1
|
Fu W, Ma RX, Hu JQ, Wang CC, Cao C, Qi SQ, Dong X, Wang L, Zhang XL, Liu GH, Gao YD. Industrial Trans Fatty Acids Promote the Development of Food Allergy in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:252-270. [PMID: 40204509 PMCID: PMC11982643 DOI: 10.4168/aair.2025.17.2.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025]
Abstract
PURPOSE The rising prevalence of food allergy (FA) has prompted investigations into dietary factors such as trans fatty acids (TFAs). While ruminant TFAs may protect against allergies, the role of industrial TFAs remains unclear. This study evaluated the effects of industrial TFAs on FA in a murine model. METHODS 20 Balb/c mice were divided into 4 groups: control (standard diet), OVA (ovalbumin-sensitized, standard diet), TFAs (industrial TFA-enriched diet), and TFAs+OVA (TFA diet + OVA sensitization). After two weeks, OVA and TFAs+OVA groups underwent OVA sensitization/challenge. Symptoms (anal temperature drop, diarrhea), serum immunoglobulin E (tIgE, OVA-sIgE), cytokines, immune cell profiles, and gut microbiota were analyzed. RESULTS The incidence rates of anal temperature drop and diarrhea, the serum levels of tIgE, OVA-sIgE, interleukin-4 were significantly higher in the OVA and TFAs+OVA groups compared to the control group. The TFAs+OVA group had a higher degree of anal temperature drop and diarrhea score, and higher serum levels of tIgE and OVA-sIgE compared to the OVA group. The expression of interferon-γ mRNA and the numbers of Th1 cells increased in the spleen of the TFAs and TFAs+OVA group compared to the control group, whereas the numbers of spleen Th2 cells were significantly elevated in the TFAs, OVA, and TFAs+OVA groups compared to the control group. In addition, the numbers of mast cells (MCs) in the esophagus and intestinal mucosa, and the serum concentrations of MCs protease-1 were significantly increased in TFAs, OVA, and TFAs+OVA groups compared to the control group. Cecal microflora among these groups exhibited distinct patterns of differential diversity and composition. CONCLUSIONS Industrial TFAs may promote OVA-induced FA, Th1 and Th2-associated inflammation in mouse model, accompanied by the activation of MCs and intestinal microbiome dysbiosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ru-Xue Ma
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-Qian Hu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-Chang Wang
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-Quan Qi
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Dong
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Wang
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ya-Dong Gao
- Department of Allergy, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Obi J, Sakamoto T, Furihata K, Sato S, Honda M. Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process. Food Res Int 2025; 200:115425. [PMID: 39779165 DOI: 10.1016/j.foodres.2024.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Growing evidence indicates that the intake of trans-fatty acids (TFAs) has been associated with a higher risk of cardiovascular disease; therefore, various industrial measures have been taken to reduce the amount of TFAs consumed. However, research on TFAs formed during cooking is limited. Isothiocyanates and polysulfides, which are widely distributed in various vegetables, have recently been shown to promote the cis-trans isomerization of double bonds. However, the effects of these sulfur compounds on unsaturated fatty acids (UFAs) comprising edible oils (triacylglycerols) are unknown. To further reduce the intake of TFAs, a better understanding of the effect of the presence of these sulfur compounds on the formation of TFAs under cooking conditions is important. This study investigated the isomerization characteristics of UFAs in the presence of isothiocyanates and polysulfides in model systems using high-purity compounds as well under simulated cooking conditions using food samples. The outcomes of the model system indicated that these sulfur compounds significantly enhance the thermal isomerization, especially at temperatures ≥140 °C. Furthermore, the addition of antioxidants substantially inhibited the isomerization enhancement effect of isothiocyanates, whereas that of polysulfides was marginally moderated. A similar trend was observed under simulated cooking conditions. The results suggest that cooking with sulfur-compound-rich vegetables, especially garlic and onion, which are rich in polysulfides, can potentially result in increased trans fatty acid intake.
Collapse
Affiliation(s)
- Junji Obi
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan.
| | - Taro Sakamoto
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Kiyomi Furihata
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Seizo Sato
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Masaki Honda
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
3
|
Mohammadi F, Beauparlant CJ, Bianco S, Droit A, Bertrand N, Rudkowska I. Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice. Mol Nutr Food Res 2024; 68:e2400290. [PMID: 39396377 DOI: 10.1002/mnfr.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Indexed: 10/15/2024]
Abstract
SCOPE The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; trans-18:1n-9) and trans-palmitoleic acid (TPA; trans-16:1n-7), elucidating their different effects on inflammation and glucose metabolism. METHODS AND RESULTS Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, p < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine-cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling. CONCLUSION TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| | - Charles Joly Beauparlant
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphanie Bianco
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, G1V0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Jacondino L, Poli C, Tontini J, Correa G, da Silva I, Nigeliskii A, Mello R, Pereira A, Magalhães D, Trindade M, Carvalho S, Muir J. Plant Bioactive Compounds of Brazilian Pampa Biome Natural Grasslands Affecting Lamb Meat Quality. Foods 2024; 13:2931. [PMID: 39335859 PMCID: PMC11431356 DOI: 10.3390/foods13182931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Our study investigated how different levels of antioxidants and contrasting proportions of native legumes in the diet affect lamb meat quality. Twenty-four male Texel lambs were randomly assigned to three groups: two groups on a natural pasture in southern Brazil (Pampa Biome), each at a different proportion of legumes: Low-legume (LL, 4.37%) and High-legume (HL, 14.01%); the other group was stall-fed (Control) to achieve the same growth rates as the grazing groups. Cold carcass yield from the Control lambs was higher than HL. The meat from pasture-fed animals had a higher deposition of muscle α-tocopherol and lower lipid oxidation (TBARS values) after 9 days of storage. LL lambs had higher subcutaneous fat thickness, which promoted better sensory quality of the meat, as assessed by a trained panel. Pasture-based diets enhanced odd- and branched-chain fatty acids (OBCFAs), trans vaccenic acid, and total conjugated linoleic acids (CLAs), while decreasing elaidic acid. Despite the lower ∆9-desaturase activity, the higher proportion of Desmodium incanum (condensed tannin-rich native legume) in the HL diet did not impact meat nutritional quality. Finishing lambs on the Pampa Biome grasslands is an option for improving the oxidative stability and beneficial fatty acid content of lamb meat, which improves product quality and human consumer health.
Collapse
Affiliation(s)
- Luiza Jacondino
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Cesar Poli
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Jalise Tontini
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Gladis Correa
- Department of Animal Science, Federal University of Pampa, R. Vinte e Um de Abril, 80, Dom Pedrito 96450000, RS, Brazil;
| | - Itubiara da Silva
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - André Nigeliskii
- Department of Science and Food Technology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105900, RS, Brazil; (A.N.); (R.M.)
| | - Renius Mello
- Department of Science and Food Technology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105900, RS, Brazil; (A.N.); (R.M.)
| | - Angélica Pereira
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Danielle Magalhães
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Marco Trindade
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Sandra Carvalho
- Department of Animal Science, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, Florianopolis 88034000, SC, Brazil;
| | - James Muir
- Texas AgriLife Research, Texas A&M University, 1229 N. US Hwy 281, Stephenville, TX 76401, USA;
| |
Collapse
|
5
|
Hatem O, Kaçar ÖF, Kaçar HK, Szentpéteri JL, Marosvölgyi T, Szabó É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr 2024; 11:1379772. [PMID: 38515522 PMCID: PMC10954868 DOI: 10.3389/fnut.2024.1379772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ömer Furkan Kaçar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Hüsna Kaya Kaçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Zhou ZQ, Wei M, Tan CL, Deng ZY, Li J. Low intake of ruminant trans fatty acids ameliorates the disordered lipid metabolism in C57BL/6J mice fed a high-fat diet. Food Funct 2024; 15:1539-1552. [PMID: 38234289 DOI: 10.1039/d3fo04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Currently, the health benefits of ruminant trans fatty acids (R-TFA) are still controversial. Our previous investigations indicated that R-TFA at higher dosages (1.3% and 4% E) caused disordered lipid metabolism in mice; however, through collecting R-TFA intake data in 9 provinces of China, it was suggested that, in 2021, the range of R-TFA intake for Chinese residents was about 0.053-0.307 g d-1. Based on the 2022 Nutritional Dietary Guidelines for Chinese Residents, the recommended daily energy supply from R-TFA was about 0.11%-0.15% E. However, the health effects of R-TFA at a lower dosage are still unknown; therefore, our current research aims to further explore the effects of R-TFA on health. Through in vivo experiments, it was shown that R-TFA (0.15% E) decreased body weight gain and serum cholesterol levels in C57BL/6J mice fed a high-fat diet, while it had no significant effect on mice fed a low-fat diet. Besides, hepatic histopathology analysis suggested that R-TFA (0.15% E) ameliorated the degree of hepatic steatosis and reduced intrahepatocyte lipid droplet accumulation in C57BL/6J mice fed a high-fat diet. Through lipidomics analysis, we further screened 8 potential lipid metabolites that participate in regulating the dysregulation of lipid metabolism. Finally, it was suggested that R-TFA (0.15% E) down-regulated the expression of genes related to inflammation and cholesterol synthesis while up-regulated the expression of genes related to cholesterol clearance, which might partially explain the salutary effect of R-TFA (0.15% E) in ameliorating the hepatic steatosis and improving disordered lipid metabolism in mice fed a high-fat diet. Our current research will provide a reference for the intake of R-TFA and, furthermore, give some insights into understanding the health effects of R-TFA.
