1
|
Bagaza C, Ansaf H, Yobi A, Angelovici R. Investigating the Effects of Arabidopsis thaliana Cruciferin Double Knockouts on Amino Acid Profiles, Dry Seed Proteome, and Oxidative Stress Levels. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001441. [PMID: 40303839 PMCID: PMC12038438 DOI: 10.17912/micropub.biology.001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
As plant seeds mature, they accumulate large quantities of seed storage proteins, which are a vital source of carbon, nitrogen, and sulfur necessary for establishing the seedling, especially during the transition from the heterotrophic to the photoautotrophic stage. However, seed storage proteins in many crop seeds are deficient in essential amino acids, which cannot be synthesized by humans and monogastric animals and must be obtained from the diet. Lysine and tryptophan are the most deficient amino acids in cereal seeds, while methionine is the most deficient amino acid in legumes. In the last few decades, extensive research has been done to improve the nutritional quality of seed crops. However, much of this effort was hindered due to the conserved natural phenomenon of proteomic rebalancing that 'resets' the seed's protein-bound amino acid composition despite major alterations to the proteomic sink. Neither the underlying regulatory mechanism nor the natural function of proteomic rebalancing is well understood. To address this gap, we used the model organism Arabidopsis thaliana to investigate the impact of cruciferin (CRU) seed storage protein double knockouts on key biological processes. Amino acid analysis showed that the protein-bound amino acid composition and levels did not change in the mutants despite major alterations in the proteome, especially in the double mutant lacking both CRUA and CRUC ( cruac ). This mutant also has the highest free amino acid changes and experienced the most oxidative stress damage compared to other mutants based on analysis of protein carbonylation and glutathione levels. The mutant that lacks CRUA and CRUB ( cruab ), on the other hand, was the least affected in all the traits examined. These results suggest that CRUs are not functionally redundant, and that each CRU is not replaceable by another in Arabidopsis . The results also show that Arabidopsis seed protein-bound amino acid composition is fully rebalanced in the double CRU mutants despite major proteome alteration.
Collapse
Affiliation(s)
- Clement Bagaza
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Huda Ansaf
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Abou Yobi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Dousti M, Mazhary L, Lohrasebi T, Minuchehr Z, Sanjarian F, Razavi K. How abscisic acid collaborates in Brassica napus responses to salt and drought stress: An in silico approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109453. [PMID: 39742782 DOI: 10.1016/j.plaphy.2024.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance. In this study, genes involved in response to salt and drought stresses in B. napus were investigated via sequence-read archive databases at different time points. The results were analyzed by the GALAXY server to detect DEGs. DEGs associated with short-, medium- and long-term salinity and drought stress were identified via extensive meta-analysis and robust rank aggregation methods. Subsequently, Gene Ontology (GO) analysis of the identified robust DEGs was performed via BLAST2GO. By constructing a protein-protein interaction (PPI) network with Cytoscape software, the hub genes associated with each line of salt and drought stress response were identified. Among all DEGs, HAI2 and DREB1B, which are hub genes, were selected for validation by qRT‒PCR in salt/drought-tolerant and salt/drought-sensitive cultivars of canola, Okapi and RGS, respectively, under salt and drought treatments. Fine-tuning affected the manner and time of contribution of each Abscisic Acid (ABA)-dependent and ABA-independent signaling pathway in response to salinity and drought tolerant and sensitive canola cultivars. Furthermore, the identification of hub genes through meta-analysis provided insight into the molecular responses of canola to salinity/drought stresses and the engineering of abiotic stress tolerance in canola for industrial cultivation of canola in poor-quality lands.
Collapse
Affiliation(s)
- Mohadese Dousti
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Leila Mazhary
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tahmineh Lohrasebi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Foroogh Sanjarian
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Khadijeh Razavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
4
|
Bagaza C, Ansaf H, Yobi A, Chan YO, Slaten ML, Czymmek K, Joshi T, Mittler R, Mawhinney TP, Cohen DH, Yasuor H, Angelovici R. A multi-omics approach reveals a link between ribosomal protein alterations and proteome rebalancing in Arabidopsis thaliana seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2803-2827. [PMID: 39570765 DOI: 10.1111/tpj.17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
The ability of seeds to restore their amino acid content and composition after the elimination of the most abundant seed storage proteins (SSPs) is well-documented, yet the underlying mechanisms remain unclear. To better understand how seeds compensate for major proteomic disruptions, we conducted a comprehensive analysis on an Arabidopsis mutant lacking the three most abundant SSPs, the cruciferins. Our initial findings indicated that carbon, nitrogen, and sulfur levels, as well as total protein and oil content, remained unchanged in these mutants suggesting rebalanced seeds. Transcriptomics and proteomics performed during seed maturation of Col-0 and the triple mutant revealed significant modulation in many components of the translational machinery, especially ribosomal proteins (RPs), and in the antioxidation response in the mutant. These findings suggest that RPs play a critical role in facilitating proteomic homeostasis during seed maturation when proteomic perturbation occurs. Biochemical and metabolic analyses of the triple mutant dry seeds revealed increased protein carbonylation and elevated glutathione levels further supporting the link between SSP accumulation and seed redox homeostasis. Overall, we propose that in response to significant proteomic perturbations, changes in the proteome and amino acid composition of seeds are accompanied by a broad remodeling of the translation apparatus. We postulate that these alterations are key elements in seed adaptability and robustness to large proteomic perturbations during seed maturation.
