 years. There were no differences between pre- and post-operative cohort in age, sex, 25-OHD, AJCC stage, or localization of tumor. After adjustment, higher 25-OHD (>50 nmol/L) was associated with better overall survival only in post-operative (HR = 0.53; 95% CI: 0.33-0.84; P = 0.006), but not in pre-operative cohort (HR = 1.13; 95% CI: 0.77-1.65; P = 0.53). In conclusion, higher post-operative 25-OHD levels were associated with better survival outcome in CRC patients, while no such association was found for pre-operative levels. Time-point of blood collection should be addressed carefully in future research as it might affect the prognostic value of 25-OHD in CRC.
Collapse
Affiliation(s)
- Antonio Markotic
- Center for Clinical Pharmacology, University Clinical Hospital Mostar , Mostar , Bosnia and Herzegovina
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine , Zagreb , Croatia
| | - Sanja Langer
- Department of Medical Biochemistry in Oncology, University Hospital for Tumors , Zagreb , Croatia
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine , Zagreb , Croatia
- Department of Physiology, University of Zagreb School of Medicine , Zagreb , Croatia
| | - Katarina Vucic
- Department for Safety and Efficacy Assessment, Agency for Medicinal Products and Medical Devices , Zagreb , Croatia
| | - Petra Turcic
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry , Zagreb , Croatia
| | - Tomislav Tokic
- University of Zagreb School of Medicine , Zagreb , Croatia
| | - Ljilja Stefancic
- Department for Anaesthesiology and Intensive Care, University Hospital for Tumors , Zagreb , Croatia
| | - Eva Radetic
- University of Zagreb School of Medicine , Zagreb , Croatia
| | - Susan Farrington
- Colon Cancer Genetics Group and Academic Coloproctology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group and Academic Coloproctology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh , Edinburgh , UK
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh , Edinburgh , UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group and Academic Coloproctology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Iva Kirac
- Department of Surgical Oncology, University Hospital for Tumors , Zagreb , Croatia
| | - Lina Zgaga
- Discipline of Public Health and Primary Care, Institute of Population Health, Trinity College, University of Dublin , Dublin , Ireland
| |
Collapse
|
25
|
Fathi N, Ahmadian E, Shahi S, Roshangar L, Khan H, Kouhsoltani M, Maleki Dizaj S, Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 2018; 109:391-401. [PMID: 30399574 DOI: 10.1016/j.biopha.2018.10.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral cancer is known as one of the most common cancers, with a poor prognosis, related to delayed clinical diagnosis, either due to the lack of particular biomarkers related to the disease or costly therapeutic alternatives. Vitamin D executes its functions by interacting with the vitamin D receptor (VDR), both in healthy and diseased individuals, including oral cancer. This review discusses the role of vitamin D and VDR on tumorigenesis, emphasizing on oral cancer. Furthermore, regulation of VDR expression, mechanisms of anticancer effects of calcitriol, oral cancer chemoresistance and its relation with VDR and polymorphisms of VDR gene will be discussed. The manuscript is prepared mainly using the information collected from PubMed and MEDLINE.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan university, Mardan, 23200, Pakistan
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Xu J, Wang Y, Zhang Y, Dang S, He S. Astemizole promotes the anti-tumor effect of vitamin D through inhibiting miR-125a-5p-meidated regulation of VDR in HCC. Biomed Pharmacother 2018; 107:1682-1691. [PMID: 30257386 DOI: 10.1016/j.biopha.2018.08.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the fifth most common cancer worldwide. Vitamin D and antihistamines have been shown to play an anti-tumor role in various tumors. In the present study, we ought to investigate the synergistic effect of astemizole and Vitamin D in HCC cells. We showed that astemizole enhanced the anti-tumor effect of Vitamin D in HCC both in vitro and in vivo. Astemizole enhanced Vitamin D-induced decrease of cell viability and proliferation, increase of apoptosis, decrease of cell migration and invasion in HCC cells in vitro and decrease of tumor number, mass and incidence in HCC in vivo. Astemizole increased VDR expression both in HCC cells in vitro and in tumor tissues in vivo. Downregulation of VDR significantly inhibited the synergistic effect of Vitamin D and astemizole on HCC cell viability, proliferation, apoptosis, migration and invasion. Bioinformatics analysis identified that miR-125a-5p had a putative binding site in the 3'-UTR of VDR. miR-125a-5p mimics inhibited astemizole-induced increase of VDR and enhancement of the anti-tumor effect of Vitamin D in HCC. Reporter gene assay has confirmed that VDR was regulated by miR-125a-5p. miR-125a-5p inhibitors increased VDR expression and decreased cell viability and proliferation in HCC cells. Moreover, VDR and miR-125a-5p expression in tumor tissues in HCC patients were negatively correlated. We identified that inhibition of miR-125a-5p and subsequent upregulation of VDR was involved in astemizole-induced enhancement of the anti-tumor effect of Vitamin D in HCC. These results highlight the importance of combined treatment of astemizole and Vitamin D and provide novel insights into the role of miR-125a-5p-VDR signaling in HCC.
