1
|
Meng T, Wen J, Liu H, Guo Y, Tong A, Chu Y, Du B, He X, Zhao C. Algal proteins and bioactive peptides: Sustainable nutrition for human health. Int J Biol Macromol 2025; 303:140760. [PMID: 39922349 DOI: 10.1016/j.ijbiomac.2025.140760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Animal proteins are the primary global protein source, but their production is environmentally challenging and has low conversion efficiency. This highlights the need to diversify dietary protein sources. Algal proteins provide a sustainable alternative, outperforming traditional plant and animal proteins in protein content, quality, and digestibility. Furthermore, bioactive peptides (BAPs) derived from algal proteins exhibit significant health benefits, including antihypertensive, antioxidant, antimicrobial, anticancer, and antidiabetic activities. This review comprehensively explores the nutritional benefits of algal proteins and provides an innovative summary of the production techniques for algal bioactive peptides. It also highlights the synergistic application methods of these technologies. By integrating pretreatment methods such as ultrasound-assisted extraction, pulsed electric field, and high hydrostatic pressure with enzymatic-assisted extraction, these techniques demonstrate a synergistic effect in improving protein hydrolysis efficiency while also increasing the yield of BAPs. Meanwhile, database resources related to algal proteins are integrated and the application of computer technology in the development of algal proteins is analyzed. It aims to provide new insights to optimize the development and utilization of algal proteins to help them become a sustainable source of nutrition to meet the needs of a growing global population.
Collapse
Affiliation(s)
- Tianzeng Meng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanqi Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaoyao Chu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Xinxin He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Wang H, Jiang X, Qin Y, Xiong Z, Zhao L. Research trends in functionalized Fe 3O 4 composites based on affinity recognition systems for targeted extraction of natural products. J Chromatogr A 2024; 1730:465145. [PMID: 38981147 DOI: 10.1016/j.chroma.2024.465145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
In recent years, target-specific affinity recognition systems based on Fe3O4-based composites have proven to be an effective method for screening natural products. Herbal medicines contain a wide range of natural products and are considered to be a major source for the development of novel drugs. However, the process of isolating and obtaining these bioactive components for the production of novel drugs is complex. Meanwhile, the complexity and diversity of herbal constituents have posed a great challenge to the screening studies of herbal active ingredients. Currently, traditional extraction and screening studies of active ingredients in herbal medicine include extraction and chromatographic separation technology development, serum medicinal chemistry, metabolomics and computerized virtual screening. In order to achieve integrated targeting of Fe3O4 for extraction and separation of natural products from herbs, various Fe3O4-based composites need to be synthesized so that the composites can be further functionalized and modified. Composites such as Fe3O4@SiO2, Fe3O4-based magnetic graphene oxide and Fe3O4-based magnetic carbon nanotubes were used to achieve targeted extraction and isolation of natural products from herbal medicines. The main extraction techniques involved based on these Fe3O4-based composites are molecularly imprinted techniques, immobilized ligand fishing techniques, and cell membrane-coated bionanotechnology methods. This article will present recent advances in the synthesis and modification of Fe3O4 composites and their applications for the extraction of natural products in conjunction with molecular imprinting, immobilization-targeted fishing, and cell-membrane-coated biomimetic techniques, as well as the future goals and challenges of functionalized modification of Fe3O4 composites for the targeted extraction of natural products, like protein overexpression modification, doping of fluorescent substances and genetic engineering development. A deeper understanding of the multi-level, multidisciplinary, and applied studies in materials science and phytochemistry will be provided by this article.