Collapse
Affiliation(s)
- Ze-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Chao-Li Tan
- Jiangxi Sunshine Dairy Co., Ltd, Nanchang, Jiangxi 330001, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
- National Center of Technology Innovation for Dairy, China
| |
Collapse
|
7
|
Industrial and Ruminant Trans-Fatty Acids-Enriched Diets Differentially Modulate the Microbiome and Fecal Metabolites in C57BL/6 Mice. Nutrients 2023; 15:nu15061433. [PMID: 36986163 PMCID: PMC10052023 DOI: 10.3390/nu15061433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Industrially originated trans-fatty acids (I-tFAs), such as elaidic acid (EA), and ruminant trans-fatty acids (R-tFAs), such as trans-palmitoleic acid (TPA), may have opposite effects on metabolic health. The objective was to compare the effects of consuming 2–3% I-tFA or R-tFA on the gut microbiome and fecal metabolite profile in mice after 7 and 28 days. Forty C57BL/6 mice were assigned to one of the four prepared formulations: lecithin nanovesicles, lecithin nanovesicles with EA or TPA, or water. Fecal samples and animals’ weights were collected on days 0, 7, and 28. Fecal samples were used to determine gut microbiome profiles by 16S rRNA sequencing and metabolite concentrations by GC/MS. At 28 days, TPA intake decreased the abundance of Staphylococcus sp55 but increased Staphylococcus sp119. EA intake also increased the abundance of Staphylococcus sp119 but decreased Ruminococcaceae UCG-014, Lachnospiraceae, and Clostridium sensu stricto 1 at 28 days. Fecal short-chain fatty acids were increased after TPA while decreased after EA after 7 and 28 days. This study shows that TPA and EA modify the abundance of specific microbial taxa and fecal metabolite profiles in distinct ways.
Collapse
|
8
|
Liu X, Du Z, Wang J, Wang Q, Zheng Y, Niu L, Hao C, Xue D, Zhang Y. Association between trans fatty acids and COVID-19: A multivariate Mendelian randomization study. J Med Virol 2023; 95:e28455. [PMID: 36597904 DOI: 10.1002/jmv.28455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Traditional observational studies have suggested a potential association between trans fatty acids (TFAs), which are considered to be health-damaging fatty acids, and coronavirus disease 2019 (COVID-19). However, whether there is a causal relationship between them is currently unclear. We aimed to investigate the causal link between genetically determined TFAs and COVID-19. We performed univariate and multivariate Mendelian randomization (MR) studies using summary statistics from the European Pedigree TFAs (n = 8013), COVID-19 susceptibility (n = 159 840), COVID-19 hospitalization (n = 44 986), and COVID-19 severity (n = 18 152) genome-wide association studies (GWAS). The inverse variance weighted (IVW) method was used as the primary MR analysis, and several other methods were used as supplements. In univariate MR analysis, higher levels of circulating trans, cis-18:2 TFAs were positively associated with a higher COVID-19 hospitalization rate (p < 0.0033; odds ratio [OR] = 1.637; 95% confidence interval [CI]: 1.116-2.401) and COVID-19 severity (p < 0.0033; OR = 2.575; 95% CI: 1.412-4.698). Furthermore, in multivariate MR analysis, trans, cis-18:2 had an independent and significant causal association with a higher COVID-19 hospitalization rate (p = 0.00044; OR = 1.862; 95% CI = 1.316-2.636) and COVID-19 severity (p = 0.0016; OR = 2.268; 95% CI = 1.361-3.779) after the five TFAs were adjusted for each other. Together, our findings provide evidence that trans, cis-18:2 TFAs have an independent and robust causal effect on COVID-19 hospitalization and severity.
Collapse
Affiliation(s)
- Xuxu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiwei Du
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
| | - Qiang Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Niu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenjun Hao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
C57bl/6 Mice Show Equivalent Taste Preferences toward Ruminant and Industrial Trans Fatty Acids. Nutrients 2023; 15:nu15030610. [PMID: 36771316 PMCID: PMC9918975 DOI: 10.3390/nu15030610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet.
Collapse
|
10
|
Teng F, Samuelsson LM, Milan AM, Subbaraj A, Agnew M, Shrestha A, Cameron-Smith D, Day L. Postprandial lipemic response in dairy-avoiding females following an equal volume of sheep milk relative to cow milk: A randomized controlled trial. Front Nutr 2023; 9:1029813. [PMID: 36687710 PMCID: PMC9846784 DOI: 10.3389/fnut.2022.1029813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background Sheep milk (SM) is an alternate dairy source, which despite many similarities, has both compositional and structural differences in lipids compared to cow milk (CM). Studies are yet to examine the apparent digestibility of SM lipids, relative to CM, and the potential impact on the plasma lipidome. Objective To determine the response of the circulatory lipidome to equal volume servings of SM and CM, in females who avoid dairy products. Method In a double-blinded, randomized, cross-over trial, self-described dairy avoiding females (n = 30; 24.4 ± 1.1 years) drank SM or CM (650 mL; 33.4 vs. 21.3 g total lipid content; reconstituted from spray dried milk powders) following an overnight fast. Blood samples were collected at fasting and at regular intervals over 4 h after milk consumption. The plasma lipidome was analyzed by LC-MS and fatty acids were quantified by GC-FID. Results The overall postprandial triglyceride (TG) response was similar between SM and CM. TG concentrations were comparable at fasting for both groups, however they were higher after CM consumption at 30 min (interaction milk × time p = 0.003), well before any postprandial lipemic response. This was despite greater quantities provided by SM. However, there were notable differences in the postprandial fatty acid response, with SM leading to an increase in short- and medium-chain fatty acids (MCFAs) (C6:0, C8:0, and C10:0) and several long-chain fatty acids (LCFAs) (C18:1 t11, c9, t11-CLA, and C20:0; interaction time × milk p < 0.05). This corresponded to a greater postprandial response for medium chain triglycerides (MCTs) C10:0, including TG(10:0/14:0/18:1), TG(16:0/10:0/12:0), and TG(16:0/10:0/14:0) (interaction time × milk p < 0.05). Conclusions Despite a higher fat content, SM ingestion resulted in a greater circulating abundance of MCTs, without increasing total postprandial triglyceride response, when compared to CM. The greater abundance and postprandial appearance of MCTs may provide advantageous metabolic responses in children and adults. Unique identifier and registry U1111-1209-7768; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375324.
Collapse
Affiliation(s)
- Fei Teng
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Amber Marie Milan
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand,The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Arvind Subbaraj
- AgResearch Ltd., Lincoln Research Center, Lincoln, New Zealand
| | - Michael Agnew
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand,Riddet Institute, Palmerston North, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland, New Zealand,AgResearch Ltd., Lincoln Research Center, Lincoln, New Zealand,College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Li Day
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand,*Correspondence: Li Day
| |
Collapse
|
11
|
Wang L, Zhang F, Li H, Yang S, Chen X, Long S, Yang S, Yang Y, Wang Z. Metabolic and inflammatory linkage of the chicken cecal microbiome to growth performance. Front Microbiol 2023; 14:1060458. [PMID: 36910194 PMCID: PMC9995838 DOI: 10.3389/fmicb.2023.1060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chinese indigenous chicken breeds are widely used as food in China but their slow growth rate and long farming cycle has limited their industrial production. Methods In the current study we examined whether the market weights of native chicken breeds were related to specific cecal bacteria, serum metabolites and inflammatory cytokines. We examined cecal bacterial taxa using 16S rDNA analysis along with untargeted serum metabolites and serum inflammatory cytokines. Results We found that the cecal microbiota could explain 10.1% of the individual differences in chicken weights and identified key cecal bacterial genera that influenced this phenotype. The presence of Sphaerochaeta spp. improved growth performance via bovinic acid metabolism. In contrast, Synergistes and norank_f_Desulfovibrionaceae had a negative effect on growth by inducing expression of the inflammatory cytokine IL-6. Discussion We were able to link specific bacterial genera with growth promotion in chickens and this study will allow further development of their use as probiotics in these animals.
Collapse
Affiliation(s)
- Liqi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Fuping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Shenglin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Shuihua Long
- School of Public Health, Xinyu University, Xinyu, Jiangxi, China
| | - Shenghong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yongxian Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.,College of Animal Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Zhao T, Huang K, Luo Y, Li Y, Cheng N, Mei X. Preparation and characterization of high internal phase Pickering emulsions stabilized by hordein-chitosan composite nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Nie P, Pan B, Ahmad MJ, Zhang X, Chen C, Yao Z, Lv H, Wei K, Yang L. Summer Buffalo Milk Produced in China: A Desirable Diet Enriched in Polyunsaturated Fatty Acids and Amino Acids. Foods 2022; 11:3475. [PMID: 36360088 PMCID: PMC9654212 DOI: 10.3390/foods11213475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2023] Open
Abstract
The objective of the study was to compare and reveal differences in basic chemical parameters, fatty acids, amino acids, and lipid quality indices of crossbred buffalo (swamp x river type) milk produced in summer and winter. The buffalo milk samples were collected in summer (Jul-Aug) and winter (Dec-Jan) from Hubei province, China. The samples were detected by using CombiFoss apparatus, gas chromatography, and an automated specialized amino acid analyzer. The results showed that the basic chemical parameters, fatty acid profiles, lipid quality indices, and amino acid profiles of crossbred buffalo milk differed between summer and winter. Specifically, summer buffalo milk exhibited a higher content of MUFA (monounsaturated fatty acids) and PUFA (polyunsaturated fatty acids) than winter buffalo milk. Summer buffalo milk had a lower content of major SFA (saturated fatty acids), a higher content of ω-3 and DFA (hypocholesterolemic fatty acids), a lower ω-6/ω-3 ratio, a higher value of 3 unsaturated fatty acid indices (C14, C16, C18), and a lower value of IA (index of atherogenicity) and IT (index of thrombogenicity) than winter buffalo milk. Additionally, 17 amino acids, including 8 EAA (essential amino acids) and 9 NEAA (non-essential amino acids) were higher in summer buffalo milk. These results indicated that summer buffalo milk was more health-beneficial than winter buffalo milk. Therefore, summer buffalo milk might be a desirable diet option for human nutrition and health. Our findings provide valuable information for the research and development of buffalo dairy products in China or other Asian countries.