Collapse
Affiliation(s)
- Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Huda Ansaf
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Yen On Chan
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA
| | - Marianne L Slaten
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kirk Czymmek
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Trupti Joshi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Biomedical Informatics, Biostatistics, and Medical Epidemiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ron Mittler
- Department of Plant Science and Technology, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dan H Cohen
- Gilat Research Center, Agricultural Research Organization (ARO), Rural Delivery, Negev, 85280, Israel
| | - Hagai Yasuor
- Gilat Research Center, Agricultural Research Organization (ARO), Rural Delivery, Negev, 85280, Israel
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
5
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
6
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
7
|
Yang J, Shen P, de Groot A, Mocking-Bode HCM, Nikiforidis CV, Sagis LMC. Oil-water interface and emulsion stabilising properties of rapeseed proteins napin and cruciferin studied by nonlinear surface rheology. J Colloid Interface Sci 2024; 662:192-207. [PMID: 38341942 DOI: 10.1016/j.jcis.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
HYPOTHESIS Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.
Collapse
Affiliation(s)
- Jack Yang
- TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands; Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Penghui Shen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Helene C M Mocking-Bode
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6700AA Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
8
|
Zhang R, Fang X, Feng Z, Chen M, Qiu X, Sun J, Wu M, He J. Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chem 2024; 439:138109. [PMID: 38070236 DOI: 10.1016/j.foodchem.2023.138109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
The application of rapeseed protein in human foods is limited by residual antinutritive components and poor sensory quality. The effects of five extraction protocols on rapeseed protein yield, sensory, functional and nutritional properties were systematically evaluated in this study. In particular, the potential of weakly acidic salt (pH 6.5, 150 mmol·L-1 MgCl2) extraction as a mild method for recovering edible rapeseed protein was investigated compared with conventional alkali extraction. All salt-extracted proteins showed above 40 % extraction yield and low antinutritional factor contents. They also had ideal amino acid patterns and better in vitro gastroduodenal digestibility than alkaline-extracted proteins. Additionally, the lighter color and odor, as well as better solubility, emulsion activity, foaming property, and water/oil holding capacity were found in weakly acidic salt extraction-ultrafiltered proteins. These findings suggest that weakly acidic salt extraction-ultrafiltration could be used for obtaining edible rapeseed protein, while extraction yield should be improved for scale application.
Collapse
Affiliation(s)
- Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xuelian Fang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zisheng Feng
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ming Chen
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiushuang Qiu
- Hubei Yuanda Plant Technology Co., Ltd, Xiangyang 441100, PR China
| | - Jinmeng Sun
- Hubei ShuangmingLiangmianyou Co., Ltd, Huanggang 438205, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
9
|
Zhu H, Wang L, Li X, Shi J, Scanlon M, Xue S, Nosworthy M, Vafaei N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024; 13:1357. [PMID: 38731728 PMCID: PMC11083811 DOI: 10.3390/foods13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.
Collapse
Affiliation(s)
- Huipeng Zhu
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Lu Wang
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Xiaoyu Li
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Martin Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Matthew Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Nazanin Vafaei
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Nisov A, Valtonen A, Aisala H, Spaccasassi A, Walser C, Dawid C, Sozer N. Effect of peptide formation during rapeseed fermentation on meat analogue structure and sensory properties at different pH conditions. Food Res Int 2024; 180:114070. [PMID: 38395559 DOI: 10.1016/j.foodres.2024.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides. On the other hand, fermentation removed the intensive off-odour and flavour notes present in the native raw material. Several control treatments were produced to understand the reasons behind the hindered fibrous structure formation and induced bitterness. The results obtained from peptidomics, free amino ends, and solubility analyses strongly indicated that the proteins were hydrolysed by endoproteases activated during the fermentation process. Furthermore, it was suspected that the proteins and/or peptides formed complexes with other components, such as hydrolysis products of glucosinolates and polysaccharides.
Collapse
Affiliation(s)
- Anni Nisov
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Anniina Valtonen
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland
| | - Heikki Aisala
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Christoph Walser
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Nesli Sozer
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| |
Collapse
|
11
|
Cháirez-Jiménez C, Castro-López C, Serna-Saldívar S, Chuck-Hernández C. Partial characterization of canola ( Brassica napus L.) protein isolates as affected by extraction and purification methods. Heliyon 2023; 9:e21938. [PMID: 38027992 PMCID: PMC10654237 DOI: 10.1016/j.heliyon.2023.e21938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Canola (Brassica napus L.) meal represents a prominent alternative plant-based source for protein isolation. This work aimed to investigate the combined effect of extraction and purification methods for the production of canola protein isolates (CPIs). CPIs were characterized in terms of process yield, protein recovery, basic composition, amino acid profile, in vitro protein digestibility, techno-functional properties, structural properties, and molecular features. The results showed that the Alk-Uf method enhanced yield (16.23 %) and protein recovery (34.88 %). Meanwhile, the Et-Alk-Uf method exhibited the highest crude protein (89.71 %) and free amino nitrogen (4.34 mg g protein-1) contents. Furthermore, protein digestibility (95.5 %) and protein digestibility corrected amino acid score (1.0) were improved using the Et-Alk-Ac method. Conversely, the amino acid composition, secondary structure, and electrophoretic profiles were generally similar for all CPIs. The Alk-Uf and Et-Alk-Uf methods produced isolates with the highest water solubility (∼39.18 %), water absorption capacity (∼3.86 g water g protein-1), oil absorption capacity (∼2.77 g oil g protein-1), and foaming capacity (∼505.26 %). Finally, the foaming stability (93.75 %) and foaming density (34.38 %) were increased when employing the Alk-Ac method. These findings suggest that, in general, the Alk-Uf and Et-Alk-Uf methods can be used to obtain CPIs with high added value for use in food formulations.
