1
|
Evensen E, Teng Z, Mao Y, Chen PY, Ortiz I, Li Y, Yang T, Fonseca JM, Wang Q, Luo Y. Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity. Int J Biol Macromol 2025; 309:142905. [PMID: 40203901 DOI: 10.1016/j.ijbiomac.2025.142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Hydrogels present a promising alternative to soil and traditional hydroponic substrates for indoor and space farming due to their high water retention capacity, non-toxicity, biodegradability, and capacity to fix microgreen seeds in place. However, conventional hydrogels typically suffer from poor porosity in their native state and often experience mechanical instability, which leads to the collapse of critical porous networks necessary for root zone oxygenation. To address these challenges, we developed a hydrogel-based growth substrate from alginate and gellan gum, using a sequential process involving directional freezing, lyophilization, and post-crosslinking in a CaCl2 solution. The as-prepared substrate retained the porous architecture upon rehydration as evidenced by SEM and Micro-CT imaging, as well as a 14-fold increase in the median pore diameter compared to pre-crosslinked control at hydrated state. The post-crosslinked hydrogels also exhibited superior mechanical stability, with an average compression stress of 6.08 kPa compared to 3.35 kPa for the control. In a growth study using Brassica juncea microgreens, the as-prepared hydrogel sustained a 12-day growth cycle without additional watering, achieving similar germination rates and fresh weights to regularly hydrated rockwool. Notably, the hydrogels treated with slow freezing and crosslinked in 5 % CaCl2 solution yielded higher fresh weight of harvested microgreens than those prepared under other conditions. This work presents a simple and effective approach to developing a plant growth substrate with significant potential for low-maintenance crop production in future space exploration missions.
Collapse
Affiliation(s)
- Ella Evensen
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Zi Teng
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America; Department of Nutrition and Food Sciences, University of Maryland, College Park, MD, United States of America; Functional Food Research, U. S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States of America; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, United States of America
| | - Irma Ortiz
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Yang Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, United States of America
| | - Tianbao Yang
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Jorge M Fonseca
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Qin Wang
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD, United States of America
| | - Yaguang Luo
- Food Quality Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America; Department of Nutrition and Food Sciences, University of Maryland, College Park, MD, United States of America; Environmental Microbial and Quality Safety Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America.
| |
Collapse
|
2
|
Seth T, Mishra GP, Chattopadhyay A, Deb Roy P, Devi M, Sahu A, Sarangi SK, Mhatre CS, Lyngdoh YA, Chandra V, Dikshit HK, Nair RM. Microgreens: Functional Food for Nutrition and Dietary Diversification. PLANTS (BASEL, SWITZERLAND) 2025; 14:526. [PMID: 40006785 PMCID: PMC11859409 DOI: 10.3390/plants14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Microgreens are tender, edible seedlings harvested 7-21 days after germination containing a central stem, cotyledons, and true leaves. Known as a fresh, ready-to-eat functional food, they are mostly rich in vitamins, antioxidants, bioactive compounds, and minerals, with distinctive flavors, colors, and textures. These attributes make microgreens a valuable component in nutrition and health research. In countries like India, where low-income households spend 50-80% of their income on food, micronutrient deficiencies are common, particularly among women. Indian women, facing a double burden of malnutrition, experience both underweight (18.7%) and obesity (24.0%) issues, with 57% suffering from anemia. Women's unique health requirements vary across life stages, from infancy to their elderly years, and they require diets rich in vitamins and minerals to ensure micronutrient adequacy. Microgreens, with their high nutrient density, hold promise in addressing these deficiencies. Fresh and processed microgreens based products can enhance food variety, nutritive value, and appeal. Rethinking agriculture and horticulture as tools to combat malnutrition and reduce the risk of non-communicable diseases (NCDs) is vital for achieving nutritional security and poverty reduction. This review compiles recent research on microgreens, focusing on their nutrient profiles, health benefits, suitable crops, substrates, seed density, growing methods, sensory characteristics, and applications as fresh and value-added products. It offers valuable insights into sustainable agriculture and the role of microgreens in enhancing human nutrition and health.
Collapse
Affiliation(s)
- Tania Seth
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Gyan Prakash Mishra
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | - Arup Chattopadhyay
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, West Bengal, India;
| | - Partha Deb Roy
- ICAR-Indian Institute of Water Management, Bhubaneswar 751 023, Odisha, India;
| | - Mridula Devi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Ankita Sahu
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Sukanta Kumar Sarangi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Chaitrali Shashank Mhatre
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Yvonne Angel Lyngdoh
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793 009, Meghalaya, India;
| | - Visalakshi Chandra
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India;
| | - Harsh Kumar Dikshit
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | | |
Collapse
|
3
|
Komeroski MR, Beninca T, Portal KA, Malheiros PS, Klug TV, Flores SH, Rios AO. Postharvest Quality of Arugula ( Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters. Foods 2024; 13:3020. [PMID: 39410055 PMCID: PMC11476110 DOI: 10.3390/foods13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Background: Cultivating microgreens is emerging as an excellent market opportunity. Their easy, short, and sustainable production methods are the main reasons they are approved by growers. However, a feature that still prevents its further spread is the microbiological risk and their rapid senescence. The present study was conducted to evaluate the post-harvest storage and shelf life of arugula microgreens in different packaging through microbiological, physico-chemical, and sensory parameters; (2) Methods: Plants were stored at 5 °C in open air, vacuum sealed, and under modified atmosphere bags and tested at 0, 3, 5, 7, and 10 days; (3) Results: Microgreens stored in all packaging were safe for consumption within ten days. Regarding physical and chemical parameters, open packaging proved to be promising, with less weight loss and slower chlorophyll degradation. The sensory analysis demonstrated that the microgreens stored in the vacuum-sealed packaging showed a decrease in quality from the fifth day onwards for all attributes. However, the MAP presented good scores with a better visual quality, similar to the fresh microgreens.
Collapse
Affiliation(s)
- Marina R. Komeroski
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil; (T.B.); (P.S.M.); (S.H.F.); (A.O.R.)
| | - Thais Beninca
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil; (T.B.); (P.S.M.); (S.H.F.); (A.O.R.)
| | - Keyla A. Portal
- Department of Nutrition, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil;
| | - Patrícia S. Malheiros
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil; (T.B.); (P.S.M.); (S.H.F.); (A.O.R.)
| | - Tâmmila V. Klug
- Postgraduate Program in Science and Food Technology, Department of Food Science, Farroupilha Federal Institute, Santa Maria 97050-685, Brazil;
| | - Simone H. Flores
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil; (T.B.); (P.S.M.); (S.H.F.); (A.O.R.)
| | - Alessandro O. Rios
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil; (T.B.); (P.S.M.); (S.H.F.); (A.O.R.)