Collapse
Affiliation(s)
- Pei Nie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammd Jamil Ahmad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| |
Collapse
|
14
|
Bousset‐Alféres CM, Chávez‐Servín JL, Vázquez‐Landaverde PA, Betancourt‐López CA, Caamaño MDC, Ferriz‐Martínez RA, Chávez‐Alabat EF, Lovatón‐Cabrera MG, de la Torre‐Carbot K. Content of industrially produced trans fatty acids in breast milk: An observational study. Food Sci Nutr 2022; 10:2568-2581. [PMID: 35959266 PMCID: PMC9361450 DOI: 10.1002/fsn3.2862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast milk may contain industrially produced trans fatty acids (TFAs), which can affect the content of essential fatty acids (EFAs). This could have significant implications for the child's development. The fatty acids present in breast milk can be modified by adjusting the mother's diet. The objective of this study was to determine the content of industrially produced TFAs present in colostrum, transitional milk, and mature milk produced by mothers between 18 and 45 years of age in the state of Querétaro, Mexico, based on a longitudinal observational study. The TFA content in the breast milk of 33 lactating women was analyzed using gas chromatography. The mothers' consumption of TFAs was also estimated by analyzing a log prepared through 24-hr dietary recall (24HR) obtained in each period. The TFA content in the mothers' diet was similar across the colostrum, transitional milk, and mature milk phases: 1.64 ± 1.25 g, 1.39 ± 1.01, and 1.66 ± 1.13 g, respectively. The total TFA content was 1.529% ± 1.648% for colostrum; 0.748% ± 1.033% for transitional milk and 0.945% ± 1.368% for mature milk. Elaidic acid was the TFA in the highest concentration in all three types of milk. No correlation was found between the content of industrially produced TFAs in breast milk and the anthropometric measurements of the mother or between the estimated consumption of TFAs and the content of TFAs in breast milk. Elaidic acid and total content of TFAs were negatively correlated (p < .05) with the content of docosahexaenoic acid (DHA) (0.394 ± 0.247) (R = -0.382) in colostrum. The concentration of TFAs was found to correlate with the composition of EFAs in milk.
Collapse
|
15
|
Differential Inflammatory Responses in Cultured Endothelial Cells Exposed to Two Conjugated Linoleic Acids (CLAs) under a Pro-Inflammatory Condition. Int J Mol Sci 2022; 23:ijms23116101. [PMID: 35682781 PMCID: PMC9181016 DOI: 10.3390/ijms23116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Conjugated linoleic acid (CLA) isomers have been shown to possess anti-atherosclerotic properties, which may be related to the downregulation of inflammatory pathways in different cell types, including endothelial cells (ECs). However, whether different CLA isomers have different actions is not entirely clear, with inconsistent reports to date. Furthermore, in cell culture studies, CLAs have often been used at fairly high concentrations. Whether lower concentrations of CLAs are able to affect EC responses is not clear. The aim of this study was to evaluate the effects of two CLAs (cis-9, trans-11 (CLA9,11) and trans-10, cis-12 (CLA10,12)) on the inflammatory responses of ECs. ECs (EA.hy926 cells) were cultured under standard conditions and exposed to CLAs (1 to 50 μM) for 48 h. Then, the cells were cultured for a further 6 or 24 h with tumour necrosis factor alpha (TNF-α, 1 ng/mL) as an inflammatory stimulant. ECs remained viable after treatments with 1 and 10 μM of each CLA, but not after treatment with 50 μM of CLA10,12. CLAs were incorporated into ECs in a concentration-dependent manner. CLA10,12 increased the levels of ICAM-1, IL-6, and RANTES in the culture medium, while CLA9,11 had null effects. Both CLAs (1 μM) decreased the appearance of NFκB1 mRNA, but only CLA9,11 maintained this downregulation at 10 μM. CLA10,12 had no effect on THP-1 cell adhesion to ECs while significantly decreasing the percentage of ECs expressing ICAM-1 and also levels of ICAM-1 expression per cell when used at 10 µM. Although CLA9,11 did not have any effect on ICAM-1 cell surface expression, it reduced THP-1 cell adhesion to the EA.hy926 cell monolayer at both concentrations. In summary, CLA10,12 showed some pro-inflammatory effects, while CLA9,11 exhibited null or anti-inflammatory effects. The results suggest that each CLA has different effects in ECs under a pro-inflammatory condition, highlighting the need to evaluate the effects of CLA isomers independently.
Collapse
|
16
|
de Barros BV, Proença RPDC, Kliemann N, Hilleshein D, de Souza AA, Cembranel F, Bernardo GL, Uggioni PL, Fernandes AC. Trans-Fat Labeling in Packaged Foods Sold in Brazil Before and After Changes in Regulatory Criteria for Trans-Fat-Free Claims on Food Labels. Front Nutr 2022; 9:868341. [PMID: 35662949 PMCID: PMC9158744 DOI: 10.3389/fnut.2022.868341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Consumption of industrially produced trans-fat acids (TFA) is a public health concern. Therefore, it is important that information on TFA in packaged foods be clearly informed to consumers. This study aimed to assess the evolution of TFA information presented in packaged foods sold in Brazil in 2010 and 2013, before and after the introduction of stricter regulatory requirements for TFA-free claims on food labels. A repeated cross-sectional study was performed through food label censuses of all packaged foods available for sale in two stores from the same supermarket chain, totaling 2,327 foods products in 2010 and 3,176 in 2013. TFA-free claims and information indicating TFA in the ingredients list and nutrition facts label were analyzed by descriptive statistics and Pearson's chi-square test. There was a 14% decrease in the use of ingredients containing or potentially containing industrially produced TFA (i-TFA), according to analysis of the ingredients list. However, when analyzing foods by groups, it was found that this decrease was significant only for group A (bakery goods, bread, cereals, and related products; from 59 to 35%, p < 0.001). By contrast, food group F (gravies, sauces, ready-made seasonings, broths, soups, and ready-to-eat dishes) showed a 5% increase in i-TFA. The use of specific terms for i-TFA decreased between 2010 and 2013, but there was an increase in the use of alternative terms, such as vegetable fat and margarine, which do not allow consumers to reliably identify whether a food product is a possible source of i-TFA. There was an 18% decrease in the use of TFA-free claims in products containing or potentially containing i-TFA. However, almost one-third of foods sold in 2013 were false negatives, that is, foods reported to contain 0 g of TFA in the nutrition facts label or with TFA-free claims but displaying specific or alternative terms for i-TFA in the ingredients list. The results indicate that adoption of stricter requirements for TFA-free claims on food labels in Brazil helped reduce the prevalence of such claims but was not sufficient to decrease i-TFA in industrialized foods sold in supermarkets.
Collapse
Affiliation(s)
- Beatriz Vasconcellos de Barros
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rossana Pacheco da Costa Proença
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Nathalie Kliemann
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Daniele Hilleshein
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Amanda Alves de Souza
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Francieli Cembranel
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Postgraduate Program in Collective Health, Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Greyce Luci Bernardo
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Paula Lazzarin Uggioni
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Carolina Fernandes
- Department of Nutrition, Health Sciences Center, Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
17
|
Vassilopoulou E, Guibas GV, Papadopoulos NG. Mediterranean-Type Diets as a Protective Factor for Asthma and Atopy. Nutrients 2022; 14:1825. [PMID: 35565792 PMCID: PMC9105881 DOI: 10.3390/nu14091825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
We are currently riding the second wave of the allergy epidemic, which is ongoing in affluent societies, but now also affecting developing countries. This increase in the prevalence of atopy/asthma in the Western world has coincided with a rapid improvement in living conditions and radical changes in lifestyle, suggesting that this upward trend in allergic manifestations may be associated with cultural and environmental factors. Diet is a prominent environmental exposure that has undergone major changes, with a substantial increase in the consumption of processed foods, all across the globe. On this basis, the potential effects of dietary habits on atopy and asthma have been researched rigorously, but even with a considerable body of evidence, clear associations are far from established. Many factors converge to obscure the potential relationship, including methodological, pathophysiological and cultural differences. To date, the most commonly researched, and highly promising, candidate for exerting a protective effect is the so-called Mediterranean diet (MedDi). This dietary pattern has been the subject of investigation since the mid twentieth century, and the evidence regarding its beneficial health effects is overwhelming, although data on a correlation between MedDi and the incidence and severity of asthma and atopy are inconclusive. As the prevalence of asthma appears to be lower in some Mediterranean populations, it can be speculated that the MedDi dietary pattern could indeed have a place in a preventive strategy for asthma/atopy. This is a review of the current evidence of the associations between the constituents of the MedDi and asthma/atopy, with emphasis on the pathophysiological links between MedDi and disease outcomes and the research pitfalls and methodological caveats which may hinder identification of causality. MedDi, as a dietary pattern, rather than short-term supplementation or excessive focus on single nutrient effects, may be a rational option for preventive intervention against atopy and asthma.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George V. Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK;
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Nikolaos G. Papadopoulos
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 11527 Athens, Greece
| |
Collapse
|
18
|
Xu S, Zhao C, Deng X, Zhang R, Qu L, Wang M, Ren S, Wu H, Yue Z, Niu B. Multivariate analysis for organic milk authentication. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123029. [PMID: 34798418 DOI: 10.1016/j.jchromb.2021.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/12/2021] [Accepted: 11/06/2021] [Indexed: 11/15/2022]
Abstract
To differentiate organic milk (OM) from conventional milk (CM), an orthogonal projection to latent structure-discriminant analysis (OPLS-DA) model was constructed using δ13C, δ15N, δ18O, 51 elements and 35 fatty acids (FAs) as the variables. So far, most reported studies barely use three or more types of variables, but more variables could avoid one-sidedness and get stabler models. Our multivariate model combines geographical and nutritional parameters and displays better explanatory and predictive abilities (R2X = 0.647, R2Y = 0.962 and Q2 = 0.821) than models based on fewer variables for differentiating OM and CM. In particular, δ15N, Se, δ13C, Eu, K and α-Linolenic acid (ALA) are found to be critical parameters for the discrimination of OM. These results show that the multivariate model based on stable isotopes, elements and FAs can be used to identify OM, and can potentially expand the global databases for quality and authenticity of milk.