Collapse
Affiliation(s)
- Cristina Cháirez-Jiménez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| | - Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| | - Sergio Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| |
Collapse
|
12
|
Zdraveva E, Gaurina Srček V, Kraljić K, Škevin D, Slivac I, Obranović M. Agro-Industrial Plant Proteins in Electrospun Materials for Biomedical Application. Polymers (Basel) 2023; 15:2684. [PMID: 37376328 DOI: 10.3390/polym15122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Plant proteins are receiving a lot of attention due to their abundance in nature, customizable properties, biodegradability, biocompatibility, and bioactivity. As a result of global sustainability concerns, the availability of novel plant protein sources is rapidly growing, while the extensively studied ones are derived from byproducts of major agro-industrial crops. Owing to their beneficial properties, a significant effort is being made to investigate plant proteins' application in biomedicine, such as making fibrous materials for wound healing, controlled drug release, and tissue regeneration. Electrospinning technology is a versatile platform for creating nanofibrous materials fabricated from biopolymers that can be modified and functionalized for various purposes. This review focuses on recent advancements and promising directions for further research of an electrospun plant protein-based system. The article highlights examples of zein, soy, and wheat proteins to illustrate their electrospinning feasibility and biomedical potential. Similar assessments with proteins from less-represented plant sources, such as canola, pea, taro, and amaranth, are also described.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28, 10000 Zagreb, Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Igor Slivac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Obranović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Newson W, Capezza AJ, Kuktaite R, Hedenqvist MS, Johansson E. Green Chemistry to Modify Functional Properties of Crambe Protein Isolate-Based Thermally Formed Films. ACS OMEGA 2023; 8:20342-20351. [PMID: 37323394 PMCID: PMC10268266 DOI: 10.1021/acsomega.3c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Proteins are promising precursors to be used in production of sustainable materials with properties resembling plastics, although protein modification or functionalization is often required to obtain suitable product characteristics. Here, effects of protein modification were evaluated by crosslinking behavior using high-performance liquid chromatography (HPLC), secondary structure using infrared spectroscopy (IR), liquid imbibition and uptake, and tensile properties of six crambe protein isolates modified in solution before thermal pressing. The results showed that a basic pH (10), especially when combined with the commonly used, although moderately toxic, crosslinking agent glutaraldehyde (GA), resulted in a decrease in crosslinking in unpressed samples, as compared to acidic pH (4) samples. After pressing, a more crosslinked protein matrix with an increase in β-sheets was obtained in basic samples compared to acidic samples, mainly due to the formation of disulfide bonds, which led to an increase in tensile strength, and liquid uptake with less material resolved. A treatment of pH 10 + GA, combined either with a heat or citric acid treatment, did not increase crosslinking or improve the properties in pressed samples, as compared to pH 4 samples. Fenton treatment at pH 7.5 resulted in a similar amount of crosslinking as the pH 10 + GA treatment, although with a higher degree of peptide/irreversible bonds. The strong bond formation resulted in lack of opportunities to disintegrate the protein network by all extraction solutions tested (even for 6 M urea + 1% sodium dodecyl sulfate + 1% dithiothreitol). Thus, the highest crosslinking and best properties of the material produced from crambe protein isolates were obtained by pH 10 + GA and pH 7.5 + Fenton, where Fenton is a greener and more sustainable solution than GA. Therefore, chemical modification of crambe protein isolates is effecting both sustainability and crosslinking behavior, which might have an effect on product suitability.