| |
Collapse
|
4
|
Ciriello M, Campana E, Kyriacou MC, El-Nakhel C, Graziani G, Cardarelli M, Colla G, De Pascale S, Rouphael Y. Plant-derived biostimulant as priming agents enhanced antioxidant and nutritive properties in brassicaceous microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5921-5929. [PMID: 38450779 DOI: 10.1002/jsfa.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Microgreens constitute dietary sources of bioactive compounds imparting numerous health benefits and enhancing sensory experience. They can be successfully cultivated in soilless systems where biostimulants can be easily integrated as seed-priming and post-germination agents improving the sustainability of a crop's final production. Compared to an untreated control, three priming agents (a commercial legume-derived protein hydrolysate (A250), a novel protein hydrolysate derived from peanut biomass (H250) and hydropriming (H2O)) were applied to Komatsuna and Mibuna seeds grown as microgreens and compared for their effects on yield parameters, mineral composition, ABTS and FRAP antioxidant capacity, carotenoid concentration and phenolic compounds. RESULTS Significant effects of the main experimental factors and their interactions were identified on antioxidant capacity. Compared to the control and hydropriming, the highest ABTS and FRAP values were observed in Mibuna with the A250 and H250 treatments, respectively. Additionally, the H250 treatment increased the total concentrations of phenolic acid derivatives and flavonoid derivatives in Mibuna and Komatsuna, in tune with the levels of total flavonoids. Concerning mineral composition, the highest concentrations in both species were those of phosphorus and nitrate. CONCLUSION These results highlight the potential of select plant-based biostimulants as priming agents to enhance the antioxidant capacity, nutrient content and bioactive compound content, thus further increasing their functional and nutritive quality. In the light of this, the possibility of reducing the application of fertilizers by promoting a green transition for the intensive production of microgreens could subsequently be evaluated. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Emanuela Campana
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giulia Graziani
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VASN, Kesavan AK, Kumar P, Singh D, Vashishth A, Jha R, Misra V, Kumar R. Controlled Environment Ecosystem: A Cutting-Edge Technology in Speed Breeding. ACS OMEGA 2024; 9:29114-29138. [PMID: 39005787 PMCID: PMC11238293 DOI: 10.1021/acsomega.3c09060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The controlled environment ecosystem is a meticulously designed plant growing chamber utilized for cultivating biofortified crops and microgreens, addressing hidden hunger and malnutrition prevalent in the growing population. The integration of speed breeding within such controlled environments effectively eradicates morphological disruptions encountered in traditional breeding methods such as inbreeding depression, male sterility, self-incompatibility, embryo abortion, and other unsuccessful attempts. In contrast to the unpredictable climate conditions that often prolong breeding cycles to 10-15 years in traditional breeding and 4-5 years in transgenic breeding within open ecosystems, speed breeding techniques expedite the achievement of breeding objectives and F1-F6 generations within 2-3 years under controlled growing conditions. In comparison, traditional breeding may take 5-10 years for plant population line creation, 3-5 years for field trials, and 1-2 years for variety release. The effectiveness of speed breeding in trait improvement and population line development varies across different crops, requiring approximately 4 generations in rice and groundnut, 5 generations in soybean, pea, and oat, 6 generations in sorghum, Amaranthus sp., and subterranean clover, 6-7 generations in bread wheat, durum wheat, and chickpea, 7 generations in broad bean, 8 generations in lentil, and 10 generations in Arabidopsis thaliana annually within controlled environment ecosystems. Artificial intelligence leverages neural networks and algorithm models to screen phenotypic traits and assess their role in diverse crop species. Moreover, in controlled environment systems, mechanistic models combined with machine learning effectively regulate stable nutrient use efficiency, water use efficiency, photosynthetic assimilation product, metabolic use efficiency, climatic factors, greenhouse gas emissions, carbon sequestration, and carbon footprints. However, any negligence, even minor, in maintaining optimal photoperiodism, temperature, humidity, and controlling pests or diseases can lead to the deterioration of crop trials and speed breeding techniques within the controlled environment system. Further comparative studies are imperative to comprehend and justify the efficacy of climate management techniques in controlled environment ecosystems compared to natural environments, with or without soil.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Mainu Hazarika
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Punabati Heisnam
- College of Agriculture, Central Agricultural University, Iroisemba, Manipur 795004, India
| | - Himanshu Pandey
- PG Department of Agriculture, Khalsa College, Amritsar, Punjab 143002, India
| | | | - Ajith Kumar Kesavan
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Praveen Kumar
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan 342304, India
| | - Devendra Singh
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh 225003, India
| | - Amit Vashishth
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Rani Jha
- ISBM University, Gariyaband, Chhattishgarh 493996, India
| | - Varucha Misra
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| | - Rajeev Kumar
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
6
|
Wang M, Xu J, Li L, Shen H, Ding Z, Xie J. Development of packaging films based on UiO-66 MOF loaded melatonin with antioxidation functions for spinach preservation. Food Chem 2024; 440:138211. [PMID: 38104446 DOI: 10.1016/j.foodchem.2023.138211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Spinach tends to deteriorate after harvest due to physiological metabolic activities. As a natural, pollution-free, and environmentally friendly preservative, melatonin (MT) can effectively maintain the quality of fruits and vegetables after harvest and delay senescence. To enhance the preservation effect of MT, this study developed antioxidant films using MT-loaded UiO-66 metal-organic framework (MOF) nanoparticles. This approach effectively extends the shelf life of spinach while preserving its quality. The underlying mechanism involves leveraging the microporous structure and stability of UiO-66 MOF. Experimental results obtained from the packaging films demonstrated significant improvements in both mechanical strength and antioxidant properties when UiO-66 was loaded with MT at a concentration of 0.20 mg/mL and combined with sodium alginate. Freshness preservation experiments also indicated the effective preservation effect of these films on spinach. In conclusion, the results of this study suggest that MT-loaded UiO-66 MOF is a promising active packaging material for spinach preservation.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Huming Shen
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
7
|
Frąszczak B, Kula-Maximenko M, Podsędek A, Sosnowska D, Unegbu KC, Spiżewski T. Morphological and Photosynthetic Parameters of Green and Red Kale Microgreens Cultivated under Different Light Spectra. PLANTS (BASEL, SWITZERLAND) 2023; 12:3800. [PMID: 38005697 PMCID: PMC10674929 DOI: 10.3390/plants12223800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Microgreens are plants eaten at a very early stage of development, having a very high nutritional value. Among a large group of species, those from the Brassicaceae family, including kale, are very popularly grown as microgreens. Typically, microgreens are grown under controlled conditions under light-emitting diodes (LEDs). However, the effect of light on the quality of grown microgreens varies. The present study aimed to determine the effect of artificial white light with varying proportions of red (R) and blue (B) light on the morphological and photosynthetic parameters of kale microgreens with green and red leaves. The R:B ratios were for white light (W) 0.63, for red-enhanced white light (W + R) 0.75, and for white and blue light (W + B) 0.38 at 230 µmol m-2 s-1 PPFD. The addition of both blue and red light had a positive effect on the content of active compounds in the plants, including flavonoids and carotenoids. Red light had a stronger effect on the seedling area and the dry mass and relative chlorophyll content of red-leaved kale microgreens. Blue light, in turn, had a stronger effect on green kale, including dry mass. The W + B light combination negatively affected the chlorophyll content of both cultivars although the leaves were significantly thicker compared to cultivation under W + R light. In general, the cultivar with red leaves had less sensitivity to the photosynthetic apparatus to the spectrum used. The changes in PSII were much smaller in red kale compared to green kale. Too much red light caused a deterioration in the PSII vitality index in green kale. Red and green kale require an individual spectrum with different proportions of blue and red light at different growth stages to achieve plants with a large leaf area and high nutritional value.