Collapse
Affiliation(s)
- Siyan Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Chaomin Zhao
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Runhe Zhang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Li Qu
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Min Wang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Shuo Ren
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Hao Wu
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China
| | - Zhenfeng Yue
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
19
|
Lu Q, Chen Z, Ji D, Mao Y, Jiang Q, Yang Z, Loor JJ. Progress on the Regulation of Ruminant Milk Fat by Noncoding RNAs and ceRNAs. Front Genet 2021; 12:733925. [PMID: 34790222 PMCID: PMC8591074 DOI: 10.3389/fgene.2021.733925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Milk fat is not only a key factor affecting the quality of fresh milk but also a major target trait forbreeding. The regulation of milk fat involves multiple genes, network regulation and signal transduction. To explore recent discoveries of pathway regulation, we reviewed the published literature with a focus on functional noncoding RNAs and epigenetic regulation in ruminants. Results indicate that miRNAs play key roles in the regulation of milk fat synthesis and catabolism in ruminants. Although few data are available, merging evidence indicates that lncRNAs and circRNAs act on milk fat related genes through indirect action with microRNAs or RNAs in the ceRNA network to elicit positive effects on transcription. Although precise regulatory mechanisms remain unclear, most studies have focused on the regulation of the function of target genes through functional noncoding RNAs. Data to help identify factors that can regulate their own expression and function or to determine whether self-regulation involves positive and/or negative feedback are needed. Despite the growing body of research on the role of functional noncoding RNA in the control of ruminant milk fat, most data are still not translatable for field applications. Overall, the understanding of mechanisms whereby miRNA, lncRNA, circRNA, and ceRNA regulate ruminant milk fat remains an exciting area of research.
Collapse
Affiliation(s)
- QinYue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qianming Jiang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
20
|
Wang F, Chen M, Luo R, Huang G, Wu X, Zheng N, Zhang Y, Wang J. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography-mass spectrometry. J Dairy Sci 2021; 105:1687-1700. [PMID: 34802741 DOI: 10.3168/jds.2021-20750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
Due to the diversity and limitation of determination methods, published data on the fatty acid (FA) compositions of different milk samples have contributed to inaccurate comparisons. In this study, we developed a high-throughput gas chromatography-mass spectrometry method to determinate milk FA, and the proposed method had satisfactory linearity, sensitivity, accuracy, and precision. We also analyzed the FA compositions of 237 milk samples from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, donkeys, and camels. Holstein, Jersey, goat, and buffalo milks contained high content of even-chain saturated FA, whereas goat milk had higher content of medium- and short-chain FA (MSCFA). Yak and camel milk are potential functional foods due to their high levels of odd- and branched-chain FA and low ratios of n-6 to n-3 polyunsaturated FA (PUFA). Human milk contained lower levels of saturated FA, MSCFA, and conjugated linoleic acid, and higher levels of monounsaturated FA and PUFA. As a special nonruminant milk, donkey milk contained low levels of monounsaturated FA and high levels of PUFA and MSCFA. Based on the FA profiles of 8 types of milk, nonruminant milk was distinct from ruminant milk, whereas camel and yak milk were different from other ruminant milks and considered as potential functional foods for balanced human diet.
Collapse
Affiliation(s)
- Fengen Wang
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830,091, P. R. China; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250,100, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Meiqing Chen
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Runbo Luo
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Guoxin Huang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Xufang Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China.
| | - Jiaqi Wang
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830,091, P. R. China; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China.
| |
Collapse
|
21
|
Van Pamel E, Cnops G, Van Droogenbroeck B, Delezie EC, Van Royen G, Vlaemynck GM, Aper J, Muylle H, Bekaert KM, Cooreman K, Robbens J, Delbare D, Roldan-Ruiz I, Crivits M, De Ruyck H, Herman L. Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet – Part I. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1719504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Gerda Cnops
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Bart Van Droogenbroeck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Evelyne C. Delezie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Melle, Belgium
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Geertrui Mml Vlaemynck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Jonas Aper
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Karen Mm Bekaert
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Kris Cooreman
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Johan Robbens
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Daan Delbare
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Animal Sciences Unit, Oostende, Belgium
| | - Isabel Roldan-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Maarten Crivits
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Social Sciences Unit, Merelbeke, Belgium
| | - Hendrik De Ruyck
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Lieve Herman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| |
Collapse
|
22
|
de Brito Medeiros L, Alves SPA, de Bessa RJB, Soares JKB, Costa CNM, de Souza Aquino J, Guerra GCB, de Souza Araújo DF, Toscano LT, Silva AS, Alves AF, Lemos MLP, de Araujo WJ, de Medeiros AN, de Oliveira CJB, de Cassia Ramos do Egypto Queiroga R. Ruminant fat intake improves gut microbiota, serum inflammatory parameter and fatty acid profile in tissues of Wistar rats. Sci Rep 2021; 11:18963. [PMID: 34556715 PMCID: PMC8460723 DOI: 10.1038/s41598-021-98248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
This study tested the hypothesis that naturally and industrially produced trans-fatty acids can exert distinct effects on metabolic parameters and on gut microbiota of rats. Wistar rats were randomized into three groups according to the diet: CONT-control, with 5% soybean oil and normal amount of fat; HVF-20% of hydrogenated vegetable fat (industrial); and RUM-20% of ruminant fat (natural). After 53 days of treatment, serum biochemical markers, fatty acid composition of liver, heart and adipose tissue, histology and hepatic oxidative parameters, as well as gut microbiota composition were evaluated. HVF diet intake reduced triglycerides (≈ 39.39%) and VLDL levels (≈ 39.49%). Trans-fatty acids levels in all tissue were higher in HVF group. However, RUM diet intake elevated amounts of anti-inflammatory cytokine IL-10 (≈ 14.7%) compared to CONT, but not to HVF. Furthermore, RUM intake led to higher concentrations of stearic acid and conjugated linoleic acid in all tissue; this particular diet was associated with a hepatoprotective effect. The microbial gut communities were significantly different among the groups. Our results show that ruminant fat reversed the hepatic steatosis normally caused by high fat diets, which may be related to the remodelling of the gut microbiota and its anti-inflammatory potential.
Collapse
Affiliation(s)
- Larissa de Brito Medeiros
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Susana Paula Almeida Alves
- grid.9983.b0000 0001 2181 4263Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Rui José Branquinho de Bessa
- grid.9983.b0000 0001 2181 4263Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Juliana Késsia Barbosa Soares
- grid.411182.f0000 0001 0169 5930Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG Brazil
| | - Camila Neves Meireles Costa
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Jailane de Souza Aquino
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Gerlane Coelho Bernardo Guerra
- grid.411233.60000 0000 9687 399XDepartment of Biophysics and Pharmacology, Biosciences Centre, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Daline Fernandes de Souza Araújo
- grid.411233.60000 0000 9687 399XFaculty of Health Sciences of Trairi, Federal University of Rio Grande Do Norte, Santa Cruz, Brazil
| | - Lydiane Tavares Toscano
- grid.411216.10000 0004 0397 5145Department of Physical Education, Health Sciences Centre, Federal University of Paraíba, João Pessoa, Brazil
| | - Alexandre Sérgio Silva
- grid.411216.10000 0004 0397 5145Department of Physical Education, Health Sciences Centre, Federal University of Paraíba, João Pessoa, Brazil
| | - Adriano Francisco Alves
- grid.411216.10000 0004 0397 5145Department of Physiology and Pathology, Federal University of Paraíba, João PessoaParaíba, 58051-900 Brazil
| | - Mateus Lacerda Pereira Lemos
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Wydemberg José de Araujo
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Ariosvaldo Nunes de Medeiros
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Celso José Bruno de Oliveira
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | | |
Collapse
|
23
|
Brodziak A, Wajs J, Zuba-Ciszewska M, Król J, Stobiecka M, Jańczuk A. Organic versus Conventional Raw Cow Milk as Material for Processing. Animals (Basel) 2021; 11:ani11102760. [PMID: 34679781 PMCID: PMC8532914 DOI: 10.3390/ani11102760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Milk, as one of the basic raw materials of animal origin, must be of adequate hygienic and physicochemical quality for processing. The aim of the article was to compare the quality of raw milk from three production systems, intensive, traditional (together referred to as conventional), and organic, as material for processing, as well as the quality of products made from it. Particular attention was focused on hygienic quality (somatic cell count and total bacterial count), physical characteristics (acidity), basic nutritional value (content of dry matter, total protein, casein, fat, and lactose), content of health-promoting substances (whey proteins, fatty acids, vitamins, and minerals), and technological parameters (rennet clotting time, heat stability, and protein-to-fat ratio). Research assessing the quality of organic milk and dairy products is significantly less extensive (if available at all) than for milk from conventional production (intensive and traditional). The available reports indicate that raw milk from organic farms is more valuable, especially in terms of the content of health-promoting compounds, including vitamins, fatty acids, whey proteins, and minerals. This applies to organic dairy products as well, mainly cheese and yoghurt. This is explained by the fact that organic farming requires that animals are kept in the pasture. However, the hygienic quality of the raw milk, and often the products as well, raises some concerns; for this reason, organic milk producers should be supported in this regard, e.g., through consultancy and training in Good Hygienic Practices. Importantly, milk production in the traditional and organic systems is in line with the concept of the European Green Deal.