Collapse
Affiliation(s)
- William
R. Newson
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Antonio J. Capezza
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Ramune Kuktaite
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Eva Johansson
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
14
|
Impact of process conditions and type of protein on conjugate formation with pectin by vacuum drying. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Lopez C, Sotin H, Rabesona H, Novales B, Le Quéré JM, Froissard M, Faure JD, Guyot S, Anton M. Oil Bodies from Chia ( Salvia hispanica L.) and Camelina ( Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023; 12:foods12010211. [PMID: 36613428 PMCID: PMC9818916 DOI: 10.3390/foods12010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed OBs. A green refinery process including ultrasound to remove mucilage, aqueous extraction by grinding and centrifugation to recover OBs from the seeds was used. The microstructure, composition and physical stability of the OBs were examined. Confocal laser scanning microscopy images showed that chia and camelina seed OBs are spherical assemblies coated by a layer of phospholipids and proteins, which have been identified by gel electrophoresis. The mean diameters determined by laser light scattering measurements were 2.3 and 1.6 µm for chia and camelina seed OBs, respectively. The chia and camelina seed OBs were rich in lipids and other bioactive components with, respectively, 64% and 30% α-linolenic acid representing 70% and 53% of the total fatty acids in the sn-2 position of the triacylglycerols, 0.23% and 0.26% phospholipids, 3069 and 2674 mg/kg oil of β-sitosterol, and lipophilic antioxidants: 400 and 670 mg/kg oil of γ-tocopherol. Phenolic compounds were recovered from the aqueous extracts, such as rutin from camelina and caffeic acid from chia. Zeta-potential measurements showed changes from about -40 mV (pH 9) to values that were positive below the isoelectric points of pH 5.1 and 3.6 for chia and camelina seed OBs, respectively. Below pH 6.5, physical instability of the natural oil-in-water emulsions with aggregation and phase separation was found. This study will contribute to the development of innovative and sustainable food products based on natural oil-in-water emulsions containing chia and camelina seed OBs for their nutritional and health benefits.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | | | | |
Collapse
|
16
|
Shen P, Yang J, Nikiforidis CV, Mocking-Bode HC, Sagis LM. Cruciferin versus napin – Air-water interface and foam stabilizing properties of rapeseed storage proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|
18
|
Gasparre N, van den Berg M, Oosterlinck F, Sein A. High-Moisture Shear Processes: Molecular Changes of Wheat Gluten and Potential Plant-Based Proteins for Its Replacement. Molecules 2022; 27:molecules27185855. [PMID: 36144595 PMCID: PMC9504627 DOI: 10.3390/molecules27185855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, a growing offering of plant-based meat alternatives is available in the food market. Technologically, these products are produced through high-moisture shear technology. Process settings and material composition have a significant impact on the physicochemical characteristics of the final products. Throughout the process, the unfolded protein chains may be reduced, or associate in larger structures, creating rearrangement and cross-linking during the cooling stage. Generally, soy and pea proteins are the most used ingredients in plant-based meat analogues. Nevertheless, these proteins have shown poorer results with respect to the typical fibrousness and juiciness found in real meat. To address this limitation, wheat gluten is often incorporated into the formulations. This literature review highlights the key role of wheat gluten in creating products with higher anisotropy. The generation of new disulfide bonds after the addition of wheat gluten is critical to achieve the sought-after fibrous texture, whereas its incompatibility with the other protein phase present in the system is critical for the structuring process. However, allergenicity problems related to wheat gluten require alternatives, hence an evaluation of underutilized plant-based proteins has been carried out to identify those that potentially can imitate wheat gluten behavior during high-moisture shear processing.
Collapse
Affiliation(s)
- Nicola Gasparre
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Food Science Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain
- Correspondence:
| | - Marco van den Berg
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Filip Oosterlinck
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Arjen Sein
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
19
|
Kaugarenia N, Beaubier S, Durand E, Aymes A, Villeneuve P, Lesage F, Kapel R. Optimization of Selective Hydrolysis of Cruciferins for Production of Potent Mineral Chelating Peptides and Napins Purification to Valorize Total Rapeseed Meal Proteins. Foods 2022; 11:2618. [PMID: 36076804 PMCID: PMC9455892 DOI: 10.3390/foods11172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Preventing oxidation and microbial spoilage are both major concerns in food industries. In this context, this study aimed to valorize the total rapeseed meal proteins with controlled enzymatic proteolysis to generate potent mineral-chelating peptides from cruciferins while keeping intact the antimicrobial napins. Implementation of proteolysis of total rapeseed protein isolate with the Prolyve® enzyme highlighted an interesting selective hydrolysis of the cruciferins. Hence, the mechanism of this particular hydrolysis was investigated through a Design of Experiments method to obtain a model for the prediction of kinetics (cruciferin degradation and napin purity) according to the operating conditions applied. Then, multicriteria optimization was implemented to maximize the napin purity and yield while minimizing both enzymatic cost and reaction time. Antioxidant assays of the peptide fraction obtained under the optimal conditions proved the high metal-chelating activity preservation (EC50 = 247 ± 27 µg) for more than three times faster production. This fraction might counteract lipid oxidation or serve as preventing agents for micronutrient deficiencies, and the resulting purified napins may have applications in food safety against microbial contamination. These results can greatly help the development of rapeseed meal applications in food industries.
Collapse
Affiliation(s)
- Nastassia Kaugarenia
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de la Réunion, F-34398 Montpellier, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de la Réunion, F-34398 Montpellier, France
| | - François Lesage
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
20
|
Perera SP, McIntosh T, Coutu C, Tyler RT, Hegedus DD, Wanasundara JPD. Profiling and characterization of
Camelina sativa
(
L
.)