Collapse
Affiliation(s)
- Junli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Department of Geriatric Gastroenterology, Xi'an No. 1 Hospital, Xi'an 710002, China
| | - Yan Wang
- Department of Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ya Zhang
- Department of Gynaecology and Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shan Dang
- Department of Gastroenterology 2, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
27
|
Stucci LS, D'Oronzo S, Tucci M, Macerollo A, Ribero S, Spagnolo F, Marra E, Picasso V, Orgiano L, Marconcini R, De Rosa F, Di Guardo L, Galli G, Gandini S, Palmirotta R, Palmieri G, Queirolo P, Silvestris F. Vitamin D in melanoma: Controversies and potential role in combination with immune check-point inhibitors. Cancer Treat Rev 2018; 69:21-28. [PMID: 29864718 DOI: 10.1016/j.ctrv.2018.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
The role of vitamin D in melanoma is still controversial. Although several Authors described a correlation between vitamin D deficiency and poor survival in metastatic melanoma patients, clinical trials exploring the effects of vitamin D supplementation in this clinical setting were mostly inconclusive. However, recent evidence suggests that vitamin D exerts both anti-proliferative effects on tumor cells and immune-modulating activities, that have been widely explored in auto-immune disorders. On the one hand, vitamin D has been shown to inhibit T-helper17 lymphocytes, notoriously involved in the pathogenesis of immune-related adverse events (iAEs) which complicate immune-checkpoint inhibitor (ICI) treatment. On the other hand, vitamin D up-regulates PDL-1 expression on both epithelial and immune cells, suggesting a synergic effect in combination with ICIs, for which further investigation is needed.
Collapse
Affiliation(s)
- Luigia Stefania Stucci
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | - Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy.
| | - Marco Tucci
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Simone Ribero
- Department of Medical Sciences Section of Dermatology, University of Turin, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Elena Marra
- Department of Medical Sciences Section of Dermatology, University of Turin, Italy
| | - Virginia Picasso
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Laura Orgiano
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy
| | - Riccardo Marconcini
- Department of Oncology, Azienda Ospedaliero-Universitaria Pisana and University of Pisa, Istituto Toscano Tumori, Santa Chiara Hospital, Pisa, Italy
| | - Francesco De Rosa
- Immunotherapy-Cell Therapy and Biobank Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorenza Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Raffaele Palmirotta
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | | | - Paola Queirolo
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| |
Collapse
|
28
|
Elhusseini H, Elkafas H, Abdelaziz M, Halder S, Atabiekov I, Eziba N, Ismail N, El Andaloussi A, Al-Hendy A. Diet-induced vitamin D deficiency triggers inflammation and DNA damage profile in murine myometrium. Int J Womens Health 2018; 10:503-514. [PMID: 30214319 PMCID: PMC6120572 DOI: 10.2147/ijwh.s163961] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Previously, we reported a significantly higher prevalence of uterine fibroids (UFs) in African American women. This minority group also commonly suffers from vitamin D deficiency. We have demonstrated that 1,25(OH)2D3 attains a fibroid growth inhibitory impact through its ability to block the G1/S (gap 1/synthesis) phase of the cell cycle. Vitamin D is involved in DNA damage as well as in immune response regulation, anti-inflammation, autoimmunity and cancer. Since most of the prior data on vitamin D and UF were generated in vitro via established cell lines, it was necessary to verify and validate this observation in vivo using a diet-induced vitamin D-deficient mouse model. Materials and Methods Our model of vitamin D lacking function was established using 8-week exposure of C57/BL6 mice to vitamin D-deficient diet provides evidence of different functions accomplished by vitamin D in the regulation of myometrium homeostasis disrupted in the context of uterine fibroid. Results We found that vitamin D deficiency was associated with increased expression of sex steroid receptors in murine myometrium, increased expression of proliferation related genes, the promotion of fibrosis and enhanced inflammation, and promoted immunosuppression through Tregs expansion in murine myometrium. We also showed that a vitamin D deficient diet enhanced DNA damage in murine myometrium. Conclusion Our model mimics the effects in humans that a lack of vitamin D has and propels the study of in vivo interaction between inflammation, genomic instability and cell proliferation in the myometrium.