Collapse
Affiliation(s)
- Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland;
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Kingsley Chinazor Unegbu
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| |
Collapse
|
8
|
Wang M, Xu J, Ding Z, Xie J. Prolong the postharvest shelf life of spinach through the antioxidative ability of melatonin. Food Chem X 2023; 19:100769. [PMID: 37780277 PMCID: PMC10534088 DOI: 10.1016/j.fochx.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Spinach is also known as Persian cuisine, it is rich in nutrients such as protein, vitamin C and minerals, and has high nutritional value. In this study, Spinach was treated with melatonin in order to prolong its shelf life. Melatonin has strong antioxidant effects as an endogenous free radical scavenger. The spinach was sprayed with 0.10, 0.20 and 0.30 mg/mL melatonin solution after harvesting, and distilled water was used as control for low temperature storage at 4 °C. The results showed that melatonin spraying Spinach delayed the degradation of chlorophyll, especially the treatment of 0.20 mg/mL melatonin was the most effective. The content of soluble sugar and soluble protein in spinach tissue was kept high, the accumulation of malondialdehyde (MDA) was reduced, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were increased. These findings suggested that melatonin treatment may be a useful technique to prolong the postharvest life of spinach and improve its quality.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
9
|
Sanyukta, Brar DS, Pant K, Kaur S, Nanda V, Nayik GA, Ramniwas S, Rasane P, Ercisli S. Comprehensive Analysis of Physicochemical, Functional, Thermal, and Morphological Properties of Microgreens from Different Botanical Sources. ACS OMEGA 2023; 8:29558-29567. [PMID: 37608870 PMCID: PMC10442067 DOI: 10.1021/acsomega.3c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
Due to the significant increase in global pollution and a corresponding decrease in agricultural land, there is a growing demand for sustainable modes of modern agriculture that can provide nutritious food. In this regard, microgreens are an excellent option as they are loaded with nutrients and can be grown in controlled environments using various vertical farming approaches. Microgreens are salad crops that mature within 15-20 days, and they have tender leaves with an abundant nutritive value. Therefore, this study aims to explore the physicochemical, techno-functional, functional, thermal, and morphological characteristics of four botanical varieties of microgreens, including carrot (Daucus carota), spinach (Spinacia oleracea), bathua (Chenopodium album), and Bengal gram (Cicer arietinum), which are known for their exceptional nutritional benefits. Among the four botanical varieties of microgreens studied, bathua microgreens demonstrated the highest protein content (3.40%), water holding capacity (1.58 g/g), emulsion activity (56.37%), and emulsion stability (53.72%). On the other hand, Bengal gram microgreens had the highest total phenolic content (32.2 mg GAE/g), total flavonoid content (7.57 mg QE/100 g), and DPPH activity (90.60%). Fourier transform infrared spectroscopy analysis of all microgreens revealed the presence of alkanes, amines, and alcohols. Moreover, X-ray diffraction analysis indicated low crystallinity and high amorphousness in the microgreens. Particle size analysis showed that the median, modal, and mean sizes of the microgreens ranged from 110.327 to 952.393, 331.06 to 857.773, and 97.567 to 406.037 μm, respectively. As per the observations of the results, specific types of microgreens can be utilized as an ingredient in food processing industry, including bakery, confectionery, and more, making them a promising nutritive additive for consumers. This study sheds light on various food-based analytical parameters and offers a foundation for future research to fully harness the potential of microgreens as a novel and sustainable food source, benefiting both the industry and consumers alike.
Collapse
Affiliation(s)
- Sanyukta
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Dilpreet Singh Brar
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Kirty Pant
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Sawinder Kaur
- Department
of Food Science and Nutrition, Lovely Professional
University, Phagwara 144001, Punjab, India
| | - Vikas Nanda
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Government
Degree College Shopian, Shopian 192303, Jammu and Kashmir, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab, India
| | - Prasad Rasane
- Department
of Food Science and Nutrition, Lovely Professional
University, Phagwara 144001, Punjab, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF
Agro,
Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
10
|
Idbella M, Giusti D, Gulli G, Bonanomi G. Structure, Functionality, Compatibility with Pesticides and Beneficial Microbes, and Potential Applications of a New Delivery System Based on Ink-Jet Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:3053. [PMID: 36991764 PMCID: PMC10058129 DOI: 10.3390/s23063053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Accurate application of agrochemicals is an important way to achieve efficient use of chemicals and to combine limited pollution with effective control of weeds, pests, and diseases. In this context, we investigate the potential application of a new delivery system based on ink-jet technology. First, we describe the structure and functionality of ink-jet technology for agrochemical delivery. We then evaluate the compatibility of ink-jet technology with a range of pesticides (four herbicides, eight fungicides, and eight insecticides) and beneficial microbes, including fungi and bacteria. Finally, we investigated the feasibility of using ink-jet technology in a microgreens production system. The ink-jet technology was compatible with herbicides, fungicides, insecticides, and beneficial microbes that remained functional after passing through the system. In addition, ink-jet technology demonstrated higher area performance compared to standard nozzles under laboratory conditions. Finally, the application of ink-jet technology to microgreens, which are characterized by small plants, was successful and opened the possibility of full automation of the pesticide application system. The ink-jet system proved to be compatible with the main classes of agrochemicals and showed significant potential for application in protected cropping systems.
Collapse
Affiliation(s)
- Mohamed Idbella
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Laboratory of Biosciences, Faculty of Sciences and Techniques, Hassan II University, Casablanca 28806, Morocco
| | - Domenico Giusti
- STMicroelectronics, Via C. Olivetti 2 Agrate Brianza (MB), 20864 Agrate Brianza, Italy
| | - Gianluca Gulli
- STMicroelectronics, Via C. Olivetti 2 Agrate Brianza (MB), 20864 Agrate Brianza, Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
11
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1145992. [PMID: 36938024 PMCID: PMC10020514 DOI: 10.3389/fpls.2023.1145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The consumption of plants plays an important role in human health. In addition to providing macro and micronutrients, plants are the sole sources of several phytonutrients that play a major role in disease prevention. However, in modern diets, increased consumption of cheaper, processed foods with poor nutritional value over fruits and vegetables leads to insufficient consumption of essential nutrients such as vitamin C. Taking supplements can address some of the insufficient nutrients in a diet. However, supplements are not as diverse or bioavailable as the nutrients in plants. Improving the abundance of nutrients in plants will reduce the amounts that need to be consumed, thereby reducing the price barrier and use of supplements. In this study, broccoli (Brassica oleracea var. italica) microgreens grown in a controlled environment were biofortified for increased vitamin C content. The microgreens grown on growing pads were treated with supplemental nutrient solutions. Treatments were applied four to five days after germination and included four different concentrations of ascorbic acid specifically, 0% (control), 0.05%, 0.1%, 0.25% and 0.5%, added to the nutrient solution. Microgreens with turgid cotyledons and appearance of tip of first true leaves were harvested about 14 days after germination and were analyzed for biomass, chlorophylls, carotenoids, vitamin C and other minerals content. The ascorbic acid improved the microgreens' fresh biomass, percent dry matter, chlorophylls, carotenoids, vitamin C, and potassium content. Moreover, this study also mapped out the correlation between ascorbic acid, phytochemicals, and broccoli microgreens' mineral composition. The total vitamin C was positively correlated to K and negatively correlated to chlorophylls, N, P, Mg, Ca, S, and B (p < 0.01). These relationships can be applied in future vitamin C biofortification research across different microgreens. In conclusion, vitamin C was increased up to 222% by supplemental ascorbic acid without being detrimental to plant health and mineral composition.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
12
|
Yeargin TA, Lin Z, do Prado I, Sirsat SA, Gibson KE. Consumer practices and perceptions regarding the purchasing and handling of microgreens in the United States. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Ozkaya M, Korukcu O. Effect of cold cabbage leaf application on breast engorgement and pain in the postpartum period: A systematic review and meta-analysis. Health Care Women Int 2023; 44:328-344. [PMID: 35766462 DOI: 10.1080/07399332.2022.2090567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The researchers' aims are to determine the effect of cold cabbage leaf application on breast engorgement and pain during the postpartum period through a systematic review and meta-analysis. Between June and September 2021, researchers systematically searched Turkish and English databases using a combination of keywords. We calculated individual and general effect sizes of the studies to evaluate effect sizes. We obtained 25,996 results with the databases search and we included a total of eight studies for analysis. According to the pooled results, we determined that cold cabbage leaf application caused a significant reduction in breast pain, though no significant reduction was seen in breast engorgement. In this systematic review and meta-analysis, we found that cold cabbage leaf application was effective in reducing breast pain, but that more experimental studies are needed to determine its effect on breast engorgement.CALLOUTSBreast engorgement is a common physiological problem for lactating mothers.Researchers state that the results of the eight studies included in the analysis suggested that cold cabbage leaf application was effective in reducing breast pain.More studies are needed to evaluate the effect of cold cabbage application on reducing breast engorgement.