Collapse
Affiliation(s)
- Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Xu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Yi Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
3
|
Horta A, Duarte AM, Barroso S, Pinto FR, Mendes S, Lima V, Saraiva JA, Gil MM. Extraction of Antioxidants from Brown Macroalgae Fucus spiralis. Molecules 2024; 29:2271. [PMID: 38792132 PMCID: PMC11124032 DOI: 10.3390/molecules29102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, different extraction methods and conditions were used for the extraction of antioxidants from brown macroalgae Fucus spiralis. The extraction methodologies used were ultrasound-assisted extraction (ultrasonic bath and ultrasonic probe), extraction with a vortex, extraction with an Ultra-Turrax® homogenizer, and high-pressure-assisted extraction. The extracts were analyzed for their total phenolic content (TPC) and their antioxidant activity, and evaluated through the 2,2-difenil-1-picrilhidrazil (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. Ultrasonic probe-assisted extraction yielded the highest values of TPC (94.78-474.16 mg gallic acid equivalents/g extract). Regarding the antioxidant activity, vortex-assisted extraction gave the best DPPH results (IC50 1.89-16 µg/mL), while the highest FRAP results were obtained using the Ultra-Turrax® homogenizer (502.16-1188.81 μmol ascorbic acid equivalents/g extract). For each extraction method, response surface methodology was used to analyze the influence of the experimental conditions "extraction time" (t), "biomass/solvent ratio" (R), "solvent" (S, water % in water/ethanol mixture), and "pressure" (P) on TPC, DPPH, and FRAP of the F. spiralis extracts. In general, higher TPC content and higher antioxidant capacity (lower IC50 and higher FRAP) were obtained with higher R, t, and P, and lower S (higher ethanol %). The model regarding the combined effects of independent variables t, R, and S on the FRAP response values for vortex-assisted extractions best fitted the experimental data (R2 0.957), with optimal extraction conditions of t = 300 s, R = 50 g, and S = 25%.
Collapse
Affiliation(s)
- André Horta
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana M. Duarte
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Sónia Barroso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Filipa R. Pinto
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Susana Mendes
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Vasco Lima
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria M. Gil
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| |
Collapse
|
4
|
Bai C, Chen R, Chen Y, Bai H, Sun H, Li D, Wu W, Wang Y, Gong M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int J Biol Macromol 2024; 263:129939. [PMID: 38423909 DOI: 10.1016/j.ijbiomac.2024.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yubo Chen
- FAW-Volkswagen Automotive Co., Ltd., Powertrain Division T-D Planning Powertrain T-D-1, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongtang Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Mingze Gong
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Zheng M, Tian X, Li Z, Hong T, Zhu Y, Yang Y, Li Q, Ni H, Jiang Z. Effects of ultra-high pressure assisted extraction on the structure, antioxidant and hypolipidemic activities of Porphyra haitanensis polysaccharides. Food Chem 2024; 437:137856. [PMID: 37948798 DOI: 10.1016/j.foodchem.2023.137856] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Porphyra haitanensis polysaccharides (PHPs) have potential antioxidant and hypolipidemic activities, but still need improvement. Therefore, ultra-high pressure (UHP) assisted extraction was applied to modify the structure, antioxidant, and hypolipidemic activities of PHPs. UHP assisted extraction increased the total sugar, uronic acid, and 3,6-anhydro-ʟ-galactose contents of PHP, which increased by 15.85 %-16.12 %, 18.95 %-24.32 %, 20.54 %-23.66 % with 500-600 MPa UHP, respectively. Meanwhile, UHP modified PHP became more rough and porous than native PHP. Besides, UHP assisted extracted PHP showed better in vitro antioxidant and hypolipidemic abilities. Especially, 500-600 MPa UHP increased 72.43 %-86.42 % 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacities, 12.32 %-12.82 % pancreatic lipase inhibitory ability, and 14.93 %-15.23 % glycocholate binding abilities of PHP (p < 0.05). Moreover, UHP assisted extracted PHP greatly decreased the lipid droplet and triglyceride contents of 3T3-L1 adipocytes (p < 0.05). Our findings can provide the theoretical basis for the high value utilization of Porphyra haitanensis and its polysaccharides with UHP modification.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Xin Tian
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
6
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
7
|
Li G, Chen D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J Sep Sci 2024; 47:e2300712. [PMID: 38234023 DOI: 10.1002/jssc.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Like other traditional medicine in the world, Chinese traditional medicine (CTM) has a long history, which is a treasure of the combination of medicine and Chinese classical culture even more than 5000 years. For thousands of years, CTM has made great contributions to the reproduction and health of the Chinese people. It was an efficient therapeutic tool under the guidance of Chinese traditional medical theory, its source is generally natural products, but there are also a small number of it are natural products after some processing methods. In fact, the definition of Chinese medicine (CM) includes both traditional and new CM developed by modern technology. It is well known that the chemical composition of most CM and natural products is very complex, for example, a single herb may contain hundreds of different chemicals, including active ingredients, side effects, and even toxic ingredients. Therefore, the extraction process is particularly crucial for the quality and clinical efficacy of CM and natural products. In this work, a new classification method was proposed to divide the extraction technologies of CM and natural products into 21 kinds in recent years and analyze their status, advantages, and disadvantages. Then put forward a new technical route based on ultra-high-pressure extraction technology for rapid extraction else while removing harmful impurities and making higher utilization of CM and natural products. It is a useful exploration for the extraction industry of medicinal materials and natural products in the world.