Collapse
Affiliation(s)
- Aneta Brodziak
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.B.); (J.K.); (M.S.); (A.J.)
| | - Joanna Wajs
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.B.); (J.K.); (M.S.); (A.J.)
- Correspondence: ; Tel.: +48-814456836
| | - Maria Zuba-Ciszewska
- Institute of Economics and Finance, Faculty of Social Sciences, The John Paul II Catholic University of Lublin, Racławickie 14, 20-950 Lublin, Poland;
| | - Jolanta Król
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.B.); (J.K.); (M.S.); (A.J.)
| | - Magdalena Stobiecka
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.B.); (J.K.); (M.S.); (A.J.)
| | - Anna Jańczuk
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.B.); (J.K.); (M.S.); (A.J.)
| |
Collapse
|
24
|
Pewan SB, Otto JR, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Nutritional Enhancement of Health Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in the Muscle, Liver, Kidney, and Heart of Tattykeel Australian White MARGRA Lambs Fed Pellets Fortified with Omega-3 Oil in a Feedlot System. BIOLOGY 2021; 10:biology10090912. [PMID: 34571789 PMCID: PMC8465306 DOI: 10.3390/biology10090912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary The problem addressed in this research was the possibility of enhancing the nutritional value and health beneficial omega-3 long-chain fatty acid content of lamb and its edible components. The aims and objectives were to evaluate the omega-3 contents of muscle, liver, kidney, and heart of lot-fed Tattykeel Australian White lambs of the MARGRA brand, in response to dietary supplementation with or without omega-3 oil fortified pellets. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality or shelf life. These results are valuable to society because of increased functionality, health benefits, micro-marbling, tender, mouth-melting taste, and high-end eating quality experience of MARGRA lamb tissues and organs. Abstract The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without omega-3 oil fortified pellets. The hypothesis tested was that fortifying feedlot pellets with omega-3 oil will enhance the human health beneficial n-3 LC-PUFA composition of edible lamb muscle tissue and organs. Seventy-five Tattykeel Australian White lambs exclusive to the MARGRA brand, with an average body weight of 30 kg at six months of age, were randomly assigned to the following three dietary treatments of 25 lambs each, and lot-fed as a cohort for 47 days in a completely randomized experimental design: (1) Control grain pellets without oil plus hay; (2) Omega-3 oil fortified grain pellets plus hay; and (3) Commercial whole grain pellets plus hay. All lambs had ad libitum access to the basal hay diet and water. Post-slaughter fatty acid composition of the Longissimus thoracis et lumborum muscle, liver, kidney, and heart were determined using thee gas chromatography–mass spectrophotometry technique. Results indicated significant variations (p < 0.05) in fatty acid profiles between tissues and organs. Omega-3 oil fortified pellets significantly (p < 0.05) increased ≥C20 n-3 LC-PUFA (C20:5n-3 eicosapentaenoate, EPA + C22:5n3 docosapentaenoate, DPA + C22:6n3 docosahexanoate DHA); C18:3n-3 alpha-linolenate, ALA; C18:2 conjugated linoleic acid, CLA; total monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA contents; and reduced the ratio of omega-6 to omega-3 fatty acids in all lamb organs and tissues without impacting shelf-life. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (R.T.K.)
- Correspondence: ; Tel.: +61-747-815-339
| |
Collapse
|
25
|
Realini CE, Pavan E, Purchas RW, Agnew M, Johnson PL, Bermingham EN, Moon CD. Relationships between intramuscular fat percentage and fatty acid composition in M. longissimus lumborum of pasture-finished lambs in New Zealand. Meat Sci 2021; 181:108618. [PMID: 34242892 DOI: 10.1016/j.meatsci.2021.108618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
This paper reports relationships between fatty acids (FAs) and intramuscular fat (IMF)% in M. longissimus lumborum samples from 108 pasture-fed ewe lambs. Samples ranged in IMF from 1 to 6%. Relationships between %FA with total IMF% were mainly linear with percentages of saturated and monounsaturated FAs (MUFA), including trans-FAs, increasing and polyunsaturated FAs decreasing as IMF% increased. Normalized FA content data at 5.5% relative to 1.5% IMF, showed the highest relative increase for C14:0 as rates of endogenous synthesis increase with higher IMF deposition. This can be related to enhanced C12:0 elongation and lower rates of C14:0 desaturation, supported by a preferential desaturation of C18:1 trans-11 and C18:0 compared with C14:0 and C16:0 as IMF increased. The greatest normalized increase after C14:0 was anteisoC17:0 followed by other branched chain FAs and then trans-MUFA and C18:2 cis-9,trans-11. Finally, C22:6 and C22:5 showed higher relative increase than C20:5 indicating greater rates of elongation and desaturation past C20:5 at higher levels of fatness.
Collapse
Affiliation(s)
- C E Realini
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand.
| | - E Pavan
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand
| | - R W Purchas
- 16 Clifton Terrace, Palmerston North, New Zealand
| | - M Agnew
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand
| | - P L Johnson
- AgResearch Invermay, Puddle Alley, Mosgiel, New Zealand
| | - E N Bermingham
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand
| | - C D Moon
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand
| |
Collapse
|
26
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
27
|
Matar AM, Abdelrahman MM, Alhidary IA, Ayadi MA, Alobre MM, Aljumaah RS. Effects of Roughage Quality and Particle Size on Rumen Parameters and Fatty Acid Profiles of Longissimus Dorsi Fat of Lambs Fed Complete Feed. Animals (Basel) 2020; 10:E2182. [PMID: 33266409 PMCID: PMC7700288 DOI: 10.3390/ani10112182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
The fatty acid composition for the longissimus dorsi (LD) fat of carcass sheep is a crucial factor impacting meat quality. We performed a 90-day feeding trial of 25 Naemi lambs to investigate the effects of roughage sources (alfalfa or wheat straw) of two sizes (regular and 1 cm chopped) when fed with pelleted total mixed ration (TMR) on the growth performance, fermentation patterns, and fatty acid (FA) composition of longissimus dorsi (LD) fat. Lambs were randomly assigned to individual pens with five treatment diets, as follows: C, control group with TMR; T1, TMR and regular alfalfa hay; T2, TMR and alfalfa hay chopped to 1 cm; T3, TMR and regular wheat straw; and T4, TMR and wheat straw chopped to 1 cm. Four lambs were randomly selected from each treatment (20 total) and sacrificed. LD fat of the carcass was extracted and analyzed for FA using a gas chromatography-mass spectrometry. Significantly increased feed intake was found in T1 and T2. The FA composition of LD fat in T2 had higher unsaturated fatty acid (UFA), omega-6 (n6), and omega-3 (n3) FA content. Conjugated linoleic acid (CLA) and α-linoleic acid were highest in lambs fed T1 and T2. Feeding different types of roughage, especially alfalfa hay, either regular or chopped, with total pelleted mixed ration is crucial to improving feed intake and body weight gain, as it positively enhances the rumen microbial fermentation process by controlling rumen pH. The FA profiles of meat from lambs fed TMR with regular or 1 cm particle size alfalfa hay (T1 and T2) are recommended for human consumption as a source of healthy FAs.
Collapse
Affiliation(s)
- Abdulkareem M. Matar
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
| | - Mutassim M. Abdelrahman
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
| | - Ibrahim A. Alhidary
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
| | - Moez A. Ayadi
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
- Département de Biotechnology Animal, Institute Superior de Biotechnology de Beja, University de Jendouba, B.P. 382, Av. Habib Bourguiba, Beja 9000, Tunisia
| | - Mohsen M. Alobre
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
| | - Riyadh S. Aljumaah
- Department of Animal Production, Faculty of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.M.); (I.A.A.); (M.A.A.); (M.M.A.); (R.S.A.)
| |
Collapse
|
28
|
Sainfoin ( Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:333-341. [PMID: 33005767 PMCID: PMC7503786 DOI: 10.1016/j.aninu.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
The effects of replacing grass silage by sainfoin silage in a total mixed ration (TMR) based diet on fatty acid (FA) reticular inflow and milk FA profile of dairy cows was investigated. The experiment followed a crossover design with 2 dietary treatments. The control diet consisted of grass silage, corn silage, concentrate and linseed. In the sainfoin diet, half of the grass silage was replaced by a sainfoin silage. Six rumen cannulated lactating multiparous dairy cows with a metabolic body weight of 132.5 ± 3.6 kg BW0.75, 214 ± 72 d in milk and an average milk production of 23.1 ± 2.8 kg/d were used in the experiment. Cows were paired based on parity and milk production. Within pairs, cows were randomly assigned to either the control diet or the sainfoin diet for 2 experimental periods (29 d per period). In each period, the first 21 d, cows were housed individually in tie-stalls for adaptation, then next 4 d cows were housed individually in climate-controlled respiration chambers to measure CH4. During the last 4 d, cows were housed individually in tie stalls to measure milk FA profile and determine FA reticular inflow using the reticular sampling technique with Cr-ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and Yb-acetate used as digesta flow markers. Although the dietary C18:3n-3 intake was lower (P = 0.025) in the sainfoin diet group, the mono-unsaturated FA reticular inflow was greater (P = 0.042) in cows fed the sainfoin diet. The reticular inflow of trans-9, trans-12-C18:2 and cis-12, trans-10 C18:2 was greater (P ≤ 0.024) in the sainfoin diet group. The cows fed sainfoin diet had a lower (P ≤ 0.038) apparent ruminal biohydrogenation of cis-9-C18:1 and C18:3n-3, compared to the cows fed the control diet. The sainfoin diet group had greater (P ≤ 0.018) C18:3n-3 and cis-9, cis-12-C18:2 proportions in the milk FA profile compared to the control diet group. Transfer efficiencies from feed to milk of C18:2, C18:3n-3 and unsaturated FA were greater (P ≤ 0.0179) for the sainfoin diet. Based on the results, it could be concluded that replacing grass silage by sainfoin silage in dairy cow rations reduces ruminal C18:3n-3 biohydrogenation and improves milk FA profile.