Collapse
Affiliation(s)
- Meltem Ozkaya
- Faculty of Nursing, Akdeniz University, Antalya, Turkey
| | - Oznur Korukcu
- Faculty of Nursing, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Deng W, Gibson KE. Persistence and transfer of Tulane virus in a microgreen cultivation system. Int J Food Microbiol 2023; 387:110063. [PMID: 36577204 DOI: 10.1016/j.ijfoodmicro.2022.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Microgreens are niche salad greens which have increased in popularity among consumers in recent years. Due to similarities with sprouts and leafy greens-both attributed to numerous foodborne disease outbreaks-characterization of the food safety risks associated with microgreen production is warranted. The present study aimed to determine the fate and persistence of a human norovirus (HuNoV) surrogate, Tulane virus (TV), within a microgreen production system. Initially, the persistence of TV in two types of microgreen soil-free cultivation matrix (SFCM)-BioStrate® (biostrate) and peat-was determined. On day 0, water containing 7.6 log PFU of TV was applied to SFCM in growing trays, and the trays were maintained under microgreen growth conditions. TV persisted throughout the 10-day observation in biostrate and peat with overall reductions of 3.04 and 1.76 log plaque forming units (PFU) per tray, respectively. Subsequently, the transfer of TV to microgreen edible tissue was determined when planted on contaminated SFCM. Trays containing each type of SFCM were pre-inoculated with 7.6 log PFU of TV and equally divided into two areas. On day 0, sunflower (SF) or pea shoot (PS) seeds were planted on one-half of each tray, while the other half was left unplanted to serve as a control. The microgreens were harvested on day 10, and SFCM samples were collected from planted and unplanted areas of each tray. No TV were detected from the edible portion of either type of microgreen, yet TV were still present in the SFCM. TV concentrations were significantly lower in the root-containing planted area compared with the unplanted area for both biostrate (P = 0.0282) and peat (P = 0.0054). The mean differences of TV concentrations between unplanted and planted areas were 1.22 and 0.51 log PFU/g for biostrate and peat, respectively. In a subsequent investigation, TV transfer from day 7 inoculated SFCM to microgreens edible portion was not detected either. Overall, this study characterized the viral risk in a microgreen production system, which will help to understand the potential food safety risk related to HuNoV and to develop preventive measures.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America; College of Life Science, Qingdao University, Qingdao, PR China
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America.
| |
Collapse
|
16
|
Dayarathna NN, Gama-Arachchige NS, Damunupola JW, Xiao Z, Gamage A, Merah O, Madhujith T. Effect of Storage Temperature on Storage Life and Sensory Attributes of Packaged Mustard Microgreens. Life (Basel) 2023; 13:life13020393. [PMID: 36836750 PMCID: PMC9966302 DOI: 10.3390/life13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Short shelf life limits the commercial value of mustard microgreens. The present study was conducted to evaluate the effects of different storage temperatures on postharvest quality and sensory attributes of mustard microgreens to identify the optimum storage temperature. Mustard microgreens were stored at 5, 10, 15, 20, and 25 °C in 150 µm polyethylene bags. Samples were drawn at 0, 1, 2, 4, 7, 10, and 14 days and tested for changes in total chlorophyll content, tissue electrolyte leakage, weight loss, antioxidant activity, and sensory attributes. Storage temperature significantly (p < 0.05) affected the product quality, shelf life, and sensory quality. When stored at 5 °C, mustard microgreens showed no significant changes in antioxidant activity or tissue electrolyte leakage and minimal change in other parameters and maintained good overall sensory quality for 14 days. Samples stored at 10 and 15 °C retained good overall sensory quality for 4 and 2 days, respectively. When stored at 20 and 25 °C, microgreens deteriorated beyond consumption within one day. A storage temperature of 5 °C in 150 µm polythene bags can preserve high postharvest quality and sensory attributes for 14 days.
Collapse
Affiliation(s)
- Nayani N. Dayarathna
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Nalin S. Gama-Arachchige
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (N.S.G.-A.); (O.M.); Tel.: +94-776669844 (N.S.G.-A.); +33-(0)5-34323523 (O.M.)
| | - Jilushi W. Damunupola
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Zhenlei Xiao
- Department of Culinary Science and Product Development, College of Food Innovation & Technology, Johnson & Wales University, Providence, RI 02905, USA
| | - Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAe, INPT, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier, IUT A, 32000 Auch, France
- Correspondence: (N.S.G.-A.); (O.M.); Tel.: +94-776669844 (N.S.G.-A.); +33-(0)5-34323523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
17
|
Zhou Q, Liang W, Wan J, Wang M. Spinach (Spinacia oleracea) microgreen prevents the formation of advanced glycation end products in model systems and breads. Curr Res Food Sci 2023; 6:100490. [PMID: 37033738 PMCID: PMC10074504 DOI: 10.1016/j.crfs.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The formation of advanced glycation end products (AGEs) in daily diets poses a great threat to human health, since AGEs are closely related to some chronic metabolic diseases. In this study, we investigated the antiglycative capabilities of some popular microgreens in chemical model. Our data indicated that baby spinach (Spinacia oleracea) had the highest antiglycative activity during 4-wks incubation, with antioxidation being the main action route. Moreover, a bread model was set up to evaluate its antiglycative potential in real food model. The results showed that the fortification of baby spinach in bread significantly inhibited AGEs formation, with acceptable taste and food quality. Further study revealed that the antiglycative components were mainly distributed in leaves, which were separated via column chromatography and tentatively identified as chlorophyll derivatives. In summary, this study highlighted the antiglycative benefits of baby spinach which can be developed into healthy functional foods.
Collapse
|
18
|
Chathuranga Nabadawa Hewage S, Makawita A, Chandran S, Gibson KE, Fraser AM. Evaluating the Alignment and Quality of Microgreens Training Materials Available on the Internet: A Content Analysis. J Food Prot 2023; 86:100021. [PMID: 36916601 DOI: 10.1016/j.jfp.2022.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Interest in microgreens, young, edible seedlings of a variety of vegetables, spices, and herbs, is growing worldwide. A recent national survey of the U.S. microgreen industry reported 48% of 176 growers learned to grow microgreens by viewing websites and videos on the internet. However, it is unknown if the content related to growing microgreens is aligned with regulations and clearly presented. The aim of this research was to conduct a content analysis to determine alignment with the Food Safety and Modernization Act Produce Safety Rule (PSR)and the presentation quality of existing microgreen training materials available on the internet. Microgreen training materials were collected using two search engines - Google and YouTube. A deductive approach was used to inform the development of three coding manuals to evaluate the training materials meeting the eligibility criteria. One was used to determine the alignment of the content and was based on the PSR. The other two manuals were used to determine the presentation quality of Google and YouTube training materials according to CDC's Quality E-learning Checklist. A total of 223 training materials (86 Google and 137 YouTube), which fulfilled the inclusion criteria, were selected for the analysis. The results of the alignment with the PSR revealed that both sources minimally covered food safety principles with several areas minimally or not addressing specific information (e.g., water testing, worker training, environmental monitoring, and record keeping). In addition, some food safety information was unclear or presented conflicting information (e.g., requirement of washing microgreens, cleaning and sanitization methods, seed treatment methods, and waste management). The Google and YouTube quality scoring systems resulted in a mean quality score of 15.81 and 22 of a maximum score of 28, respectively. These findings indicate the quality and alignment with the PSR of microgreen training materials need to be improved.