Collapse
Affiliation(s)
- Geyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
8
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
9
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
10
|
Anacleto-Santos J, Calzada F, López-Camacho PY, López-Pérez TDJ, Carrasco-Ramírez E, Casarrubias-Tabarez B, Fortoul TI, Rojas-Lemus M, López-Valdés N, Rivera-Fernández N. Evaluation of the Anti- Toxoplasma gondii Efficacy, Cytotoxicity, and GC/MS Profile of Pleopeltis crassinervata Active Subfractions. Antibiotics (Basel) 2023; 12:antibiotics12050889. [PMID: 37237792 DOI: 10.3390/antibiotics12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleopeltis crassinervata (Pc) is a fern that, according to ethnobotanical records, is used in Mexican traditional medicine to treat gastrointestinal ailments. Recent reports indicate that the hexane fraction (Hf) obtained from Pc methanolic frond extract affects Toxoplasma gondii tachyzoite viability in vitro; therefore, in the present study, the activity of different Pc hexane subfractions (Hsf) obtained by chromatographic methods was evaluated in the same biological model. Gas chromatography/mass spectrometry (GC/MS) analysis was carried out for hexane subfraction number one (Hsf1), as it showed the highest anti-Toxoplasma activity with a half-maximal inhibitory concentration (IC50) of 23.6 µg/mL, a 50% cytotoxic concentration (CC50) of 398.7 µg/mL in Vero cells, and a selective index (SI) of 16.89. Eighteen compounds were identified by Hsf1 GC/MS analysis, with the majority being fatty acids and terpenes. Hexadecanoic acid, methyl ester was the most commonly found compound (18.05%) followed by olean-13(18)-ene, 2,2,4a,8a,9,12b,14a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-eicosahydropicene, and 8-octadecenoid acid, methyl ester, which were detected at 16.19%, 12.53%, and 12.99%, respectively. Based on the mechanisms of action reported for these molecules, Hsf1 could exert its anti-Toxoplasma activity mainly on T. gondii lipidomes and membranes.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc 06725, Mexico
| | - Perla Yolanda López-Camacho
- Unidad Cuajimalpa, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Cuajimalpa 05348, Mexico
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Nelly López-Valdés
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
11
|
An Overview of Herbal Nutraceuticals, Their Extraction, Formulation, Therapeutic Effects and Potential Toxicity. SEPARATIONS 2023. [DOI: 10.3390/separations10030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Herbal nutraceuticals are foods derived from plants and/or their derivatives, such as oils, roots, seeds, berries, or flowers, that support wellness and combat acute and chronic ailments induced by unhealthful dietary habits. The current review enlists various traditional as well as unexplored herbs including angelica, burnet, caraway, laurel, parsley, yarrow, and zedoary, which are rich sources of bioactive components, such as aloesin, angelicin, trans-anethole, and cholesteric-7-en-3β-ol. The review further compares some of the extraction and purification techniques, namely, Soxhlet extraction, ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, accelerated solvent extraction, hydro-distillation extraction, ultra-high-pressure extraction, enzyme assisted extraction, pulsed electric field extraction, bio affinity chromatography, cell membrane chromatography, and ligand fishing. Herbal nutraceuticals can be purchased in varied formulations, such as capsules, pills, powders, liquids, and gels. Some of the formulations currently available on the market are discussed here. Further, the significance of herbal nutraceuticals in prevention and cure of diseases, such as diabetes, obesity, dementia, hypertension, and hypercholesterolemia; and as immunomodulators and antimicrobial agents has been discussed. Noteworthy, the inappropriate use of these herbal nutraceuticals can lead to hepatotoxicity, pulmonary toxicity, cytotoxicity, carcinogenicity, nephrotoxicity, hematotoxicity, and cardiac toxicity. Hence, this review concludes with a discussion of various regulatory aspects undertaken by the government agencies in order to minimize the adverse effects associated with herbal nutraceuticals.