Crantz
meal proteins. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Suneru P. Perera
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Tara McIntosh
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
| | - Cathy Coutu
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
| | - Robert T. Tyler
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Janitha P. D. Wanasundara
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| |
Collapse
|
21
|
Ammeter A, So K, Duncan RW. Analysis of cruciferin content in whole seeds of
Brassica napus
L
. by
near‐infrared
spectroscopy. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashley Ammeter
- Department of Plant Science University of Manitoba Winnipeg Canada
| | - Kenny So
- Department of Plant Science University of Manitoba Winnipeg Canada
| | - Robert W. Duncan
- Department of Plant Science University of Manitoba Winnipeg Canada
| |
Collapse
|
22
|
Zhou H, Vu G, McClements DJ. Formulation and characterization of plant-based egg white analogs using RuBisCO protein. Food Chem 2022; 397:133808. [PMID: 35914453 DOI: 10.1016/j.foodchem.2022.133808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
RuBisCO protein, which can be isolated from abundant and sustainable plant sources, can mimic some of the desirable functional attributes of egg white proteins. In this study, plant-based egg white analogs were successfully produced using 10 w% RuBisCO solutions (pH 8). These protein solutions had similar apparent viscosity-shear rate profiles, shear modulus-temperature profiles, gelling temperatures, and final gel strengths as egg white. However, there were some differences. RuBisCO protein gels were slightly darker than egg white, which was attributed to the presence of phenolic impurities. Moreover, RuBisCo proteins exhibited a single thermal transition temperature (∼66 °C) whereas egg white proteins exhibited two (∼66 and ∼81 °C). RuBisCO gels were more brittle but less chewy and resilient than egg white gels. This study provides valuable insights into the potential of RuBisCO protein for formulating plant-based egg white analogs.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Giang Vu
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Bhinder G, Sharma S, Kaur H, Akhatar J, Mittal M, Sandhu S. Genomic Regions Associated With Seed Meal Quality Traits in Brassica napus Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:882766. [PMID: 35909769 PMCID: PMC9333065 DOI: 10.3389/fpls.2022.882766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The defatted Brassica napus (rapeseed) meal can be high-protein feed for livestock as the protein value of rapeseed meal is higher than that of the majority of other vegetable proteins. Extensive work has already been carried out on developing canola rapeseed where the focus was on reducing erucic acid and glucosinolate content, with less consideration to other antinutritional factors such as tannin, phytate, sinapine, crude fiber, etc. The presence of these antinutrients limits the use and marketing of rapeseed meals and a significant amount of it goes unused and ends up as waste. We investigated the genetic architecture of crude protein, methionine, tryptophan, total phenols, β-carotene, glucosinolates (GLSs), phytate, tannins, sinapine, and crude fiber content of defatted seed meal samples by conducting a genome-wide association study (GWAS), using a diversity panel comprising 96 B. napus genotypes. Genotyping by sequencing was used to identify 77,889 SNPs, spread over 19 chromosomes. Genetic diversity and phenotypic variations were generally high for the studied traits. A total of eleven genotypes were identified which showed high-quality protein, high antioxidants, and lower amount of antinutrients. A significant negative correlation between protein and limiting amino acids and a significant positive correlation between GLS and phytic acid were observed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits and quantile-quantile (QQ) plots were generated to allow the best-fit algorithm. Annotation of genomic regions around associated SNPs helped to predict various trait-related candidates such as ASP2 and EMB1027 (amino acid biosynthesis); HEMA2, GLU1, and PGM (tryptophan biosynthesis); MS3, CYSD1, and MTO1 (methionine biosynthesis); LYC (β-carotene biosynthesis); HDR and ISPF (MEP pathway); COS1 (riboflavin synthesis); UGT (phenolics biosynthesis); NAC073 (cellulose and hemicellulose biosynthesis); CYT1 (cellulose biosynthesis); BGLU45 and BGLU46 (lignin biosynthesis); SOT12 and UGT88A1 (flavonoid pathway); and CYP79A2, DIN2, and GSTT2 (GLS metabolism), etc. The functional validation of these candidate genes could confirm key seed meal quality genes for germplasm enhancement programs directed at improving protein quality and reducing the antinutritional components in B. napus.
Collapse
Affiliation(s)
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Javed Akhatar
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
24
|
Vahedifar A, Wu J. Extraction, nutrition, functionality and commercial applications of canola proteins as an underutilized plant protein source for human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:17-69. [PMID: 35940704 DOI: 10.1016/bs.afnr.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concerns about sustainability and nutrition security have encouraged the food sector to replace animal proteins in food formulations with underutilized plant protein sources and their co-products. In this scenario, canola protein-rich materials produced after oil extraction, including canola cold-pressed cakes and meals, offer an excellent opportunity, considering their nutritional advantages such as a well-balanced amino acid composition and their potential bioactivity. However, radical differences among major proteins (i.e., cruciferin and napin) in terms of the physicochemical properties, and the presence of a wide array of antinutritional factors in canola, impede the production of a highly pure protein extract with a reasonable extraction yield. In this manuscript, principles regarding the extraction methods applicable for the production of canola protein concentrates and isolates are explored in detail. Alkaline and salt extraction methods are presented as the primary isolation methods, which result in cruciferin-rich and napin-rich isolates with different nutritional and functional properties. Since a harsh alkaline condition would result in an inferior functionality in protein isolates, strategies are recommended to reduce the required solvent alkalinity, including using a combination of salt and alkaline and employing membrane technologies, application of proteases and carbohydrases to facilitate the protein solubilization from biomass, and novel green physical methods, such as ultrasound and microwave treatments. In terms of the commercialization progress, several canola protein products have received a GRAS notification so far, which facilitates their incorporation in food formulations, such as bakery, beverages, salad dressings, meat products and meat analogues, and dairies.
Collapse
Affiliation(s)
- Amir Vahedifar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Impact of Phytase Treatment and Calcium Addition on Gelation of a Protein-Enriched Rapeseed Fraction. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRapeseed press cake was upcycled as a protein-enriched ingredient through dry fractionation. The protein-enriched fraction contained higher amounts of phytic acid compared to press cake, and phytase treatment was applied to decrease the phytic acid content from 6.8 to 0.5%. The effect of phytase treatment leading to the release of cations was also mimicked by extrinsic calcium addition. Both phytase treatment and calcium addition significantly improved the heat-induced gel properties but had a minor effect on protein solubility and dispersion stability at pH 8. Water and protein holding capacities of the gels were the highest for the phytase-treated sample (91 and 97%, respectively), followed by the sample with added calcium (86 and 94%, respectively) and control sample (60 and 86%, respectively). Gel firmness followed the same pattern. Scanning electron microscopy images revealed an interconnected structured network in the phytase-treated gel, while in the control gel, a more rigid and open structure was observed. The improved gelation properties resulting from the phytase treatment suggest that the protein and soluble dietary fibre-enriched rapeseed press cake ingredient serve as a promising raw material for gelled food systems. The positive effect of calcium addition on gel properties proposes that part of the improvement observed after phytase treatment may be caused by cations released from phytate.