Collapse
Affiliation(s)
- Supun Chathuranga Nabadawa Hewage
- Clemson University, Department of Food, Nutrition, and Packaging Sciences, 223 Poole Agricultural Center, Box 340316, Clemson, SC 29634-0316, USA.
| | - Anuradi Makawita
- Clemson University, Department of Food, Nutrition, and Packaging Sciences, 223 Poole Agricultural Center, Box 340316, Clemson, SC 29634-0316, USA.
| | - Sahaana Chandran
- University of Arkansas, Department of Food Science, System Division of Agriculture, 2650 North Young Avenue, Fayetteville, AR 72704, USA.
| | - Kristen E Gibson
- University of Arkansas, Department of Food Science, System Division of Agriculture, 2650 North Young Avenue, Fayetteville, AR 72704, USA.
| | - Angela M Fraser
- Clemson University, Department of Food, Nutrition, and Packaging Sciences, 223 Poole Agricultural Center, Box 340316, Clemson, SC 29634-0316, USA.
| |
Collapse
|
19
|
Corrado G, Pannico A, Zarrelli A, Kyriacou MC, De Pascale S, Rouphael Y. Macro and trace element mineral composition of six hemp varieties grown as microgreens. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Tabbert JM, Schulz H, Krähmer A. Facing energy limitations - approaches to increase basil ( Ocimum basilicum L.) growth and quality by different increasing light intensities emitted by a broadband LED light spectrum (400-780 nm). FRONTIERS IN PLANT SCIENCE 2022; 13:1055352. [PMID: 36507442 PMCID: PMC9731226 DOI: 10.3389/fpls.2022.1055352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Based on the current trend towards broad-bandwidth LED light spectra for basil productions in multi-tiered controlled-environment horticulture, a recently developed white broad-bandwidth LED light spectrum (400-780 nm) including far-red wavelengths with elevated red and blue light fractions was employed to cultivate basil. Four Ocimum basilicum L. cultivars (cv. Anise, cv. Cinnamon, cv. Dark Opal and cv. Thai Magic) were exposed to two different rising light intensity conditions (ILow and IHigh). In dependence of the individual cultivar-specific plant height increase over time, basil cultivars were exposed to light intensities increasing from ~ 100 to ~ 200 µmol m-2 s-1 under ILow, and from 200 to 400 µmol m-2 s-1 under IHigh (due to the exponential light intensity increases with decreasing proximity to the LED light fixtures). Within the first experiment, basils' morphological developments, biomass yields and time to marketability under both light conditions were investigated and the energy consumptions were determined to calculate the basils' light use efficiencies. In detail, cultivar-dependent differences in plant height, leaf and branch pair developments over time are described. In comparison to the ILow light conditions, IHigh resulted in accelerated developments and greater yields of all basil cultivars and expedited their marketability by 3-5 days. However, exposure to light intensities above ~ 300 µmol m-2 s-1 induced light avoidance responses in the green-leafed basil cultivars cv. Anise, cv. Cinnamon and cv. Thai Magic. In contrast, ILow resulted in consumer-preferred visual qualities and greater biomass efficiencies of the green-leafed basil cultivars and are discussed as a result of their ability to adapt well to low light conditions. Contrarily to the green-leafed cultivars, purple-leafed cv. Dark Opal developed insufficiently under ILow, but remained light-tolerant under IHigh, which is related to its high anthocyanin contents. In a second experiment, cultivars' volatile organic compound (VOC) contents and compositions over time were investigated. While VOC contents per gram of leaf dry matter gradually decreased in purple-leafed cv. Dark Opal between seedling stage to marketability, their contents gradually increased in the green cultivars. Regardless of the light treatment applied, cultivar-specific VOC compositions changed tremendously in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Jenny Manuela Tabbert
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hartwig Schulz
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Consulting & Project Management for Medicinal and Aromatic Plants, Stahnsdorf, Germany
| | - Andrea Krähmer
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| |
Collapse
|
21
|
Yan H, Li W, Chen H, Liao Q, Xia M, Wu D, Liu C, Chen J, Zou L, Peng L, Zhao G, Zhao J. Effects of Storage Temperature, Packaging Material and Wash Treatment on Quality and Shelf Life of Tartary Buckwheat Microgreens. Foods 2022; 11:foods11223630. [PMID: 36429221 PMCID: PMC9689458 DOI: 10.3390/foods11223630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tartary buckwheat microgreens (TBM) are popular worldwide products but display an extremely short shelf life. Thus, the effects of storage temperature, packaging material, and wash treatment on the quality and shelf life were analyzed. Headspace composition, weight loss, electrolyte leakage, microbial population and sensory quality were investigated during storage. Results showed that shelf life and quality of TBM decreased with the increment of storage temperature when stored at 5-25 °C. During 5 °C storage, LDPE bags were the best packaging materials for preserving the quality of LDPE, PE and HDPE bags. On the basis of 5 °C and LDPE packages, ClO2 + citric acid wash treatment could further inhibit quality deterioration and extend the shelf life. The results demonstrated bioactive constituents and antioxidant capacity were significantly affected by storage time. The study provides insights into developing optimal packaging and storage conditions for TBM.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenfei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hongxu Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qingxia Liao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mengying Xia
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jianxiong Chen
- Huantai Biotechnology Company Ltd., Chengdu 610213, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-18-2845-58669
| |
Collapse
|
22
|
Dhakshayani GM, Priya SJA. A comparative study of phytochemical, antioxidant, anticarcinogenic, and antidiabetic potential of coriander (Coriandrum sativum L.): Microgreen and mature plant. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microgreens are immature edible leafy greens with a higher concentration of phytonutrients than in mature leaves, which makes them a novel functional food. This research featured antioxidant, anticarcinogenic, and antidiabetic properties of coriander microgreens.
Aqueous and ethanolic extractions of coriander microgreens and mature leaves underwent a phytochemical analysis of antioxidant potential using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical method and the ferric reducing antioxidant power (FRAP) assay. The analysis of antidiabetic and anticarcinogenic properties included the method of α-amylase enzyme inhibition and the MTT colorimetric assay.
The screening test inferred the presence of alkaloids, terpenoids, glycosides, steroids, tannins, flavonoids, phenols, carbohydrates, and proteins in both microgreens and mature leaves. The quantitative analysis showed that the ethanolic extract of the microgreen sample exhibited higher total phenols. Total flavonoids, steroids, carbohydrates, and proteins were higher both in microgreen extracts, if compared with those of mature leaves. Ascorbic acid, chlorophyll-a, chlorophyll-b, and carotenoids demonstrated a more substantial presence in mature leaves. The gas chromatography-mass spectrometry (GC/MS) analysis of coriander microgreens revealed such bioactive compounds as thienopyrimidines, phenolic amide, imidazo pyridazine, phenolic constituents, and essential oil. Mature leaves were rich in phenolic compounds, steroids, terpenoids, essential oils, and fatty acid esters. All these substances are known for their therapeutic antioxidant, antidiabetic, and anticarcinogenic properties. The microgreen samples exhibited greater ferric reducing antioxidant power, α-amylase enzyme inhibition, and cytotoxicity activity at a lower concentration of extract than mature leaves.