Collapse
|
29
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
30
|
Synthesis of 5-heptadecyl- and 5-heptadec-8-enyl substituted 4-amino-1,2,4-triazole-3-thiol and 1,3,4-oxadiazole-2-thione from (Z)-octadec-9-enoic acid: preparation of Palladium(II) complexes and evaluation of their antimicrobial activity. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Sales F, Bravo-Lamas L, Realini CE, Lira R, Aldai N, Morales R. Grain supplementation of calves as an alternative beef production system to pasture-finished steers in Chilean Patagonia: meat quality and fatty acid composition. Transl Anim Sci 2020; 4:352-362. [PMID: 32704995 PMCID: PMC6993922 DOI: 10.1093/tas/txz188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
Beef production in Chilean Patagonia is based on steer finishing on pastures with low nutritive value. Grain supplementation for finishing calves on pasture arises as an attractive alternative to shorten the finishing phase and improve the production efficiency of the traditional system. The aim of this study was to compare meat quality and fatty acid (FA) composition of beef from steers and calves. Forty Angus cross steers were raised on pasture and slaughtered at 18 to 20 mo of age (448 ± 31.7 kg body weight). An additional group of 10 calves from similar genetics was weaned at 9 mo of age (303 ± 8.0 kg) and subsequently supplemented with 2.5 kg corn plus 1.0 kg commercial concentrate daily while on pasture during 47 d, until they reached slaughter weight (316 ± 13.9 kg). All animals were slaughtered on the same day and the Longissimus thoracis muscle was removed from each carcass for meat quality and FA profile analysis. Hot carcass weight from calves was lighter than steers (174 ± 7.9 vs. 224 ± 17.5 kg, P ≤ 0.001). Meat from calves was lighter (higher L*) and less red (lower a*). In addition, meat from calves showed lower level of yellow pigments in subcutaneous fat (lower b*) compared with meat from steers (P ≤ 0.001). Meat from calves was more tender than meat from steers (P ≤ 0.05), although both shear force values were low and within recommendations for high consumer acceptability. Meat from both production systems showed fat content and FA profiles within dietary recommendations for a healthy diet. However, meat from calves was leaner (1.10 ± 0.29 vs. 2.00 ± 0.72% fat, P ≤ 0.001). Meat from calves showed lower percentages of saturated (P ≤ 0.05) and monounsaturated (P ≤ 0.001) FAs and higher percentages of polyunsaturated and n-3 (P ≤ 0.001) FAs and conjugated linoleic acid (total and 9c,11t-18:2 isomer, P ≤ 0.001) than meat from steers. Grain supplementation of calves on pasture can reduce the finishing period by 8 to 10 mo at the expense of lighter carcasses with similar or improved meat quality characteristics compared with the traditional finishing of steers on pasture. Implementation of the alternative production system will depend mainly on feed costs and target carcass weights for specific markets.
Collapse
Affiliation(s)
- Francisco Sales
- Instituto de Investigaciones Agropecuarias, INIA Kampenaike, Punta Arenas, Chile
| | - Leire Bravo-Lamas
- Grupo de Investigación Lactiker, Departamento de Farmacia y Ciencias de los Alimentos, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Raúl Lira
- Instituto de Investigaciones Agropecuarias, INIA Kampenaike, Punta Arenas, Chile
| | - Noelia Aldai
- Grupo de Investigación Lactiker, Departamento de Farmacia y Ciencias de los Alimentos, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Rodrigo Morales
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Chile
| |
Collapse
|
32
|
[Trans fatty acids and conjugated linoleic acid in food: origin and biological properties]. NUTR HOSP 2019; 36:479-486. [PMID: 30839223 DOI: 10.20960/nh.2466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Trans fatty acids (TFA) are minor lipid components present in different foods, including ruminant derived products, which have received great attention due to their relationship with cardiovascular disease risk. The origin of TFA in food is mainly related to the industrial hydrogenation processes of unsaturated vegetable oils, but they can also occur naturally in the digestive tract of ruminants by enzymatic biohydrogenation reactions. Both mechanisms generate similar TFA compounds. However, TFA consumption may exert different biological effects depending on the isomeric distribution, which is strongly influenced by the dietary source (i.e., industrial or natural). Industrial hydrogenated vegetable fats are rich in elaidic (trans-9 18:1) and trans-10 18:1 fatty acids, among others. In contrast, vaccenic acid (trans-11 18:1) is the major TFA isomer detected in milk and other ruminant derived products. Vaccenic acid is the physiological precursor of conjugated linoleic acid, a bioactive lipid with beneficial effects on human health. This article provides updated information on the biological effects and potential bioactive properties of TFA considering both, their chemical structure and provenance.
Collapse
|
33
|
Eighteen‑carbon trans fatty acids and inflammation in the context of atherosclerosis. Prog Lipid Res 2019; 76:101009. [PMID: 31669459 DOI: 10.1016/j.plipres.2019.101009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a pro-inflammatory state characterized by chronic activation of the endothelium, which leads to atherosclerosis and cardiovascular disease (CVD). Intake of trans fatty acids (TFAs) is associated with an increased risk of CVD. This risk is usually associated with industrial TFAs (iTFAs) rather than ruminant TFAs (rTFAs); however it is not clear how specific TFA isomers differ in their biological activity and mechanisms of action with regard to inflammation. Here we review the literature on 18‑carbon TFAs, including the research associating their intake or levels with CVD and studies relating 18‑carbon TFA exposure to modulation of inflammatory processes. The evidence associating iTFAs with CVD risk factors is fairly consistent and studies in humans usually show a relation between iTFAs and higher levels of inflammatory markers. In contrast, studies in humans, animals and in vitro suggest that rTFAs have null or mildly beneficial effects in cardiovascular health, metabolic parameters and inflammatory markers, although the evidence is not always consistent. More studies are needed to better identify the beneficial and detrimental effects of the different TFAs, including those with 18 carbons.
Collapse
|
34
|
Baars T, Berge AC, Garssen J, Verster JC. Effect of raw milk consumption on perceived health, mood and immune functioning among US adults with a poor and normal health: A retrospective questionnaire based study. Complement Ther Med 2019; 47:102196. [PMID: 31780022 DOI: 10.1016/j.ctim.2019.102196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Raw milk consumption is controversially discussed, and people are looking for raw milk due to expected positive health impacts. The purpose of this consumer survey was to evaluate health conditions prior to and after consuming of raw milk (RM). METHODS An on-line survey was distributed in Spring 2018 among existing consumers of raw milk. One-Item health score, 1-item immunity score, immune status (ISQ), mood, bowel and skin conditions were rated retrospectively based on validated questionnaires. Data from 327 participants (age 54 years) were included, of which 156 (48%) were allocated to the poor health group after they reported being immune depressed or suffering from a chronic disease. Others were allocated to the normal health group. Milk consumption pattern before and after changing of the milk diet were recorded. All health outcomes were evaluated according a linear mixed model in SPSS. RESULTS Health, perceived immunity, bowel and mood scores increased post RM consumption with around 35% in the poor health group (P < 0.001), and around 9% in the normal health group (P < 0.001). Bowel and mood scores were overall lower in women than in men. Outcomes were independent of the origin of raw farm milk. CONCLUSIONS This consumer survey suggests that positive health and mood changes are associated with the consumption of raw milk. Effects were strongest in people with a self-reported poor health status as well as in women.
Collapse
Affiliation(s)
- Ton Baars
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland; Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of pharmacology, Utrecht University, Utrecht, the Netherlands.
| | - Anna C Berge
- Berge Veterinary Consulting BVBA, Vollezele, Belgium
| | - Johan Garssen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of pharmacology, Utrecht University, Utrecht, the Netherlands; Nutricia Research, Utrecht, the Netherlands
| | - Joris C Verster
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of pharmacology, Utrecht University, Utrecht, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Centre for Human Psychopharmacology (CHP), Swinburne University, Melbourne, Australia
| |
Collapse
|
35
|
Guerreiro O, Alves SP, Soldado D, Cachucho L, Almeida JM, Francisco A, Santos-Silva J, Bessa RJB, Jerónimo E. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets - Effects on growth performance, carcass and meat quality and fatty acid composition of intramuscular and subcutaneous fat. Meat Sci 2019; 160:107945. [PMID: 31627117 DOI: 10.1016/j.meatsci.2019.107945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Thirty-six lambs were used to evaluate the effect of three levels of Cistus ladanifer condensed tannins (CT; 0, 1.25 and 2.5%) and two ways of CT supply (C. ladanifer aerial parts and C. ladanifer CT extract) on lamb growth performance, carcass composition, meat quality and FA composition of intramuscular and subcutaneous fat. The basal diet was composed of dehydrated lucerne supplemented with 60 g/kg of soybean oil. The highest amount of CT (2.5%) had detrimental effects on growth performance, particularly when the aerial part of C. ladanifer was used. Conversely, 1.25% CT in diets did not affect growth performance and meat quality, and inclusion of C. ladanifer CT extract in diet at this level increased t11-18:1, but not c9,t11-18:2 content in fat. Feeding C. ladanifer CT extract might be a good approach for enhancing the nutritional value of ruminant fat, but further studies are needed to ensure upregulation of endogenous synthesis of c9,t11-18:2.