Collapse
|
12
|
Ling B, Ramaswamy HS, Lyng JG, Gao J, Wang S. Roles of physical fields in the extraction of pectin from plant food wastes and byproducts: A systematic review. Food Res Int 2023; 164:112343. [PMID: 36737935 DOI: 10.1016/j.foodres.2022.112343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Pectin is a naturally occurring hydrocolloid found in the cell wall and middle lamella of many plants and has numerous functional applications in food and other related industries. The type of extraction methods used in production has a strong influence on the structural or physicochemical properties of the resultant pectin and the potential application or market value of the produced pectin. Many conventional extraction methods are well-established and commercially well adopted. However, the increased demand for pectin due to limitations of the existing methods in terms of efficiency and influence on end product quality has been renewed in developing novel techniques or procedures that help to alleviate these problems. In this review paper, a series of strategies involving the application of physical fields, such as acoustic, electromagnetic, electric and mechanical one, are reviewed for potential opportunities to improve the yield and quality attributes of pectin extracted from plant food wastes and byproducts. The extraction mechanism, processing equipment, key operating parameters as well as advantages and disadvantages of each method are systematically reviewed, and findings and conclusions on the potential applications of each method are described. Moreover, the challenges and future directions of physical field assisted extraction (PFAE) of pectin are also discussed to facilitate a better understanding of the complex mechanism in PFAE and optimizing operational parameters. This review may also provide specific theoretical information and practical applications to improve the design and scale up PFAE of pectin.
Collapse
Affiliation(s)
- Bo Ling
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal H9X 3V9, Canada.
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jilong Gao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
13
|
Preparation of hypoglycemic anthocyanins from mulberry (Fructus mori) fruits by ultrahigh pressure extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
15
|
Zhang L, Wang X, Manickavasagan A, Lim LT. Extraction and physicochemical characteristics of high pressure-assisted cold brew coffee. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Effects of High Pressure-Assisted Extraction on Yield, Antioxidant, Antimicrobial, and Anti-diabetic Properties of Chlorogenic Acid and Caffeine Extracted from Green Coffee Beans. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Tena N, Asuero AG. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel) 2022; 11:antiox11020286. [PMID: 35204169 PMCID: PMC8868086 DOI: 10.3390/antiox11020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
Nowadays, food industries are concerned about satisfying legal requirements related to waste policy and environmental protection. In addition, they take steps to ensure food safety and quality products that have high nutritional properties. Anthocyanins are considered high added-value compounds due to their sensory qualities, colors, and nutritional properties; they are considered bioactive ingredients. They are found in high concentrations in many by-products across the food industry. Thus, the non-conventional extraction techniques presented here are useful in satisfying the current food industry requirements. However, selecting more convenient extraction techniques is not easy. Multiple factors are implicated in the decision. In this review, we compile the most recent applications (since 2015) used to extract anthocyanins from different natural matrices, via conventional and non-conventional extraction techniques. We analyze the main advantages and disadvantages of anthocyanin extraction techniques from different natural matrices and discuss the selection criteria for sustainability of the processes. We present an up-to-date analysis of the principles of the techniques and an optimization of the extraction conditions, technical progress, and industrial applications. Finally, we provide a critical comparison between these techniques and some recommendations, to select and optimize the techniques for industrial applications.
Collapse
|
18
|
AL Ubeed HMS, Bhuyan DJ, Alsherbiny MA, Basu A, Vuong QV. A Comprehensive Review on the Techniques for Extraction of Bioactive Compounds from Medicinal Cannabis. Molecules 2022; 27:604. [PMID: 35163863 PMCID: PMC8840415 DOI: 10.3390/molecules27030604] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. The evaluation of the current extraction methods implemented in the Cannabis industry and scientific literature to produce consistent, reliable, and potent medicinal Cannabis extracts is prudent. Furthermore, these processes must be subjected to higher levels of scientific stringency, as Cannabis has been increasingly used for various ailments, and the Cannabis industry is receiving acceptance in different countries. We comprehensively analysed the current literature and drew a critical summary of the extraction methods implemented thus far to recover bioactive compounds from medicinal Cannabis. Moreover, this review outlines the major bioactive compounds in Cannabis, discusses critical factors affecting extraction yields, and proposes future considerations for the effective extraction of bioactive compounds from Cannabis. Overall, research on medicinal marijuana is limited, with most reports on the industrial hemp variety of Cannabis or pure isolates. We also propose the development of sustainable Cannabis extraction methods through the implementation of mathematical prediction models in future studies.