Collapse
Affiliation(s)
- Heba Elhusseini
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ;
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ; .,Pharmacology and Toxicology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed Abdelaziz
- Department of Obstetrics and Gynecology, Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Sunil Halder
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ;
| | - Ihor Atabiekov
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ;
| | - Noura Eziba
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ;
| | - Nahed Ismail
- Clinical Microbiology Division, University of Illinois of Chicago, Chicago, IL, USA
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois of Chicago, Chicago, IL, USA, ;
| |
Collapse
|
29
|
Nrf2 Expression in CML and AML Patients’ Peripheral Blood Mononuclear Cells Treated by Vitamin D, Carnosic Acid and Curcumin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Abstract
Cancer stem cells (CSCs) represent the root of many solid tumors including ovarian cancer. Eradication of CSCs represents a novel cancer therapeutic strategy. Calcitriol, also known as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an active metabolite of vitamin D, functioning as a potent steroid hormone. Calcitriol has shown anti-tumor effects in various cancers by regulating multiple signaling pathways. It has been reported that calcitriol can regulate the properties of normal and CSCs. However, the effect of calcitriol on the ovarian cancer growth and ovarian CSCs is still unclear. Here, by using a mouse subcutaneous xenograft model generated with human ovarian cancer cells, we have demonstrated that administration of calcitriol is able to strikingly delay the tumor growth. Calcitriol treatment can also deplete the ovarian CSC population characterized by ALDH+ and CD44+CD117+; decrease their capacity to form sphere under the CSC culture condition, and reduce the frequency of tumor-initiating cells, as evaluated by in vivo limiting dilution analysis. Mechanistic investigation revealed that calcitriol depletes CSCs via the nuclear vitamin D receptor (VDR)-mediated inhibition of the Wnt pathway. Furthermore, the activation of VDR pathway is more sensitive to calcitriol in ovarian CSCs than in non-CSCs, although the expression levels of VDR are comparable. Taken together, our data indicate that calcitriol is able to deplete the ovarian CSC population by inhibiting their Wnt signaling pathway, consequently, impeding the growth of xenograft tumors.
Collapse
|
31
|
The association of vitamin D deficiency and glucose control among diabetic patients. Saudi Pharm J 2017; 25:1179-1183. [PMID: 30166907 PMCID: PMC6111131 DOI: 10.1016/j.jsps.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022] Open
Abstract
Objective To evaluate the association between the level of vitamin D and glycemic control among patients with diabetes. Research design and method We analyzed data collected from NHANES 2003–2006. We included only non-pregnant adult diabetic persons 18 years or older. Participants who had vitamin D level less than 20 ng/ml were considered as having vitamin D deficiency. Participants were considered to have a glucose control if the HbA1c level was less than 7% [53 mmol/L]. We used student’s t test to compare the difference in HbA1c means between people with Diabetes with and without a vitamin D deficiency. We used a multivariate logistic regression model to predict the relationship between glucose control and vitamin D deficiency. We used race/ethnicity, BMI, age, gender, type of diabetic medication used, having health insurance or not, and comorbid conditions (hypertension, anemia, cholesterol, liver disease, and kidney disease) as control variables. Results The study population included a total of 929 non-institutionalized, non-pregnant, diabetic adult persons. About 57% of patients with diabetes had a vitamin D deficiency. Blacks (non-Hispanic patients) with diabetes had the highest rate of vitamin D deficiency (79%). The unadjusted means of HbA1c were significantly different between diabetic patients with no vitamin D deficiency and those with a vitamin D deficiency (7.06% [54 mmol/L], 7.56 % [59 mmol/L], respectively, P < 0.0001). Multivariate adjustment showed a small but not significant, increase in odds (11%) of having uncontrolled diabetes in patients with a vitamin D deficiency after adjustment for other factors. Conclusion Vitamin D deficiency is very common in patients with diabetes. We found no significant association between vitamin D level and glycemic control in patients with diabetes after adjustment for control variables.
Collapse
|
32
|
High Prevalence of Vitamin D Deficiency in Newly Diagnosed Acute Myeloid Leukemia Patients and Its Adverse Outcome. Int J Hematol Oncol Stem Cell Res 2017; 11:209-216. [PMID: 28989587 PMCID: PMC5625471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Although several studies have supported a preventive and therapeutic role of vitamin D (Vit D) for different types of cancers, we face insufficient documentation in acute myeloid leukemia (AML). So, we examined whether the serum calcidiol (25(OH)D) levels at the time of induction therapy have any impact on response and relapse in AML patients. Materials and Methods: Blood samples were collected from 65 patients on days 0 and 28th of treatment to evaluate serum concentration of 25(OH)D and its effects on complete remission (CR) achievement, relapse rate and hospitalization length. Results: Of the 65 patients who were included in the study, 38 were male (58.5%) and 27 were female (41.5%). Median age at the time of treatment was 37 years (range 15-68). 6% of the participants were older than 60 years. In regard to 25(OH)D levels, 81.5% of AML patients were deficient (levels <20 ng/ml). There was a significant difference in CR between patients with sufficient and deficient level of 25(OH)D. Deficient patients had longer length of hospitalization than those with sufficient levels. Also Vitamin D deficient patients had higher serum ALP levels. The mean level of 25(OH)D on treatment day 28th in our study was significantly lower than the baseline value. Conclusion: The results of the study showed that serum 25(OH)D levels deficiency was highly prevalent among Iranian AML patients. Furthermore, higher Vit D levels in AML patients were associated with better outcome in these patients.