Collapse
|
26
|
Yao M, Yao Y, Qin B, Pan M, Ju X, Xu F, Wang L. Screening and identification of high bioavailable oligopeptides from rapeseed napin (Brassica napus) protein-derived hydrolysates via Caco-2/HepG2 co-culture model. Food Res Int 2022; 155:111101. [DOI: 10.1016/j.foodres.2022.111101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
|
27
|
|
28
|
Georgiev R, Kalaydzhiev H, Ivanova P, Silva CLM, Chalova VI. Multifunctionality of Rapeseed Meal Protein Isolates Prepared by Sequential Isoelectric Precipitation. Foods 2022; 11:foods11040541. [PMID: 35206016 PMCID: PMC8870837 DOI: 10.3390/foods11040541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Rapeseed meal is a by-product of the oil-producing industry with a currently underestimated application. Two protein isolates, PI2.5–8.5 or PI10.5–2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequentially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5–2.5 exhibited higher water and oil absorption capacities than PI2.5–8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5–8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5–2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5–2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5–8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5–2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5–2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants.
Collapse
Affiliation(s)
- Radoslav Georgiev
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (R.G.); (P.I.)
| | - Hristo Kalaydzhiev
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria;
| | - Petya Ivanova
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (R.G.); (P.I.)
| | - Cristina L. M. Silva
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Vesela I. Chalova
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (R.G.); (P.I.)
- Correspondence: ; Tel.: +359-32-603-855
| |
Collapse
|
29
|
Beaubier S, Defaix C, Albe-Slabi S, Aymes A, Galet O, Fournier F, Kapel R. Multiobjective decision making strategy for selective albumin extraction from a rapeseed cold-pressed meal based on Rough Set approach. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Albe-Slabi S, Defaix C, Beaubier S, Galet O, Kapel R. Selective extraction of napins: Process optimization and impact on structural and functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
32
|
Khaliq B, Falke S, Saeed Q, Bilal M, Munawar A, Ali A, Baermann G, Athar HUR, Mahmood S, Betzel C, Ali Q, Akrem A. Eruca sativa seed napin structural insights and thorough functional characterization. Sci Rep 2021; 11:24066. [PMID: 34911985 PMCID: PMC8674280 DOI: 10.1038/s41598-021-02174-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
A potent napin protein has been thoroughly characterized from seeds of rocket salad (Eruca sativa). Eruca sativa napin (EsNap) was purified by ammonium sulfate precipitation (70%) and size-exclusion chromatography. Single intact 16 kDa EsNap band was reduced to 11 and 5 kDa bands respectively on SDS-PAGE. Nano LC-MS/MS yielded two fragments comprising of 26 residues which showed 100% sequence identity with napin-3 of Brassica napus. CD spectroscopy indicated a dominant α-helical structure of EsNap. Monodispersity of EsNap was verified by dynamic light scattering, which also confirmed the monomeric status with a corresponding hydrodynamic radius of 2.4 ± 0.2 nm. An elongated ab initio shape of EsNap was calculated based on SAXS data, with an Rg of 1.96 ± 0.1 nm. The ab initio model calculated by DAMMIF with P1 symmetry and a volume of approx. 31,100 nm3, which corresponded to a molecular weight of approximately 15.5 kDa. The comparison of the SAXS and ab initio modeling showed a minimized χ2-value of 1.87, confirming a similar molecular structure. A homology model was predicted using the coordinate information of Brassica napus rproBnIb (PDB ID: 1SM7). EsNap exhibited strong antifungal activity by significantly inhibiting the growth of Fusarium graminearum. EsNap also showed cytotoxicity against the hepatic cell line Huh7 and the obtained IC50 value was 20.49 µM. Further, strong entomotoxic activity was experienced against different life stages of stored grain insect pest T. castaneum. The result of this study shows insights that can be used in developing potential antifungal, anti-cancerous and insect resistance agents in the future using EsNap from E. sativa.