Collapse
Affiliation(s)
- Hebah Muhsien Sabiah AL Ubeed
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amrita Basu
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA;
| | - Quan V. Vuong
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia;
| |
Collapse
|
19
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
20
|
Liqin T, Haocheng L, Jing W, Yujuan X, Wenni T, Lu L, Yuanshan Y, Xian L, Manqin F. Study on ultrahigh-pressure extraction technology on properties of yellow extract from gardenia fruit. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhang W, Zhang Y, Wang J, Duan W, Liu F. Combined Ultrahigh Pressure Extraction and High-Speed Counter-Current Chromatography for Separation and Purification of Three Glycoside Compounds from Dendrobium officinale Protocorm. Molecules 2021; 26:molecules26133934. [PMID: 34203202 PMCID: PMC8271780 DOI: 10.3390/molecules26133934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Yingjie Zhang
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Jinying Wang
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Wenjuan Duan
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Feng Liu
- School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China; (W.Z.); (J.W.); (W.D.)
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- Correspondence: or ; Tel.: +86-0531-8260-5319
| |
Collapse
|
22
|
Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 2020; 248:116784. [DOI: 10.1016/j.carbpol.2020.116784] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
23
|
Sun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
25
|
Elufioye TO, Habtemariam S, Adejare A. Chemistry and Pharmacology of Alkylamides from Natural Origin. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2020; 30:622-640. [PMID: 33071385 PMCID: PMC7546144 DOI: 10.1007/s43450-020-00095-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/30/2020] [Indexed: 10/28/2022]
Abstract
Interest in alkylamide, as a class of compound, has grown tremendously in recent years. This interest is due to the many presumed benefits in food, cosmetics, and medicine. This review focuses on the different alkylamides naturally occurring in many plant species. Several methods have been employed for their identification as well as isolation and several in vitro and in vivo studies have revealed their therapeutic effects in various diseases. In general, alkylamides have been reported to have several biological activities and pharmacological effects which include immunomodulatory, antithrombotic, antimicrobial, antiviral, antioxidant, anti-inflammatory, analgesic, anticancer, antidiabetic, and antiprotozoal activities. Moreover, many studies have reported on their mechanisms of action, structure-activity relationship, pharmacokinetics, and toxicity. We herein present an updated report on the chemistry and pharmacology of alkylamides of natural origin. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Taiwo O. Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA USA
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent, ME4 4TB UK
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA USA
| |
Collapse
|
26
|
Castro LM, Alexandre EM, Saraiva JA, Pintado M. Impact of high pressure on starch properties: A review. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105877] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. ScientificWorldJournal 2020; 2020:6792069. [PMID: 32908461 PMCID: PMC7474796 DOI: 10.1155/2020/6792069] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023] Open
Abstract
The flavonoids are compounds synthesized by plants, and they have properties such as antioxidant, anticancer, anti-inflammatory, and antibacterial, among others. One of the most important bioactive properties of flavonoids is their antioxidant effect. Synthetic antioxidants have side toxic effects whilst natural antioxidants, such as flavonoids from natural sources, have relatively low toxicity. Therefore, it is important to incorporate flavonoids derived from natural sources in several products such as foods, cosmetics, and drugs. For this reason, there is currently a need to extract flavonoids from plant resources. In this review are described the most important parameters involved in the extraction of flavonoids by unconventional methods such as ultrasound, pressurized liquid extraction, mechanochemical, high hydrostatic pressure, supercritical fluid, negative pressure cavitation, intensification of vaporization by decompression to the vacuum, microwave, infrared, pulsed electric field, high-voltage electrical discharges, and enzyme-assisted extraction. There are no unified operation conditions to achieve high yields and purity. Notwithstanding, progress has been achieved in the development of more advanced and environmentally friendly methods of extraction. Although in literature are found important advances, a complete understanding of the extraction process in each of the unconventional techniques is needed to determine the thermodynamic and kinetic mechanisms that govern each of the techniques.