Collapse
|
33
|
Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 2017; 167:203-218. [PMID: 27913313 DOI: 10.1016/j.jsbmb.2016.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
In the last two decades vitamin D (VD) research has demonstrated new extraskeletal actions of this pre-hormone, suggesting a protective role of this secosteroid in the onset, progression and prognosis of several chronic noncommunicable diseases, such as cardiovascular disease, diabetes mellitus or cancer. Regarding carcinogenesis, both preclinical and epidemiological evidence available show oncoprotective actions of VD and its receptor, the VDR. However, in late neoplastic stages the VD system (VDS) seems to be less functional, which appears to be due to an epigenetic silencing of the system. In preclinical experimental studies, VD presents oncoprotective actions through modulation of inflammation, cell proliferation, cell differentiation, angiogenesis, invasive and metastatic potential, apoptosis, miRNA expression regulation and modulation of the Hedgehog signalling pathway. Moreover, epidemiological evidence points towards an oncoprotective role of vitamin D and VDR in colorectal cancer. This association is more controversial with breast, ovarian and prostate cancers, although with a few adverse effects. Nonetheless, we should consider other factors to determine the benefit of increased serum concentration of VD. Much of the epidemiological evidence is still inconclusive, and we will have to wait for new, better-designed ongoing RCTs and their results to discern the real effect of vitamin D in cancer risk reduction and therapy. The objective of this literature review is to offer an up-to-date analysis of the role of the VD and VDR, in the onset, progression and prognosis of all types of cancer. We further discuss the available literature and suggest new hypotheses and future challenges in the field of VD research.
Collapse
Affiliation(s)
- Borja Bandera Merchan
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Sonsoles Morcillo
- CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Gracia Martin-Nuñez
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Francisco José Tinahones
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Macías-González
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
34
|
Zeljic K, Supic G, Magic Z. New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol Genet Genomics 2017; 292:511-524. [DOI: 10.1007/s00438-017-1301-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
35
|
Jin D, Zhang YG, Wu S, Lu R, Lin Z, Zheng Y, Chen H, Cs-Szabo G, Sun J. Vitamin D receptor is a novel transcriptional regulator for Axin1. J Steroid Biochem Mol Biol 2017; 165:430-437. [PMID: 27601169 PMCID: PMC5180453 DOI: 10.1016/j.jsbmb.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Axin1 is a scaffold protein in the β-catenin destruction complex, which, if disrupted, contributes to pathogenesis of various human diseases, including colorectal carcinogenesis and inflammatory bowel diseases (IBD). We have previously demonstrated that Salmonella infection promotes the degradation and plasma sequestration of Axin1, leading to bacterial invasiveness and inflammatory responses. Vitamin D and the vitamin D receptor (VDR) appear to be important regulators of IBD and colon cancer. Although VDR and Axin1 are all involved in intestinal inflammation, it remains unclear whether these processes are related or function independently. In the current study, we hypothesize that VDR is an important regulator for the maintenance of physiological level of Axin1. METHODS Using the intestinal epithelial conditional VDR knockout mouse model (VDRΔIEC) and cultured cell lines, influences of VDR status on the expression of Axin1 was evaluated by Western blots and real-time PCR. Loss- and gain-of-function assays were used to investigate the regulation of VDR on Axin1 at the transcriptional and translational levels. Cells were treated with cycloheximide or actinomycin for molecular mechanistic studies. Candidate genomic VDR binding sites for Axin1 were tested by chromatin immunoprecipitation (ChIP) assay. Physical interactions among VDR, Axin1, and β-catenin were tested by immunoprecipitation. Cellular localization of Axin1 with different VDR status was determined by fractionation and immunohistochemistry. RESULTS We found that VDR deletion led to lower protein and mRNA levels of Axin1, whereas knockdown of Axin1 did not change the expression level of VDR protein. Immunoprecipitation data did not support physical interaction between VDR and Axin1. The VDR regulation of Axin1 was through a VDR genomic binding site for Axin1 gene on the regulatory region. Fractionation data showed that cytosolic Axin1 was significantly reduced due to VDR deletion, leaving the nuclear fraction unchanged. In ileum, Axin1 was distributed in the cytosol of apical epithelium and crypts. CONCLUSION VDR is important for the maintenance of physiological level of Axin1. The discovery of Axin1 as a VDR target gene provides novel and fundamental insights into the interactions between the VDR and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Dapeng Jin
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shaoping Wu
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhijie Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuanyuan Zheng
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Honglei Chen
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | | | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
36
|
Zheng R, Studzinski GP. Nuclear ERK5 inhibits progression of leukemic monocytes to macrophages by regulating the transcription factor PU.1 and heat shock protein HSP70. Leuk Lymphoma 2016; 58:1468-1480. [PMID: 27748139 DOI: 10.1080/10428194.2016.1243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Differentiation therapy can supplement the therapy of APL, but other subtypes of AML are treated principally with cytotoxic agents, with few lasting remissions. While the induction of monocyte followed by macrophage differentiation by vitamin D derivatives (VDDs) is dramatic in cultured AML cells of all subtypes, attempts to translate this to the clinic have not been effective. Thus, better understanding of the mechanisms underlying VDD-induced differentiation may improve this approach. The key events in this form of differentiation include increased expression of CD11b, and the transcription factor PU.1 is known to be a part of this process. We show here that in the transition of monocytes to macrophages induced by a VDD, ERK5, a member of the MAPK family of signaling molecules, prevents PU.1 expression. However, upon ERK5 inhibition PU.1 protein is stabilized by HSP70.Thus, ERK5 may be a target for manipulation of the immunoregulatory actions of macrophages in cancer.