Collapse
Affiliation(s)
- Binish Khaliq
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.,Botany Division Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, c/o DESY. Build. 22a, Notkestrasse 85, 22607, Hamburg, Germany
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Bilal
- Centre for Applied Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, G.T. Road, Lahore, 54890, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Gunnar Baermann
- Molekulare Phytopathologie, Universität Hamburg, Biozentrum Klein Flottbek Ohnhorststr, 1822609, Hamburg, Germany
| | - Habib-Ur-Rehman Athar
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Seema Mahmood
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, The Hamburg Centre for Ultrafast Imaging, University of Hamburg, c/o DESY. Build. 22a, Notkestrasse 85, 22607, Hamburg, Germany
| | - Qurban Ali
- Botany Division Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
33
|
Dolch K, Brüggemann DA. Development of a triplex real-time PCR system for the differentiation between Brassica plant species. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Functional properties of protein isolates from camelina (Camelina sativa (L.) Crantz) and flixweed (sophia, Descurainis sophia L.) seed meals. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractCamelina and flixweed (sophia) seed protein isolates were prepared using both the conventional extraction and ultrasonic-assisted extraction methods at 40 kHz for 20 min, and their functional properties investigated. SDS-PAGE showed that both ultrasound-assisted and conventional extractions resulted in a similar protein profile of the extract. The application of ultrasound significantly improved protein extraction/content and functional properties (water holding capacity, oil absorption capacity, emulsifying foaming properties, and protein solubility) of camelina protein isolate and sophia protein isolate. The water-holding and oil absorption capacities of sophia protein isolate were markedly higher than those of camelina protein isolate. These results suggest that camelina protein isolate and sophia protein isolate may serve as natural functional ingredients in the food industry.
Graphical Abstract
Collapse
|
35
|
Scharff LB, Saltenis VLR, Jensen PE, Baekelandt A, Burgess AJ, Burow M, Ceriotti A, Cohan J, Geu‐Flores F, Halkier BA, Haslam RP, Inzé D, Klein Lankhorst R, Murchie EH, Napier JA, Nacry P, Parry MAJ, Santino A, Scarano A, Sparvoli F, Wilhelm R, Pribil M. Prospects to improve the nutritional quality of crops. Food Energy Secur 2021. [DOI: 10.1002/fes3.327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Vandasue L. R. Saltenis
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Frederiksberg Denmark
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | - Meike Burow
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | | | - Fernando Geu‐Flores
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Barbara Ann Halkier
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | | | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | | | - Philippe Nacry
- BPMPUniv MontpellierINRAECNRSMontpellier SupAgro Montpellier France
| | | | - Angelo Santino
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR) Lecce Italy
| | - Aurelia Scarano
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR) Lecce Italy
| | - Francesca Sparvoli
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology Julius Kühn‐Institut – Federal Research Centre for Cultivated Plants Quedlinburg Germany
| | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| |
Collapse
|
36
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
37
|
Lietzow J. Biologically Active Compounds in Mustard Seeds: A Toxicological Perspective. Foods 2021; 10:2089. [PMID: 34574199 PMCID: PMC8472142 DOI: 10.3390/foods10092089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mustard plants have been widely cultivated and used as spice, medicine and as source of edible oils. Currently, the use of the seeds of the mustard species Sinapis alba (white mustard or yellow mustard), Brassica juncea (brown mustard) and Brassica nigra (black mustard) in the food and beverage industry is immensely growing due to their nutritional and functional properties. The seeds serve as a source for a wide range of biologically active components including isothiocyanates that are responsible for the specific flavor of mustard, and tend to reveal conflicting results regarding possible health effects. Other potentially undesirable or toxic compounds, such as bisphenol F, erucic acid or allergens, may also occur in the seeds and in mustard products intended for human consumption. The aim of this article is to provide comprehensive information about potentially harmful compounds in mustard seeds and to evaluate potential health risks as an increasing use of mustard seeds is expected in the upcoming years.
Collapse
Affiliation(s)
- Julika Lietzow
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
38
|
Witczak M, Chmielewska A, Ziobro R, Korus J, Juszczak L. Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
|
40
|
Singh M, Trivedi N, Enamala MK, Kuppam C, Parikh P, Nikolova MP, Chavali M. Plant-based meat analogue (PBMA) as a sustainable food: a concise review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03810-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Rahman M, Guo Q, Baten A, Mauleon R, Khatun A, Liu L, Barkla BJ. Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. PLoS One 2021; 16:e0253384. [PMID: 34242257 PMCID: PMC8270179 DOI: 10.1371/journal.pone.0253384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins make up a large percentage of the Brassica seed and are second only to the oil in economic importance with uses for both animal and human nutrition. The most abundant proteins reported in the seeds of Brassica are the seed storage proteins cruciferin and napin, belonging to the 12S globulin and 2S albumin families of proteins, respectively. To gain insight into the Brassica rapa seed proteome and to confirm the presence and relative quantity of proteins encoded by candidate seed storage genes in the mature seed, shotgun proteomics was carried out on protein extracts from seeds of B. rapa inbred line R-o-18. Following liquid chromatography tandem mass spectrometry, a total of 34016 spectra were mapped to 323 proteins, where 233 proteins were identified in 3 out of 4 biological replicates by at least 2 unique peptides. 2S albumin like napin seed storage proteins (SSPs), 11/12S globulin like cruciferin SSPs and 7S globulin like vicilin SSPs were identified in the samples, along with other notable proteins including oil body proteins, namely ten oleosins and two oil body-associated proteins. The identification of vicilin like proteins in the mature B. rapa seed represents the first account of these proteins in the Brassicaceae and analysis indicates high conservation of sequence motifs to other 7S vicilin-like allergenic proteins as well as conservation of major allergenic epitopes in the proteins. This study enriches our existing knowledge on rapeseed seed proteins and provides a robust foundation and rational basis for plant bioengineering of seed storage proteins.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Qi Guo