Collapse
|
28
|
Zhang S, Yi W, Wang Z, Fu C, Fan X, Du B, Cheng L, Lu W, Jiang Z. Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1794896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sinan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weining Yi
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zihan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chao Fu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoping Fan
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lina Cheng
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | | | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Cermeño M, Kleekayai T, Amigo‐Benavent M, Harnedy‐Rothwell P, FitzGerald RJ. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 2020; 41:1694-1717. [DOI: 10.1002/elps.202000153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Cermeño
- Department of Biological Sciences University of Limerick Limerick Ireland
| | | | | | | | | |
Collapse
|
30
|
Jamaludin R, Kim DS, Md Salleh L, Lim SB. Optimization of high hydrostatic pressure extraction of bioactive compounds from noni fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00526-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Donsì F, Velikov KP. Mechanical cell disruption of mustard bran suspensions for improved dispersion properties and protein release. Food Funct 2020; 11:6273-6284. [PMID: 32602518 DOI: 10.1039/d0fo00852d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mustard bran, a by-product of mustard production, is still rich in valuable compounds. The high-pressure homogenization treatment was tested as a mechanical cell disruption (MCD) technique to unlock valuable intracellular compounds. An aqueous suspension of mustard bran was treated by shear mixing, followed by high-pressure homogenization at different pressure levels (50-150 MPa) and number of passes (1-10), and using different homogenizing systems. The moderate-intensity treatment (up to 100 MPa and 3 passes) can deliver significant changes in the mustard bran suspension, inducing (a) a more homogeneous and smooth appearance due to the disruption of individual cells, (b) a better structuring ability in the suspension, through the increase in viscosity and storage and loss moduli G' and G'', as well as (c) a remarkable enhancement of protein release, up to 72% of total proteins. The controlling factor in the extent of MCD was found to be the specific energy transferred to the mustard bran suspensions, whereas no significant differences were recorded when varying the homogenization system. The MCD process of mustard bran, based on its physical treatments using only water as a suspension medium, can be regarded as a safe, clean and environmentally friendly technology platform, which contributes to reaching the zero-waste concept by transforming agro-food by-products into value-added ingredients, with enhanced functionality and bioactive content.
Collapse
Affiliation(s)
- Francesco Donsì
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | | |
Collapse
|
32
|
Wu X, Zha J, Koffas MAG. Microbial production of bioactive chemicals for human health. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Cavaca LA, López-Coca IM, Silvero G, Afonso CA. The olive-tree leaves as a source of high-added value molecules: Oleuropein. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817903-1.00005-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Huang HW, Chen BY, Wang CY. Extraction of bioactive ingredients from fruiting bodies of Antrodia cinnamomea assisted by high hydrostatic pressure. Journal of Food Science and Technology 2019; 56:3988-3997. [PMID: 31477970 DOI: 10.1007/s13197-019-03867-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to use high hydrostatic pressure treatment to enhance the extraction efficiency of the active components from the fruiting bodies of Antrodia cinnamomea, and compare with those obtained by shake and ultrasonic extraction methods. The conditions of high pressure extraction (HPE) at 600 MPa, a liquid/solid ratio of 40:1, and 3 min of treatment yielded triterpenoids and adenosine concentrations of 410.41 mg/100 mL and 0.47 mg/100 mL, respectively, which did not differ significantly from those with the two other treatments-shake extraction at 180 rpm for 8 h and ultrasonic extraction at 50 Hz for 60 min. The HPE extracts significantly attenuated reactive oxygen species, nitric oxide and prostaglandin E2 production in lipopolysaccharide-stimulated RAW 264.7 cells than shake extracts did. SEM micrographs revealed that high-pressure caused physical morphological damage to the mycelium of fruiting bodies, such as distortion and disruption of mycelial cells, and increased the mass-transfer effectiveness of the solvent and solute. HPE can be employed as an efficient extraction technique for production of bioactive ingredients that might have a potential application in food and related industries.