Collapse
Affiliation(s)
- Ruifang Zheng
- a Department of Pathology and Laboratory Medicine , New Jersey Medical School, Rutgers University , Newark , NJ , USA
| | - George P Studzinski
- a Department of Pathology and Laboratory Medicine , New Jersey Medical School, Rutgers University , Newark , NJ , USA
| |
Collapse
|
37
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
38
|
Facciorusso A, Del Prete V, Muscatiello N, Crucinio N, Barone M. Prognostic role of 25-hydroxyvitamin D in patients with liver metastases from colorectal cancer treated with radiofrequency ablation. J Gastroenterol Hepatol 2016; 31:1483-1488. [PMID: 26896637 DOI: 10.1111/jgh.13326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Vitamin D is implicated in the etiology of several neoplastic diseases, but its relationship with colorectal cancer survival is still unclear. Aim of this study was to determine whether vitamin D levels influence survival outcomes in colorectal cancer liver metastases patients treated with percutaneous radiofrequency ablation. METHODS We measured 25-hydroxyvitamin D levels in 143 patients with 215 colorectal liver metastases who underwent radiofrequency ablation between 1999 and 2011 at our institution. The influence of 25-hydroxyvitamin D levels on overall survival and time to recurrence was evaluated in univariate and multivariate Cox analyses. RESULTS Median age was 68 years (range 41-85), and median number of nodules was 2 (1-3) with a median maximum diameter of 26 mm (10-48). Median survival was 44 months (36-62), and survival rate was 91.4%, 46.5%, and 42.2% at 1, 4, and 5 years in the whole cohort. Median survival was 65 months (52-74) if 25-hydroxyvitamin D >20 ng/mL and 34 months (24-41) if ≤20 ng/mL (P < 0.001). In the whole cohort, median time to recurrence was 34 months (26-47), 50 months (36-62) in the case of 25-hydroxyvitamin D >20 ng/mL and 24 months (20-32) if ≤20 ng/mL (P < 0.001). Nodule size and 25-hydroxyvitamin D resulted as significant predictors of both overall survival and time to recurrence in multivariate analysis. CONCLUSIONS Our study provides support for the use of 25-hydroxyvitamin D as a new predictor of outcome for colorectal liver metastases patients.
Collapse
Affiliation(s)
| | | | | | | | - Michele Barone
- Gastroenterology Unit, University of Foggia, Foggia, Italy
| |
Collapse
|
39
|
Nachliely M, Sharony E, Bolla NR, Kutner A, Danilenko M. Prodifferentiation Activity of Novel Vitamin D₂ Analogs PRI-1916 and PRI-1917 and Their Combinations with a Plant Polyphenol in Acute Myeloid Leukemia Cells. Int J Mol Sci 2016; 17:ijms17071068. [PMID: 27399677 PMCID: PMC4964444 DOI: 10.3390/ijms17071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/28/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3) is a powerful differentiation inducer for acute myeloid leukemia (AML) cells. However, 1,25D3 doses required for differentiation of AML cells may cause lethal hypercalcemia in vivo. There is evidence that vitamin D2 is less toxic than vitamin D3 in animals. Here, we determined the differentiation effects of novel analogs of 1α,25-dihydroxyvitamin D2 (1,25D2), PRI-1916 and PRI-1917, in which the extended side chains of their previously reported precursors (PRI-1906 and PRI-1907, respectively) underwent further 24Z (24-cis) modification. Using four human AML cell lines representing different stages of myeloid maturation (KG-1a, HL60, U937, and MOLM-13), we found that the potency of PRI-1916 was slightly higher or equal to that of PRI-1906 while PRI-1917 was significantly less potent than PRI-1907. We also demonstrated that 1,25D2 was a less effective differentiation agent than 1,25D3 in these cell lines. Irrespective of their differentiation potency, all the vitamin D2 derivatives tested were less potent than 1,25D3 in transactivating the DR3-type vitamin D response elements. However, similar to 1,25D3, both 1,25D2 and its analogs could strongly cooperate with the plant polyphenol carnosic acid in inducing cell differentiation and inhibition of G1–S cell cycle transition. These results indicate that the 24Z modification has contrasting effects on the differentiation ability of PRI-1906 and PRI-1907 and that the addition of a plant polyphenol could result in a similar extent of cell differentiation induced by different vitamin D compounds. The enhanced antileukemic effects of the tested combinations may constitute the basis for the development of novel approaches for differentiation therapy of AML.