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Abdul Baten
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
- Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Amina Khatun
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| |
Collapse
|
42
|
Tsomele GF, Venter E, Wokadala OC, Jooste E, Dlamini BC, Ngobese NZ, Siwela M. Structural (gross and micro), physical and nutritional properties of Trichilia emetica and Trichilia dregeana seeds. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1915877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gugu Felicity Tsomele
- Horticulture and Crop Protection Division, Agricultural Research Council Tropical and Subtropical Crops, Mbombela, South Africa
- Department of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Eudri Venter
- Laboratory for Microscopy and Microanalysis, University of Pretoria, Pretoria, South Africa
| | - Obiro Cuthbert Wokadala
- Horticulture and Crop Protection Division, Agricultural Research Council Tropical and Subtropical Crops, Mbombela, South Africa
- Postharvest Technology Division, School of Agricultural Sciences, Faculty of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Elize Jooste
- Horticulture and Crop Protection Division, Agricultural Research Council Tropical and Subtropical Crops, Mbombela, South Africa
| | | | - Nomali Ziphorah Ngobese
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Muthulisi Siwela
- Department of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
43
|
Abstract
AbstractFood side streams contain useful compounds such as proteins, sugars, polyphenols, and amino acids that might get discarded during processing. The concentration of these components may be low (e.g., fruit side streams are mainly composed by water, around 90%, while polyphenol content in rapeseed meal is less than 3% dry weight) and therefore effective separation techniques should be evaluated. The aim of this review is to identify the different process steps (like pretreatment, volume reduction, phase change, solid removal, purification, and formulation) required to recover high-value products from agri-food residues. It reviews different plant-based byproducts as sources (cereal bran, fruit pomace, oilseed meals, fruit wastewater) of valuable compounds and discusses the relevant technologies required for processing (such as extraction, adsorption, crystallization, drying, among others). A structured approach to design recovery processes presented focused on high purity products. This work demonstrates that multiple high-value products can be recovered from a single agri-food side stream depending on the processing steps and the origin source (strong and soft structures and wastewater).
Collapse
|
44
|
Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021; 10:981. [PMID: 33947093 PMCID: PMC8145534 DOI: 10.3390/foods10050981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Departamento de Ingeniería Química, Escuela Politécnica Superior, 41011 Sevilla, Spain; (E.Á.-C.); (M.F.); (A.G.)
| | | |
Collapse
|
45
|
Zha F, Rao J, Chen B. Modification of pulse proteins for improved functionality and flavor profile: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:3036-3060. [PMID: 33798275 DOI: 10.1111/1541-4337.12736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Consumers' preference to have a healthy eating pattern has led to an increasing demand for more nutrient-dense and healthier plant-based foods. Pulse proteins are exceptional quality ingredients with potential nutritional benefits, and might act as health-promoting agents for addressing the new-generation foods. However, the utilization of pulse protein in foods has been hampered by its relatively poor functionality and unpleasant flavor. Protein structure modification has been proved to be a useful means to improve the functionality and flavor profile of pulse protein. This paper begins with a brief introduction of hierarchical structure of pulse protein materials to better understand the structure characteristics. A comprehensive review is presented on the current techniques including chemical and enzymatic modifications and molecular breeding on pulse protein structure and functionality/flavor. The mechanism and the limitations and the toxicological concerns of these approaches are discussed. We conclude that understanding protein structure-functionality relationship is extremely valuable in tailoring proteins for specific functional outcomes and expanding the availability of pulse proteins. Furthermore, selective protein modification is a valuable in-depth toolkit for generating novel protein constructs with preferable functional attributes and flavor profiles. Innovative structure modification with special focus on the molecular basis for the exquisite protein designs is a pillar of pulse protein access to the desired functionality.
Collapse
Affiliation(s)
- Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
46
|
Stability and rheology of canola protein isolate-stabilized concentrated oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Assessing functional properties of rapeseed protein concentrate versus isolate for food applications. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
|
49
|
Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Duan X, Zhang M, Chen F. Prediction and analysis of antimicrobial peptides from rapeseed protein using in silico approach. J Food Biochem 2021; 45:e13598. [PMID: 33595118 DOI: 10.1111/jfbc.13598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to evaluate the potential of rapeseed proteins including Napin, Cruciferin, and Oleosin as precursors of antimicrobial peptides (AMPs), and to investigate physicochemical properties, secondary structures, toxicity, and allergenicity of AMPs using several bioinformatics tools such as BIOPEP, CAMP, APD, SOPMA, ToxinPred, and AllergenFP. A total of 26 novel AMPs were obtained by in silico hydrolysis using nine proteases, and six peptides were tested positive by all the four algorithms including Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Network (ANN), and Discriminant Analysis (DA). More AMPs were generated from Cruciferin than from Napin and Oleosin. Trypsin was the most effective enzyme for AMPs production compared with other used proteases. About two-third of peptides were cationic. Interestingly, most peptides were extended AMPs. All AMPs were predicted to be non-toxic, and 14 peptides were non-allergenic. These results indicate that rapeseed protein is a good potential source of AMPs as demonstrated by in silico analyses and the theoretical knowledge obtained provides a basis for further development and production of rapeseed AMPs. PRACTICAL APPLICATIONS: Rapeseed protein is a high-quality plant protein resource. However, it is usually used as animal feed or fertilizer. Effective enzymatic hydrolysis of rapeseed protein can release bioactive peptides and improve the utilization value. This study indicates that rapeseed protein is a good potential source of AMPs as demonstrated by in silico analyses. The theoretical knowledge obtained provides a basis for further development and production of rapeseed AMPs.
Collapse
Affiliation(s)
- Xiaojie Duan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Min Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|