Collapse
Affiliation(s)
- Olinda Guerreiro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal; Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P Alves
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - David Soldado
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal
| | - Liliana Cachucho
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal
| | - João M Almeida
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Investigação de Santarém (INIAV-Fonte Boa), 2005-048 Vale de Santarém, Portugal
| | - Alexandra Francisco
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Polo de Investigação de Santarém (INIAV-Fonte Boa), 2005-048 Vale de Santarém, Portugal
| | - José Santos-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Polo de Investigação de Santarém (INIAV-Fonte Boa), 2005-048 Vale de Santarém, Portugal
| | - Rui J B Bessa
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| |
Collapse
|
36
|
Cimen I, Yildirim Z, Dogan AE, Yildirim AD, Tufanli O, Onat UI, Nguyen U, Watkins SM, Weber C, Erbay E. Double bond configuration of palmitoleate is critical for atheroprotection. Mol Metab 2019; 28:58-72. [PMID: 31422082 PMCID: PMC6822256 DOI: 10.1016/j.molmet.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Saturated and trans fat consumption is associated with increased cardiovascular disease (CVD) risk. Current dietary guidelines recommend low fat and significantly reduced trans fat intake. Full fat dairy can worsen dyslipidemia, but recent epidemiological studies show full-fat dairy consumption may reduce diabetes and CVD risk. This dairy paradox prompted a reassessment of the dietary guidelines. The beneficial metabolic effects in dairy have been claimed for a ruminant-derived, trans fatty acid, trans-C16:1n-7 or trans-palmitoleate (trans-PAO). A close relative, cis-PAO, is produced by de novo lipogenesis and mediates inter-organ crosstalk, improving insulin-sensitivity and alleviating atherosclerosis in mice. These findings suggest trans-PAO may be a useful substitute for full fat dairy, but a metabolic function for trans-PAO has not been shown to date. METHODS Using lipidomics, we directly investigated trans-PAO's impact on plasma and tissue lipid profiles in a hypercholesterolemic atherosclerosis mouse model. Furthermore, we investigated trans-PAO's impact on hyperlipidemia-induced inflammation and atherosclerosis progression in these mice. RESULTS Oral trans-PAO supplementation led to significant incorporation of trans-PAO into major lipid species in plasma and tissues. Unlike cis-PAO, however, trans-PAO did not prevent organelle stress and inflammation in macrophages or atherosclerosis progression in mice. CONCLUSIONS A significant, inverse correlation between circulating trans-PAO levels and diabetes incidence and cardiovascular mortality has been reported. Our findings show that trans-PAO can incorporate efficiently into the same pools that its cis counterpart is known to incorporate into. However, we found trans-PAO's anti-inflammatory and anti-atherosclerotic effects are muted due to its different structure from cis-PAO.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany
| | - Zehra Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Ekin Dogan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Dilber Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ozlem Tufanli
- New York University, Lagone Medical Center, New York, NY 10016, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey
| | | | | | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ebru Erbay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Fernandes AC, Rieger DK, Proença RPC. Perspective: Public Health Nutrition Policies Should Focus on Healthy Eating, Not on Calorie Counting, Even to Decrease Obesity. Adv Nutr 2019; 10:549-556. [PMID: 31305908 PMCID: PMC6628875 DOI: 10.1093/advances/nmz025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Calorie-focused policies, such as calorie menu labeling, seem to result in minor shifts toward healthier choices and public health improvement. This paper discusses the (lack of) relations between energy intake and healthy eating and the rationale for shifting the focus of public health nutrition policies to healthier foods and meals. We argue that the benefits of reducing caloric intake from low-quality foods might not result from the calorie reduction but rather from the reduced consumption of low-quality foods. It is better to consume a given number of calories from high-quality foods than a smaller number of calories from low-quality foods. It is not possible to choose a healthy diet solely based on the caloric value of foods because calories are not equal; they differ in nutritional quality according to their source. Foods are more than just a collection of calories and nutrients, and nutrients interact differently when presented as foods. Different subtypes of a macronutrient, although they have the same caloric value, are metabolized and influence health in different ways. For instance, industrial trans fats increase lipogenesis and the risk of heart diseases, whereas monounsaturated fats have the opposite effect. Food processing and cooking methods also influence the nutritional value of foods. Thus, public health nutrition policies should stop encouraging people to focus mainly on calorie counting to fight noncommunicable diseases. Instead, policies should focus on ingredients, dietary sources, and food processing and cooking methods.
Collapse
Affiliation(s)
- Ana C Fernandes
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição),Nutrition in Foodservice Research Centre (Núcleo de Pesquisa de Nutrição em Produção de Refeições, NUPPRE), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil,Address correspondence to ACF (e-mail: )
| | - Débora K Rieger
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição)
| | - Rossana P C Proença
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição),Nutrition in Foodservice Research Centre (Núcleo de Pesquisa de Nutrição em Produção de Refeições, NUPPRE), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
38
|
Koba S, Takao T, Shimizu F, Ogawa M, Ishii Y, Yokota Y, Furuyama F, Tsunoda F, Shoji M, Harris WS, Takada A. Comparison of plasma levels of different species of trans fatty acids in Japanese male patients with acute coronary syndrome versus healthy men. Atherosclerosis 2019; 284:173-180. [PMID: 30921600 DOI: 10.1016/j.atherosclerosis.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS It remains unclear how trans fatty acid (TFA) at low-level intake affect lipid levels and the development of acute coronary syndrome (ACS). The study aimed to investigate how plasma TFA composition differs between male patients with ACS and healthy men. METHODS Plasma fatty acid (FA) composition (as determined by gas chromatography) was analyzed in ACS patients on hospital admission and compared to that of age-adjusted healthy men. RESULTS Total FA and TFA levels were similar between ACS and control subjects. Palmitelaidic acid, ruminant-derived TFA (R-TFA), levels were lower in ACS patients (0.17 ± 0.06 vs. 0.20 ± 0.06 of total FA, in ACS and control, respectively, p<0.01), and were significantly directly associated with HDL cholesterol (HDL-C) (rho = 0.269) and n-3 polyunsaturated FA (n-3 PUFA) (rho = 0.442). Linoleic trans isomers (total C18:2 TFA), primary industrially-produced TFA (IP-TFAs), were significantly higher in ACS patients (0.68 ± 0.17 vs. 0.60 ± 0.20 of total FA, in ACS and control, respectively). Total trans-C18:1 isomers were comparable between ACS and control. Differences between ACS and controls in C18:1 trans varied by specific C18:1 trans species. Absolute concentrations of trans-C18:2 isomers were significantly directly associated with LDL-C and non-HDL-C in ACS men. The ACS patients showed significantly lower levels of both n-6 and n-3 PUFA (i.e., eicosapentaenoic, docosahexaenoic and arachidonic acids). CONCLUSIONS There were several case-control differences in specific TFA that could potential affect risk for ACS. Japanese ACS patients, especially middle-aged patients, may consume less R-TFA.
Collapse
Affiliation(s)
- Shinji Koba
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
| | - Tetsuya Takao
- Faculty of Human Life and Environmental Sciences, Showa Women's University, Tokyo, Japan
| | - Fumiko Shimizu
- Faculty of Human Life and Environmental Sciences, Showa Women's University, Tokyo, Japan
| | - Mutsumi Ogawa
- Faculty of Human Life and Environmental Sciences, Showa Women's University, Tokyo, Japan
| | - Yukie Ishii
- Faculty of Human Life and Environmental Sciences, Showa Women's University, Tokyo, Japan
| | - Yuuya Yokota
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Fumiaki Furuyama
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Fumiyoshi Tsunoda
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Shoji
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - William S Harris
- Department of Medicine, University of South Dakota School of Medicine and Omegaquant LLC, Sioux Falls, SD, USA
| | - Akikazu Takada
- The International Projects on Food and Health (NPO), Tokyo, Japan
| |
Collapse
|
39
|
Du J, Zou D, Zhao Y, Chen J, Jiang L, Liu T, Yu D, Li W, Elfalleh W. Preparation and characterization of Ni‐Agx/SBA‐15 and its catalytic properties on the hydrogenation of soybean oil. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Du
- The Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University Harbin China
| | - Dezhi Zou
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Yue Zhao
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Jun Chen
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Lianzhou Jiang
- The Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University Harbin China
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Tianyi Liu
- The Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University Harbin China
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Dianyu Yu
- The Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University Harbin China
- School of Food ScienceNortheast Agricultural University Harbin China
| | - Wenbin Li
- The Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University Harbin China
| | - Walid Elfalleh
- UR Catalyse et Matériaux pour l'Environnement et les Procédés URCMEP (UR11ES85), Faculté des Sciences de GabèsUniversité de Gabès Gabès Tunisia
| |
Collapse
|
40
|
|
41
|
Benbrook CM, Davis DR, Heins BJ, Latif MA, Leifert C, Peterman L, Butler G, Faergeman O, Abel‐Caines S, Baranski M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci Nutr 2018; 6:681-700. [PMID: 29876120 PMCID: PMC5980250 DOI: 10.1002/fsn3.610] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
Consumer demand for milk and meat from grass-fed cattle is growing, driven mostly by perceived health benefits and concerns about animal welfare. In a U. S.-wide study of 1,163 milk samples collected over 3 years, we quantified the fatty acid profile in milk from cows fed a nearly 100% forage-based diet (grassmilk) and compared it to profiles from a similar nationwide study of milk from cows under conventional and organic management. We also explored how much the observed differences might help reverse the large changes in fatty acid intakes that have occurred in the United States over the last century. Key features of the fatty acid profile of milk fat include its omega-6/omega-3 ratio (lower is desirable), and amounts of total omega-3, conjugated linoleic acid, and long-chain omega-3 polyunsaturated fatty acids. For each, we find that grassmilk is markedly different than both organic and conventional milk. The omega-6/omega-3 ratios were, respectively, 0.95, 2.28, and 5.77 in grassmilk, organic, and conventional milk; total omega-3 levels were 0.049, 0.032, and 0.020 g/100 g milk; total conjugated linoleic acid levels were 0.043, 0.023, and 0.019 g/100 g milk; and eicosapentaenoic acid levels were 0.0036, 0.0033, and 0.0025 g/100 g milk. Because of often high per-capita dairy consumption relative to most other sources of omega-3 fatty acids and conjugated linoleic acid, these differences in grassmilk can help restore a historical balance of fatty acids and potentially reduce the risk of cardiovascular and other metabolic diseases. Although oily fish have superior concentrations of long-chain omega-3 fatty acids, most fish have low levels of α-linolenic acid (the major omega-3), and an omega-6/omega-3 ratio near 7. Moreover, fish is not consumed regularly, or at all, by ~70% of the U. S. POPULATION
Collapse
Affiliation(s)
- Charles M. Benbrook
- Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
- Benbrook Consulting ServicesTroyORUSA
| | - Donald R. Davis
- Biochemical InstituteUniversity of Texas at AustinAustinTXUSA
| | - Bradley J. Heins
- West Central Research and Outreach CenterUniversity of MinnesotaMorrisMNUSA
| | | | - Carlo Leifert
- Centre for Organics ResearchSouthern Cross UniversityLismoreNSWAustralia
| | | | - Gillian Butler
- School of Natural and Environmental ScienceNewcastle UniversityNewcastle upon TyneUK
| | - Ole Faergeman
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | | | - Marcin Baranski
- Centre for Organics ResearchSouthern Cross UniversityLismoreNSWAustralia
| |
Collapse
|
42
|
Wu W, Lin L, Shi B, Jing J, Cai L. The effects of early life polyunsaturated fatty acids and ruminant trans fatty acids on allergic diseases: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2018; 59:1802-1815. [PMID: 29341787 DOI: 10.1080/10408398.2018.1429382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Early life nutritional exposures could modify the gene expression and susceptibility of allergic diseases (AD). This systematic review aimed to evaluate whether early life (the first 1,000 days) natural exposure to polyunsaturated fatty acids (PUFA) and ruminant trans fatty acids (R-TFA) could affect the AD risk. We searched PubMed, EMBASE, PsycINFO, Scopus, the Cochrane Library, and ClinicalTrials.gov from inception through September 10, 2017 for relevant full-text articles in English. Observational studies were selected if they examined the effects of early life PUFA or R-TFA on AD (eczema, asthma, wheeze, and allergic rhinitis) or sensitization. The quality of studies was examined by the Newcastle-Ottawa Scale, and the best evidence synthesis (BES) was applied. We included 26 observational studies, and 8 of them showed high quality. BES showed a moderate evidence for the protective effect of vaccenic acid (VA, an R-TFA) on eczema, while insufficient or no evidence was found in other associations. Meta-analysis showed that higher n-6/n-3 ratio and linoleic acid were associated with higher risk of eczema (pooled odds ratio [OR] = 1.06, 95% confidence intervals [CI]: 1.00 -1.13; 1.08, 95% CI: 1.01 -1.15). However, VA was inversely associated with eczema pooled OR = 0.42, 95% CI: 0.25 -0.72). Early life natural exposure to VA showed evident benefit on decreasing the risk of eczema, while PUFA and other R-TFA showed limited effects on AD. More robust studies especially for R-TFA are required.