Collapse
Affiliation(s)
- Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Ehud Sharony
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Narasimha Rao Bolla
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Andrzej Kutner
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| |
Collapse
|
40
|
Abstract
Vitamin D, also known as cholecalciferol, is the precursor to the active steroid hormone 1, 25-dihydroxyvitamin D3 (calcitriol; 1, 25(OH)2D3). The main physiological role for 1, 25(OH)2D3 is to regulate calcium and inorganic phosphate homeostasis for bone health. More recently, vitamin D has been investigated for its effects in the prevention and treatment of a variety of diseases such as cancer, autoimmune disorders, and cardiovascular disease. Preclinical data strongly support a role for vitamin D in the prevention of cancer through its anti-proliferative, pro-apoptotic, and anti-angiogenic effects on cells. Epidemiologic and clinical studies have shown mixed data on the correlation between serum vitamin D levels and cancer risk. This report seeks to outline results from the most recent preclinical and clinical studies investigating the potential role of vitamin D in cancer prevention.
Collapse
Affiliation(s)
- Rachel A Ness
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
41
|
Peng W, Wang K, Zheng R, Derwahl M. 1,25 dihydroxyvitamin D3 inhibits the proliferation of thyroid cancer stem-like cells via cell cycle arrest. Endocr Res 2016; 41:71-80. [PMID: 27030645 DOI: 10.3109/07435800.2015.1037048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND An anti-proliferative effect of vitamin D has been reported in different carcinomas, including thyroid cancer. Cancer stem cells (CSCs), a very small fraction of cancer cells, are widely believed to be responsible for cancer initiation, relapse and metastasis. OBJECTIVES We addressed the question as to whether CSCs derived from the anaplastic thyroid carcinoma cell lines SW1736, C643, HTh74 and its doxorubicin- resistant subline HTh74R are also a target of vitamin D action. METHODS The effect of calcitriol on growth of HTh74, HTh74R, SW1736 and C643 cell lines was investigated by cell viability assays. In stem-enriched cells derived from thyro-spheres cell cycle analysis and apoptotic assays were performed. Furthermore, the role of calcitriol in the formation of cancer thyro-spheres and its putative differentiation-inducing effect were analysed. RESULTS CSCs isolated as thyro-spheres from all the four anaplastic thyroid carcinoma cells expressed vitamin D receptors as did their parental cells. Calcitriol inhibited proliferation of anaplastic thyroid carcinoma cells with a more pronounced effect on doxorubicin-resistant HTh74R cells, and it significantly reduced the capacity to form stem cell-derived spheres and decreased the size of these spheres that consist of CSCs and their progenitor cells. As revealed by cell cycle analysis, calcitriol induced G2/M phase arrest in thyro-sphere cells derived cells from HTh74, HTh74R and C643 but did not affect apoptosis. Finally, calcitriol altered morphology of CSCs. CONCLUSION Calcitriol inhibited the growth of CSCs derived from anaplastic thyroid cancer cells. It may also exert a pro-differentiation effect in thyroid CSCs.
Collapse
Affiliation(s)
- Wen Peng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Kun Wang
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Rendong Zheng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Michael Derwahl
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| |
Collapse
|
42
|
Studzinski GP, Harrison JS, Wang X, Sarkar S, Kalia V, Danilenko M. Vitamin D Control of Hematopoietic Cell Differentiation and Leukemia. J Cell Biochem 2016; 116:1500-12. [PMID: 25694395 DOI: 10.1002/jcb.25104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies. The reasons for the unimpressive results of most clinical studies of the therapeutic effects of VDDs in leukemia and related diseases may include the lack of a precise rationale for the conduct of these studies. Further, clinical trials to date have generally used extremely heterogeneous patient populations and, in many cases, small numbers of patients, generally without controls. Although low calcemic VDDs have been used and combined with agents that can increase the leukemia cell killing or differentiation effects in acute leukemias, the sequencing of agents used for combination therapy should to be more clearly delineated. Most importantly, it is recommended that in future clinical trials the rationale for the basis of the enhancing action of drug combinations should be clearly articulated and the effects on anticancer immunity should also be evaluated.
Collapse
Affiliation(s)
- George P Studzinski
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Jonathan S Harrison
- Department of Medicine, University of Missouri Medical School, One Hospital Drive, Columbia, Missouri 65212
| | - Xuening Wang
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Surojit Sarkar
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vandana Kalia
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Danilenko
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| |
Collapse
|
43
|
Fleischer AB, Fleischer SE. Solar radiation and the incidence and mortality of leading invasive cancers in the United States. DERMATO-ENDOCRINOLOGY 2016; 8:e1162366. [PMID: 27195056 PMCID: PMC4862378 DOI: 10.1080/19381980.2016.1162366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
Invasive cancer risk is inversely related to ultraviolet light exposure. This study explores relationships between cancer and the satellite-derived sunlight energy. We obtained the North America Land Data Assimilation System (NLDAS) daily average sunlight for the continental United States from 1999-2011. US Cancer Statistics age-adjusted-incidence and mortality was also obtained from the Centers for Disease Control and Prevention (CDC). We found that cancer incidence for all invasive cancers and for 11 of 22 leading cancers significantly decreased with increased solar radiation. Cancer mortality for all invasive cancers was not significantly associated with solar radiation, but for 7 of 22 leading cancers, including cancers of the uterus, leukemias, lung, ovary, and urinary bladder, increased solar radiation predicted decreased mortality. With increasing solar radiation, increased incidence and cancer mortality was observed for liver cancer and increased incidence but not mortality was observed for cervical cancer. The current study confirms studies relating UV radiation to the incidence and mortality of a variety of cancer types. We find associations between solar radiation energy and the incidence and mortality of a number of types of cancers.