Coriander microgreens proved to have a promising antioxidant, anticarcinogenic, and antidiabetic potential and can be used in daily food additives.
Collapse
|
23
|
Xia J, Mattson N, Stelick A, Dando R. Sensory Evaluation of Common Ice Plant ( Mesembryanthemum crystallinum L.) in Response to Sodium Chloride Concentration in Hydroponic Nutrient Solution. Foods 2022; 11:2790. [PMID: 36140917 PMCID: PMC9497535 DOI: 10.3390/foods11182790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible plant with a succulent and savory flavor. The plants display prominent epidermal bladder cells (EBCs) on the surface of the leaves that store water and sodium chloride (NaCl). The plants have high nutritional value and are adapted to saline soils. Previous research has determined the impact of NaCl on the growth and mineral content of ice plant, but as NaCl has an impact on a food's sensory properties, an interesting question is whether saline growth media can affect the plant's taste and texture, and if this alters consumers' sensory response to ice plant. The objective of this study was to evaluate the sensory aspects of ice plant, as well as consumer liking in response to increasing NaCl concentration in hydroponic nutrient solution. Four-week-old seedlings of ice plant were transplanted into deep water culture (DWC) hydroponic systems and treated with five NaCl concentrations (0 M [control], 0.05 M, 0.10 M, 0.20 M, and 0.40 M NaCl). Eight-week-old plants (after four weeks of NaCl treatment) were harvested, and the middle leaves of each plant were sampled for consumer testing. A total of 115 participants evaluated various flavor, texture, and appearance aspects of ice plant and provided their liking ratings. The consumers were able to discriminate differences in salt intensity from the plants based on NaCl treatment in the hydroponic nutrient solution. Low NaCl concentrations (0.05-0.10 M) did not have obvious adverse effect on consumer liking, which aligns with the result of previous research that 0.05-0.10 M NaCl could largely stimulate the growth of ice plant. NaCl concentrations higher than 0.20 M are not recommended from both a production and consumer perspective. With increased NaCl level in plant samples, the consumers detected more saltiness, sourness, and fishiness, less green flavor, and similar levels of bitterness and sweetness. NaCl treatment had no effects on leaf appearance and texture, and the consumers' overall liking was mainly determined by flavor. Overall, ice plant presents some unique attributes (salty and juicy) compared to other edible salad greens; however, consumer awareness of ice plant is very low, and purchase intent is relatively low as well. Consumers picture ice plant being used mainly in salads and in restaurants.
Collapse
Affiliation(s)
- Jiaqi Xia
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Neil Mattson
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Alina Stelick
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
24
|
Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS One 2022; 17:e0268085. [PMID: 35609036 PMCID: PMC9128967 DOI: 10.1371/journal.pone.0268085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Microgreens have been used for raw consumption and are generally viewed as healthy food. This study aimed to optimize the yield parameters, shelf life, sensory evaluation and characterization of total aerobic bacteria (TAB), yeast and mold (Y&M), Escherichia coli, Salmonella spp., and Listeria spp. incidence in mungbean (Vigna radiata (L.) Wilczek), lentil (Lens culinaris Medikus subsp. culinaris), and Indian mustard (Brassica juncea (L.) Czern & Coss.) microgreens. In mungbean and lentil, seeding-density of three seed/cm2, while in Indian mustard, eight seed/cm2 were recorded as optimum. The optimal time to harvest mungbean, Indian mustard, and lentil microgreens were found as 7th, 8th, and 9th day after sowing, respectively. Interestingly, seed size was found highly correlated with the overall yield in both mungbeans (r2 = .73) and lentils (r2 = .78), whereas no such relationship has been recorded for Indian mustard microgreens. The target pathogenic bacteria such as Salmonella spp. and Listeria spp. were not detected; while TAB, Y&M, Shigella spp., and E. coli were recorded well within the limit to cause any human illness in the studied microgreens. Washing with double distilled water for two minutes has shown some reduction in the overall microbial load of these microgreens. The results provided evidence that microgreens if grown and stored properly, are generally safe for human consumption. This is the first study from India on the safety of mungbean, lentils, and Indian mustard microgreens.
Collapse
|
25
|
Işık S, Aytemiş Z, Çetin B, Topalcengiz Z. Possible explanation for limited reduction of pathogens on radish microgreens after spray application of chlorinated water during growth with disperse contamination spread of abiotic surrogate on leaves. J Food Saf 2022. [DOI: 10.1111/jfs.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sefa Işık
- Department of Food Processing, Vocational School of Technical Sciences Muş Alparslan University Muş Turkey
- Department of Food Engineering, Faculty of Agriculture Atatürk University Erzurum Turkey
| | - Zeynep Aytemiş
- Department of Food Safety, Graduate School of Natural and Applied Sciences Muş Alparslan University Muş Turkey
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture Atatürk University Erzurum Turkey
| | - Zeynal Topalcengiz
- Department of Food Engineering, Faculty of Engineering and Architecture Muş Alparslan University Muş Turkey
| |
Collapse
|
26
|
Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, Saini R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int 2022; 155:111038. [DOI: 10.1016/j.foodres.2022.111038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
|
27
|
Both AK, Shaker E, Cheung CL. Phytotoxic effect of sub-3-nm crystalline ceria nanoparticles on the hydroponic growth of Daikon radish microgreens. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2022; 8:e202200023. [PMID: 35757180 PMCID: PMC9216221 DOI: 10.1002/cnma.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 05/25/2023]
Abstract
Cerium oxide nanoparticles (ceria NPs) have been widely used in many industrial applications. They have been proposed as a potential remedy for reducing oxidative stress in biological systems. General concerns over the toxicity of engineered ceria NPs have led to studies of their phytotoxicity in plants. Most of these plant growth studies were conducted in soil using grain crops and commercial ceria NPs of sizes from 6 nm to 100's nm. In this paper, we report our evaluation of the phytotoxicity and uptake of sub-3-nm crystalline ceria NPs by exposing Daikon radish (Raphanus sativus var. longipinnatus) microgreens to these NPs with environmentally relevant concentrations under hydroponic growth conditions. Aqueous suspensions of different concentrations of these ceria NPs (0.1 ppm, 1 ppm, and 10 ppm) were applied to these microgreens for the last 7 days of the 12-day growth period. Our results revealed the uptake of cerium by plant roots and the translocation of cerium to the stems and the cotyledons (seed leaves). The accumulation of cerium was found to be maximum at the roots, followed by the cotyledons and the stems of the plants. Even at the lowest concentration (0.1 ppm) of the sub-3-nm ceria NPs, the accumulation of cerium at the roots significantly stunted the root growth. However, these NP treatments did not show significant changes to the distributions of macro-minerals (Mg, K, and Ca) and micro-minerals (Zn and Cu) in the microgreens at the end of the 12-day growth period. The phytotoxic effect of sub-3-nm crystalline ceria nanoparticles on the hydroponic growth of Daikon radish microgreens was studied. The cerium uptake by the plant and its effect on the bioavailability of major macro-minerals and micro-minerals within the plant were examined.