Collapse
Affiliation(s)
- Weijia Wu
- a Department of Maternal and Child Health, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China
| | - Lizi Lin
- a Department of Maternal and Child Health, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China.,b Department of Maternal and Child Health , School of Public Health, Peking University Health Science Center , Beijing , People's Republic of China
| | - Bijun Shi
- a Department of Maternal and Child Health, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China
| | - Jin Jing
- a Department of Maternal and Child Health, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China.,c The Constitutional and Behavioral Research Center for Children and Adolescents, Department of Maternal and Child Health , School of Public Health, Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China
| | - Li Cai
- a Department of Maternal and Child Health, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China.,d Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-sen University , Guangzhou , Guangdong Province , People's Republic of China
| |
Collapse
|
43
|
Bergamo P, Cocca E, Monaco A, Cozzolino V, Boscaino F, Ferrandino I, Maurano F, Rossi M. Protective effect of Rumenic acid rich cow's milk against colitis is associated with the activation of Nrf2 pathway in a murine model. Prostaglandins Leukot Essent Fatty Acids 2017; 125:14-23. [PMID: 28987717 DOI: 10.1016/j.plefa.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022]
Abstract
Dietary supplementation with pure cis9, trans11 isomer of Conjugated Linoleic Acid -known as Rumenic Acid (RA)- improves cytoprotective defenses downstream through the activation of nuclear factor-E2-related factor-2(Nrf2). This capability, when Rumenic Acid is consumed in the form of foods, is still unknown. The ability of standard (St) or cow milk naturally-enriched in RA (En) to activate Nrf2 pathway and its impact on dextran sodium sulfate (DSS)-induced colitis was comparatively evaluated. Activity of Nrf2 pathway was investigated in colonic tissue of BALB/c mice, receiving 4-week supplement with skimmed milk (SK), St or St reinforced with pure RA (RSt) providing increasing RA dose (0, 124 or 404mg RA/kg-1 b.w, respectively). Next, the anti-oxidant/ anti-inflammatory effect produced by St or En treatment (383mg RA/kg-1 b.w.) was explored. Finally, macroscopic and histomorphologic features of colitis were evaluated in animals challenged with 5% (w/v) DSS, at the end of St or En treatment. Significant activation of Nrf2 pathway is associated with RSt and En intake (P<0.05), but not with SK or En treatment. En pre-treatment offers better protection, in comparison with St, against pro-oxidant, pro-inflammatory signs (P<0.01) and macroscopic signs triggered by DSS. It can be concluded that Nrf2 activation by higher RA amount contained in En is, at least in part, responsible for the improved protection associated with En intake against DSS-induced colitis.
Collapse
Affiliation(s)
- P Bergamo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy.
| | - E Cocca
- Institute of Biosciences and Bio-resources, National Research Council (CNR-IBBR), Naples, Italy
| | - A Monaco
- Department of Biology, University "Federico II" of Naples, Italy
| | - V Cozzolino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - F Boscaino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - I Ferrandino
- Department of Biology, University "Federico II" of Naples, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - M Rossi
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
44
|
Chikwanha OC, Vahmani P, Muchenje V, Dugan MER, Mapiye C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res Int 2017; 104:25-38. [PMID: 29433780 DOI: 10.1016/j.foodres.2017.05.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 02/07/2023]
Abstract
Dietary fatty acids (FA) consumed by sheep, like other ruminants, can undergo biohydrogenation resulting in high proportions of saturated FA (SFA) in meat. Biohydrogenation is typically less extensive in sheep than cattle, and consequently, sheep meat can contain higher proportions of omega (n)-3 polyunsaturated FA (PUFA), and PUFA biohydrogenation intermediates (PUFA-BHI) including conjugated linoleic acid (CLA) and trans-monounsaturated FAs (t-MUFA). Sheep meat is also noted for having characteristically higher contents of branched chain FA (BCFA). From a human health and wellness perspective, some SFA and trans-MUFA have been found to negatively affect blood lipid profiles, and are associated with increased risk of cardiovascular disease (CVD). On the other hand, n-3 PUFA, BCFA and some PUFA-BHI may have many potential beneficial effects on human health and wellbeing. In particular, vaccenic acid (VA), rumenic acid (RA) and BCFA may have potential for protecting against cancer and inflammatory disorders among other human health benefits. Several innovative strategies have been evaluated for their potential to enrich sheep meat with FA which may have human health benefits. To this end, dietary manipulation has been found to be the most effective strategy of improving the FA profile of sheep meat. However, there is a missing link between the FA profile of sheep meat, human consumption patterns of sheep FA and chronic diseases. The current review provides an overview of the nutritional strategies used to enhance the FA profile of sheep meat for human consumption.
Collapse
Affiliation(s)
- Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Payam Vahmani
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Voster Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
45
|
Schlörmann W, Kramer R, Lochner A, Rohrer C, Schleussner E, Jahreis G, Kuhnt K. Foetal cord blood contains higher portions of n-3 and n-6 long-chain PUFA but lower portions of trans C18:1 isomers than maternal blood. Food Nutr Res 2015; 59:29348. [PMID: 26617388 PMCID: PMC4663192 DOI: 10.3402/fnr.v59.29348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background/objective An adequate supply of long-chain polyunsaturated fatty acids (LC PUFA) promotes foetal health and development, whereas generally, trans fatty acids (tFA) are considered to negatively interfere with LC PUFA metabolism. Nevertheless, to date, limited data concerning separate trans C18:1, such as t9 and t11, are available for maternal and foetal blood. Therefore, in this study the portions of individual trans C18:1, LC n-6, and n-3 PUFA in lipids of maternal and foetal plasma and erythrocyte membranes of German mother and child pairs (n=40) were analysed. Results Portions of linoleic acid and α-linolenic acid as LC precursors were lower (~0.4-fold); whereas the metabolites arachidonic acid (AA, n-6) and docosahexaenoic acid (DHA, n-3) were significantly higher (~2-fold) in foetal than in maternal plasma and erythrocytes. The main tFA in maternal and foetal blood were elaidic acid (C18:1t9; t9) and vaccenic acid (C18:1t11; t11). Portions of t9, t10, t11, and t12 in foetal blood lipids were lower (~0.5-fold) compared with maternal blood. In foetal lipids, t9 was higher than t11. The t9 correlated negatively with eicosapentaenoic acid (n-3) and AA in maternal and foetal lipids; whereas t11 correlated negatively only with foetal total LC n-6 (plasma and erythrocytes) and n-3 PUFA (erythrocytes). No correlation between maternal tFA and foetal PUFA was observed. Conclusions ‘Biomagnification’ of LC n-6 and n-3 PUFA AA and DHA in foetal blood was confirmed, whereas single trans isomers were lower compared with maternal blood. Nevertheless, tFA intake, especially from industrial sources, should be as low as possible.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany;
| | - Ronny Kramer
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Alfred Lochner
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Carsten Rohrer
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Ekkehard Schleussner
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Gerhard Jahreis
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Katrin Kuhnt
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|