Collapse
Affiliation(s)
- Alan B Fleischer
- Department of Surgery, University of Kentucky College of Medicine , Lexington, KY, USA
| | | |
Collapse
|
44
|
Jung YS, Kim HJ, Seo SK, Choi YS, Nam EJ, Kim S, Kim SW, Han HD, Kim JW, Kim YT. Anti-Proliferative and Apoptotic Activities of Müllerian Inhibiting Substance Combined with Calcitriol in Ovarian Cancer Cell Lines. Yonsei Med J 2016; 57:33-40. [PMID: 26632380 PMCID: PMC4696969 DOI: 10.3349/ymj.2016.57.1.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE This study aimed to investigate whether Müllerian inhibiting substance (MIS) in combination with calcitriol modulates proliferation and apoptosis of human ovarian cancer (OCa) cell lines (SKOV3, OVCAR3, and OVCA433) and identify the signaling pathway by which MIS mediates apoptosis. MATERIALS AND METHODS OCa cell lines were treated with MIS in the absence or presence of calcitriol. Cell viability and proliferation were evaluated using the Cell Counting Kit-8 assay and apoptosis was evaluated by DNA fragmentation assay. Western blot and enzyme-linked immunosorbent assay were used to determine the signaling pathway. RESULTS The cells showed specific staining for the MIS type II receptor. Treatment of OCa cells with MIS and calcitriol led to dose- and time-dependent inhibition of cell growth and survival. The combination treatment significantly suppressed cell growth, down-regulated the expression of B-cell lymphoma 2 (Bcl-2), and up-regulated the expressions of Bcl-2 associated X protein, caspase-3, and caspase-9 through the extracellular signal-regulated kinase signaling pathway. CONCLUSION These results, coupled with a much-needed decrease in the toxic side effects of currently employed therapeutic agents, provide a strong rationale for testing the therapeutic potential of MIS, alone or in combination with calcitriol, in the treatment of OCa.
Collapse
Affiliation(s)
- Yeon Soo Jung
- Department of Obstetrics and Gynecology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jung Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Kyo Seo
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Nam
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Wun Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyuck Dong Han
- Department of Obstetrics and Gynecology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Wook Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Huang J, Yang G, Huang Y, Kong W, Zhang S. 1,25(OH)2D3 inhibits the progression of hepatocellular carcinoma via downregulating HDAC2 and upregulating P21(WAFI/CIP1). Mol Med Rep 2015; 13:1373-80. [PMID: 26676829 DOI: 10.3892/mmr.2015.4676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
Vitamin D, termed 1,25(OH)2D3 in it's active form, activity is associated with a reduced risk of hepatocellular carcinoma (HCC) and is an important immune regulator. However, the detail molecular mechanisms underlying the effects of 1,25(OH)2D3 on the progression of HCC are widely unknown. Histone deacetwylase 2 (HDAC2) is usually expressed at high levels in tumors, and its downregulation leads to high expression levels of cell cycle components, including p21(WAF1/Cip1), a well-characterized modulator, which is critical in cell senescence and apoptosis. The present study investigated whether vitamin D inhibits HCC via the regulation of HDAC2 and p21(WAF1/Cip1). Firstly, the toxic concentrations of 1,25(OH)2D3 were determined, according to trypan blue and [(3)H]thymidine incorporation assays. Secondly, HCC cells lines were treated with different concentrations of 1,25(OH)2D3. The expression of HDAC2 was either silenced via short hairpin (sh)RNA or induced by transfection of plasmids expressing the HDAC2 gene in certain HCC cells. Finally the mRNA and protein levels of HDAC2 and p21(WAF1/Cip1) were measured using reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results revealed that 1,25(OH)2D3 treatment reduced the expression of HDAC2 and increased the expression of p21(WAF1/Cip1), in a dose-dependent manner, resulting in the reduction of HCC growth. Elevated levels of HDAC2 reduced the expression of p21(WAF1/Cip1), resulting in an increase in HCC growth. HDAC2 shRNA increased the expression of p21(WAF1/Cip1), resulting in reduction in HCC growth. Thus, 1,25(OH)2D3 exerted antitumorigenic effects through decreasing the expression levels of HDAC2 and increasing the expression of p21(WAF1/Cip1), which inhibited the development of HCC and may indicate the possible underlying mechanism. These results suggest that vitamin D3 may be developed as a potential drug for effective therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Jian Huang
- Biochemistry Department, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Guozhen Yang
- Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yunzhu Huang
- Biochemistry Department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Weiying Kong
- Biochemistry Department, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Shu Zhang
- Medical Laboratory, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
46
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|
47
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
48
|
Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof E, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 2015; 64:1082-94. [PMID: 25080448 PMCID: PMC4312277 DOI: 10.1136/gutjnl-2014-307436] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Vitamin D and the vitamin D receptor (VDR) appear to be important immunological regulators of inflammatory bowel diseases (IBD). Defective autophagy has also been implicated in IBD, where interestingly, polymorphisms of genes such as ATG16L1 have been associated with increased risk. Although vitamin D, the microbiome and autophagy are all involved in pathogenesis of IBD, it remains unclear whether these processes are related or function independently. DESIGN We investigated the effects and mechanisms of intestinal epithelial VDR in healthy and inflamed states using cell culture models, a conditional VDR knockout mouse model (VDR(ΔIEC)), colitis models and human samples. RESULTS Absence of intestinal epithelial VDR affects microbial assemblage and increases susceptibility to dextran sulfate sodium-induced colitis. Intestinal epithelial VDR downregulates expressions of ATG16L1 and lysozyme, and impairs antimicrobial function of Paneth cells. Gain and loss-of-function assays showed that VDR levels regulate ATG16L1 and lysozyme at the transcriptional and translational levels. Moreover, low levels of intestinal epithelial VDR correlated with reduced ATG16L1 and representation by intestinal Bacteroides in patients with IBD. Administration of the butyrate (a fermentation product of gut microbes) increases intestinal VDR expression and suppresses inflammation in a colitis model. CONCLUSIONS Our study demonstrates fundamental relationship between VDR, autophagy and gut microbial assemblage that is essential for maintaining intestinal homeostasis, but also in contributing to the pathophysiology of IBD. These insights can be leveraged to define therapeutic targets for restoring VDR expression and function.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Yong-guo Zhang
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Rong Lu
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Ave. Rochester, NY 14642, USA
| | - David Zhou
- Department of Pathology, University of Rochester, 601 Elmwood Ave. Rochester, NY 14642, USA
| | - Elaine Petrof
- Department of Medicine, GI Diseases Research Unit and Division of Infectious Diseases, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Erika C Claud
- Departments of Pediatrics, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A., Departments of Medicine, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A
| | - Di Chen
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Eugene B Chang
- Departments of Medicine, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A
| | - Geert Carmeliet
- Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, B-3000 Belgium
| | - Jun Sun
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| |
Collapse
|
49
|
Bläuer M, Sand J, Laukkarinen J. Physiological and clinically attainable concentrations of 1,25-dihydroxyvitamin D3 suppress proliferation and extracellular matrix protein expression in mouse pancreatic stellate cells. Pancreatology 2015; 15:366-71. [PMID: 26005021 DOI: 10.1016/j.pan.2015.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Vitamin D is an antiproliferative and differentiation-promoting secosteroid hormone with pleiotropic homeostatic functions in bone and extraskeletal tissues. Signaling of vitamin D is mediated via its ubiquitously expressed nuclear receptor, the vitamin D receptor (VDR). Pancreatic stellate cells have recently been identified as targets of vitamin D action. Our aim was to elucidate the effectiveness of the most potent endogenous vitamin D metabolite, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the proliferation and extracellular matrix (ECM) protein expression in pancreatic stellate cells (PSCs) using concentrations of the compound from the physiological and clinically attainable range in humans. METHODS Culture-activated mouse PSCs were exposed to 1,25(OH)2D3 concentrations ranging from 0.1 nM to 10 nM for 7 days and subjected to colorimetric crystal violet assay for cell growth assessment and to Western blot and immunohistochemical analyses of VDR, fibronectin and collagen I using protein-specific antibodies. Immunohistochemical localization of VDR was performed on mouse pancreatic tissue and on a set of human specimens obtained at pancreatic surgery. RESULTS A low basal level of VDR was detected in PSCs that was strongly induced in the presence of ligand. Cell growth was suppressed dose-dependently by 1,25(OH)2D3, the mean percentages of inhibition ranging from 24% at the physiological 0.1 nM concentration to around 60% at 10 nM. Significant 48% and 40% reductions in fibronectin expression were seen at 0.5 nM and 1 nM 1,25(OH)2D3. A minor decrease in collagen I expression was detected at 5 nM. VDR was predominantly localized in the islets of Langerhans in mouse and human tissues. In the latter VDR was expressed also in the exocrine tissue showing individual variation in its cellular distribution. CONCLUSIONS Mouse PSCs express VDR protein and are sensitive 1,25(OH)2D3 target cells with low levels of 1,25(OH)2D3 exerting antiproliferative and antifibrotic effects on activated PSCs in vitro.
Collapse
Affiliation(s)
- Merja Bläuer
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | - Juhani Sand
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland; Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | - Johanna Laukkarinen
- Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland; Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland.
| |
Collapse
|
50
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|