Collapse
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ema Shaker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chin Li Cheung
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
28
|
Swanson EO, Carlson JL, Perkus LA, Grossman J, Rogers MA, Erwin JE, Slavin JL, Rosen CJ. Nutrient and Nitrate Composition of Greenhouse-Grown Leafy Greens: A Trial Comparison Between Conventional and Organic Fertility Treatments. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.811995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arugula (Eruca sativa), mizuna (Brassica rapa var. nipponsinca), red giant mustard (Brassica juncea), and spinach (Spinaciaoleracea “Tyee”) are fresh produce crops high in nutritive value that provide shortfall and high interest nutrients addressed in the U.S. Dietary Guidelines. The primary objective of this project was to evaluate fertility treatments unique to these crops that optimize their nutritional capacity. Measurements discussed include: vitamin C, dietary fiber, calcium, iron, potassium, sodium, and nitrate. Plants were grown at the University of Minnesota St. Paul Campus (St. Paul, MN) in a greenhouse from November to April under an 18 h photoperiod and a 24/13°C day/night temperature. Plants were grown using five different fertility treatments, including four organic treatments and one conventional control. The plant treatment combinations were replicated three times and the entire experiment was duplicated. Fertility treatments had a high impact on vitamin C (with over a 3-fold difference in treatments in the first experiment), nitrate (over 10-fold difference among fertility treatments in some species) and potassium concentrations (over 5-fold difference among fertility treatments in some species) in analyzed plant tissue. No consistent differences were found for fiber, calcium, iron and sodium concentrations in tissue analyzed. This is the first study to analyze the impact that different organic treatments can have on multiple nutrients and compounds addressed by the U.S. Dietary Guidelines for high-impact, highly-consumed produce crops.
Collapse
|
29
|
The Inclusion of Green Light in a Red and Blue Light Background Impact the Growth and Functional Quality of Vegetable and Flower Microgreen Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microgreens are edible seedlings of vegetables and flowers species which are currently considered among the five most profitable crops globally. Light-emitting diodes (LEDs) have shown great potential for plant growth, development, and synthesis of health-promoting phytochemicals with a more flexible and feasible spectral manipulation for microgreen production in indoor farms. However, research on LED lighting spectral manipulation specific to microgreen production, has shown high variability in how these edible seedlings behave regarding their light environmental conditions. Hence, developing species-specific LED light recipes for enhancement of growth and valuable functional compounds is fundamental to improve their production system. In this study, various irradiance levels and wavelengths of light spectrum produced by LEDs were investigated for their effect on growth, yield, and nutritional quality in four vegetables (chicory, green mizuna, china rose radish, and alfalfa) and two flowers (french marigold and celosia) of microgreens species. Microgreens were grown in a controlled environment using sole-source light with different photosynthetic photon flux density (110, 220, 340 µmol m−2 s−1) and two different spectra (RB: 65% red, 35% blue; RGB: 47% red, 19% green, 34% blue). At harvest, the lowest level of photosynthetically active photon flux (110 µmol m−2 s−1) reduced growth and decreased the phenolic contents in almost all species. The inclusion of green wavelengths under the highest intensity showed positive effects on phenolic accumulation. Total carotenoid content and antioxidant capacity were in general enhanced by the middle intensity, regardless of spectral combination. Thus, this study indicates that the inclusion of green light at an irradiance level of 340 µmol m−2 s−1 in the RB light environment promotes the growth (dry weight biomass) and the accumulation of bioactive phytochemicals in the majority of the microgreen species tested.
Collapse
|
30
|
Castellaneta A, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. Glycerophospholipidomics of Five Edible Oleaginous Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2410-2423. [PMID: 35144380 DOI: 10.1021/acs.jafc.1c07754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microgreens are a special type of vegetal product, born as a culinary novelty (traditionally used to garnish gourmet dishes) and then progressively studied for their potentially high content in nutraceuticals, like polyphenolic compounds, carotenoids, and glucosinolates, also in the perspective of implementing their cultivation in space stations/colonies. Among further potential nutraceuticals of microgreens, lipids have received very limited attention so far. Here, glycerophospholipids contained in microgreens of typical oleaginous plants, namely, soybean, chia, flax, sunflower, and rapeseed, were studied using hydrophilic interaction liquid chromatography (HILIC), coupled to high-resolution Fourier transform mass spectrometry (FTMS) or low-resolution collisionally induced dissociation tandem mass spectrometry (CID-MS2) with electrospray ionization (ESI). Specifically, this approach was employed to obtain qualitative and quantitative profiling of the four main classes of glycerophospholipids (GPL) found in the five microgreens, i.e., phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and phosphatidylinositols (PI). Saturated chains with 16 and 18 carbon atoms and unsaturated 18:X (with X = 1-3) chains emerged as the most common fatty acyl substituents of those GPL; a characteristic 16:1 chain (including a C═C bond between carbon atoms 3 and 4) was also found in some PG species. Among polyunsaturated acyl chains, the 18:3 one, likely referred mainly to α-linolenic acid, exhibited a relevant incidence, with the highest estimated amount (corresponding to 160 mg per 100 g of lyophilized vegetal tissue) found for chia. This outcome opens interesting perspectives for the use of oleaginous microgreens as additional sources of essential fatty acids, especially in vegetarian/vegan diets.
Collapse
|
31
|
The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods 2022; 11:foods11030423. [PMID: 35159573 PMCID: PMC8834567 DOI: 10.3390/foods11030423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/11/2023] Open
Abstract
Interest in the cultivation of lettuce landraces is increasing because native varieties, as high-quality products, are particularly attractive to consumers. Lettuce is a popular leafy vegetable worldwide, and interest in the consumption of first leaves (microgreens) and seedlings (baby leaves) has grown due to the general belief that young plants offer higher nutritional value. The content of some bioactive compounds and antioxidants (chlorophylls, carotenoids, anthocyanins, ascorbic acid, phenols, antioxidant activity) was monitored in six lettuce landraces and five commercial varieties, and compared across three development stages: microgreen, baby, and adult. Ascorbic acid and phenolic contents were 42% and 79% higher, respectively, in the early stages than in adult lettuces, and red-leaf varieties (CL4 and L11) stood out. This finding agrees with lettuce’s marked antioxidant capacity and correlates with its pigment contents, especially anthocyanins. The nutritional value of adult lettuce is conditioned by its size, shape, and head structure as phytochemical concentrations are regulated by light. The low content of ascorbic acid, phenolics, and anthocyanins in crisphead lettuce (CL5) is a clear example (49, 67%, and 27% lower, respectively, than the adult mean). Our results indicate the wide variability of lettuces’ nutritional characteristics and emphasize that traditional varieties are a helpful source of agricultural biodiversity.
Collapse
|
32
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Titov AF. Continuous LED Lighting Enhances Yield and Nutritional Value of Four Genotypes of Brassicaceae Microgreens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020176. [PMID: 35050064 PMCID: PMC8781578 DOI: 10.3390/plants11020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 05/04/2023]
Abstract
The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m-2 day-1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.
Collapse
|
33
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Titov AF. Effect of end-of production continuous lighting on yield and nutritional value of Brassicaceae microgreens. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224802005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of continuous lighting applied in the end-of-production period on growth and nutritional quality of radish (Raphanus sativus var. radicula), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica) and arugula (Eruca sativa) was investigated in growth chambers under LED lighting. Microgreens were grown under 16 h photoperiod and 3 days before harvest half of plants were placed under continuous lighting conditions. Pre-harvest continuous lighting treatment increased yield, robustness index, and shorten time to harvest in radish, broccoli, mizuna and arugula microgreens. The end-of-production treatment has also led to higher content of compounds with antioxidative properties (flavonoids, proline) and increased the activity of antioxidant enzymes (CAT, APX, GPX) by inducing mild photooxidative stress. Increased antioxidative status added nutritional value to microgreens that can be used as functional foods providing health benefits. Pre-harvest treatment by continuous lighting is suggested as the practice than can allow producers to increase yield, aesthetic appeal, nutritional quality, and market value of Brassicacea microgreens.