Collapse
Affiliation(s)
- Hsiao-Wen Huang
- 1Department of Animal Science and Technology, National Taiwan University, Taipei, 106 Taiwan
| | - Bang-Yuan Chen
- 2Department of Food Science, Fu Jen Catholic University, Taipei, 242 Taiwan
| | - Chung-Yi Wang
- 3Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd, Huwei, 632 Yunlin Taiwan
| |
Collapse
|
35
|
Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Martín J, Asuero AG. High hydrostatic pressure for recovery of anthocyanins: effects, performance, and applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1632897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Julia Martín
- Department of Analytical Chemistry. Escuela Politécnica Superior. University of Seville, 41011, Seville, Spain
| | - Agustin G. Asuero
- Department of Analytical Chemistry. Faculty of Pharmacy. University of Seville, 41012, Seville, Spain
| |
Collapse
|
37
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
38
|
Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chem 2019; 277:246-260. [DOI: 10.1016/j.foodchem.2018.10.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
|
39
|
Cai R, Yuan Y, Cui L, Wang Z, Yue T. Cyclodextrin-assisted extraction of phenolic compounds: Current research and future prospects. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front Pharmacol 2018; 9:557. [PMID: 30186157 PMCID: PMC6111450 DOI: 10.3389/fphar.2018.00557] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Berberine-containing plants have been traditionally used in different parts of the world for the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial pathologies. The physico-chemical properties of berberine contribute to the high diversity of extraction and detection methods. Considering its particularities this review describes various methods mentioned in the literature so far with reference to the most important factors influencing berberine extraction. Further, the common separation and detection methods like thin layer chromatography, high performance liquid chromatography, and mass spectrometry are discussed in order to give a complex overview of the existing methods. Additionally, many clinical and experimental studies suggest that berberine has several pharmacological properties, such as immunomodulatory, antioxidative, cardioprotective, hepatoprotective, and renoprotective effects. This review summarizes the main information about botanical occurrence, traditional uses, extraction methods, and pharmacological effects of berberine and berberine-containing plants.
Collapse
Affiliation(s)
- Maria A. Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Javier Echeverría
- Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Raluca M. Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina I. Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca D. Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Renard CM. Extraction of bioactives from fruit and vegetables: State of the art and perspectives. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Herrero M, Ibañez E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Ligor M, Ratiu IA, Kiełbasa A, Al-Suod H, Buszewski B. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis 2018; 39:1860-1874. [PMID: 29603754 DOI: 10.1002/elps.201700431] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Based on the bioactive properties of certain compounds, such as antioxidant and anti-inflammatory activities, an interesting subject of research are natural substances present in various parts of plants. The choice of the most appropriate method for separation and quantification of biologically active compounds from plants and natural products is a crucial step of any analytical procedure. The aim of this review article is to present an overview of a comprehensive literature study from the last 10 years (2007-2017), where relevant articles exposed the latest trends and the most appropriate methods applicable for separation and quantification of biologically active compounds from plant material and natural products. Consequently, various extraction methods have been discussed, together with the available procedures for purification and pre-concentration and dedicated methods used for analysis.
Collapse
Affiliation(s)
- Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Ileana-Andreea Ratiu
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Hossam Al-Suod
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
44
|
Yan LG, Deng Y, Ju T, Wu K, Xi J. Continuous high voltage electrical discharge extraction of flavonoids from peanut shells based on "annular gap type" treatment chamber. Food Chem 2018; 256:350-357. [PMID: 29606459 DOI: 10.1016/j.foodchem.2018.02.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/28/2018] [Accepted: 02/25/2018] [Indexed: 01/19/2023]
Abstract
A continuous high voltage electric discharge (HVED) extraction system with "annular gap type" treatment chamber was for the first time designed and optimized for flavonoids extraction from peanut shells, and a comparison with the HVED system with the "converged electric field type" treatment chamber and warm maceration was carried out. The optimal conditions for the "annular gap type" design were: 25% ethanol concentration as solvent, 30:1 mL/g liquid to solid ratio, 13 kV peak pulse voltage and 60 mL/min flow rate of material. Under these conditions, the maximum yield of flavonoids was 0.948 ± 0.014%. Compared with the "converged electric field type" design and warm maceration, the "annular gap type" design possessed shorter duration and higher efficiency for the flavonoids extraction, and had no effects on the composition of extracted flavonoids. The results showed that the "annular gap type" design was a promising alternative method in extracting flavonoids from peanut shells.
Collapse
Affiliation(s)
- Liang-Gong Yan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kejiang Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
45
|
Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, Devkota HP, Orhan IE, Patra JK, Das G, Anandharamakrishnan C, Gomez-Gomez L, Nabavi SF, Nabavi SM, Atanasov AG. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać Kovačević D, Putnik P, Donsì F, Barba FJ, Režek Jambrak A. Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Duba KS, Fiori L. Extraction of bioactives from food processing residues using techniques performed at high pressures. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|