Collapse
|
34
|
de Aquino NSM, Elias SDO, Tondo EC. Evaluation of PhageDX Salmonella Assay for Salmonella Detection in Hydroponic Curly Lettuce. Foods 2021; 10:1795. [PMID: 34441572 PMCID: PMC8394719 DOI: 10.3390/foods10081795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lettuce is one of the most consumed leafy vegetables worldwide and has been involved in multiple foodborne outbreaks. Salmonella is one of the most prevalent etiological agents of foodborne disease (FBD) in lettuces, and its detection may take several days depending on the chosen method. This study evaluates a new rapid method that uses recombinant bacteriophages to detect Salmonella in hydroponic curly lettuce. First, the ability of the assay to detect six Salmonella serovars at three different concentrations (1, 10, and 100 CFU/well) was tested. Second, the detection of Salmonella was tested in lettuces using a cocktail of the same Salmonella serovars and concentrations after a 7 h enrichment. The results of these experiments showed that the detection limit was dependent on the serovar tested. Most serovars were detected in only 2 h when the concentration was 100 CFU/well. Salmonella was detected in 9 h (7 h enrichment + 2 h bioluminescence assay) in all lettuce samples with 10 CFU/25 g or more. Salmonella detection was not influenced by natural microbiota of lettuces. This study demonstrated that the phage assay was sensitive and faster than other detection methods, indicating that it is a better alternative for Salmonella detection on lettuces.
Collapse
Affiliation(s)
- Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Campus do Vale-Agronomia (ICTA/UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS CEP, Brazil; (S.d.O.E.); (E.C.T.)
| | | | | |
Collapse
|
35
|
Gao M, He R, Shi R, Li Y, Song S, Zhang Y, Su W, Liu H. Combination of Selenium and UVA Radiation Affects Growth and Phytochemicals of Broccoli Microgreens. Molecules 2021; 26:molecules26154646. [PMID: 34361799 PMCID: PMC8348033 DOI: 10.3390/molecules26154646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 μmol/L Na2SeO3), UVA (40 μmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.
Collapse
|
36
|
Teng J, Liao P, Wang M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food Funct 2021; 12:1914-1932. [PMID: 33595583 DOI: 10.1039/d0fo03299a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing public concern about health has prompted humans to find new sources of food. Microgreens are young and immature plants that have been recently introduced as a new category of vegetables, adapting their production at the micro-scale. In this paper, the chemical compositions including micro-nutrients and some typical phytochemicals of microgreens are summarized. Their edible safety and potential health benefits are also reviewed. Microgreens play an increasingly vital role in health-promoting diets. They are considered good sources of nutritional and bioactive compounds, and show potential in the prevention of malnutrition and chronic diseases. Some strategies in the pre- or post-harvest stages of microgreens can be further applied to obtain better nutritional, functional, and sensorial quality with freshness and extended shelf life. This review provides valuable nutrient data and health information for microgreens, laying a theoretical foundation for people to consume microgreens more wisely, and providing great value for the development of functional products with microgreens.
Collapse
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| |
Collapse
|
37
|
Effect of Red Cabbage Sprouts Treating with Organic Acids on the Content of Polyphenols, Antioxidant Properties and Colour Parameters. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, there has been a great deal of consumer interest in consuming vegetables in the form of sprouts, characterized by high nutritional value. The disadvantage of sprouts is the loss of bioactive compounds during storage and the relatively short shelf life, due to the fact that they are a good medium for microorganisms, especially yeasts and molds. The aim of the study was to compare the content of polyphenols, antioxidant properties, color and microbiological quality of red cabbage sprouts preserved by the use of mild organic acids: Citric, ascorbic, lactic, acetic and peracetic. In the study, the content of polyphenols and antioxidant properties of sprouts was examined using the spectrophotometric method, instrumental color measurement was done using an “electronic eye” and the content of mold, yeast and the total number of mesophilic microorganisms was determined using the plate inoculation method. Taking into account the content of polyphenols and the antioxidant potential of sprouts, it was found that the addition of all organic acids contributed to the preservation of the tested compounds during their 14-day storage under refrigerated conditions, depending on the type of organic acid used, from 71 to 86% for polyphenols and from 75 to 96% for antioxidant properties. The best results were obtained by treating the sprouts with peracetic acid and ascorbic acid, respectively, at a concentration of 80 ppm and 1%. The conducted research on the possibility of extending the storage life and preserving the bioactive properties of fresh sprouts showed that the use of peracetic acid in the form of an aqueous solution during pre-treatment allows to reduce the content of microorganisms by one logarithmic order. Ascorbic acid did not reduce the content of microorganisms in the sprout samples tested. Considering the content of bioactive ingredients, as well as the microbiological quality of fresh sprouts, it can be said that there is a great need to use mild organic acids during the pre-treatment of sprouts in order to maintain a high level of health-promoting ingredients during their storage, which may also contribute to their prolongation durability.
Collapse
|
38
|
Mir SA, Farooq S, Shah MA, Sofi SA, Dar B, Hamdani AM, Mousavi Khaneghah A. An overview of sprouts nutritional properties, pathogens and decontamination technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Tomas M, Zhang L, Zengin G, Rocchetti G, Capanoglu E, Lucini L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res Int 2021; 140:110039. [PMID: 33648265 DOI: 10.1016/j.foodres.2020.110039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
In this study, four Brassicaceae microgreens species, namely kale, red cabbage, kohlrabi, and radish, were evaluated for their phytochemical compositions using spectrophotometric assays and untargeted metabolomics before and after in vitro gastrointestinal digestion. According to the in vitro spectrophotometric results, significant amounts of phenolics could be detected in each studied species, thus supporting the total antioxidant capacities recorded. Overall, metabolomics allowed annotating a total of 470 phytochemicals across the four Brassicaceae microgreens, either fresh or digested. Among polyphenols, flavonoids were the most represented class (180 compounds, including anthocyanins, flavones, flavonols, and other flavonoids), followed by phenolic acids (68 compounds, mainly hydroxycinnamic and hydroxybenzoic acids), non-flavonoid or phenolic acid-based structures (i.e., alkyl- and alkylmethoxy-phenols and tyrosol derivatives), and lignans. Also, 22 glucosinolates were annotated, including gluconapin glucoraphanin, glucobrassicin, and 4-hydroxyglucobrassicin. Noteworthy, significant differences could be observed in terms of bioaccessibility as a function of the phenolic class and the species considered. Overall, lignans exhibited the highest bioaccessibility values (14%), followed by tyrosol derivatives and flavonoids (on average, 9% and 8%, respectively). However, differences could be evidenced as a function of the species, with red cabbage having comparatively lower bioaccessibility values irrespective of the chemical class of bioactive considered. Similarly, bioaccessibility of glucosinolates significantly differed across species, ranging from 2% in kale to 43% in kohlrabi microgreens.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Halkali, Istanbul, Turkey
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus Konya, Turkey
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
40
|
Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family. Foods 2021; 10:foods10020427. [PMID: 33672089 PMCID: PMC7919663 DOI: 10.3390/foods10020427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Microgreens are the seedlings of herbs and vegetables which are harvested at the development stage of their two cotyledonary leaves, or sometimes at the emergence of their rudimentary first pair of true leaves. They are functional foods, the consumption of which is steadily increasing due to their high nutritional value. The species of the Brassicaceae family are good sources of bioactive compounds, with a favorable nutritional profile. The present study analyzed some phytochemical compounds with nutritional values, such as chlorophylls, polyphenols, carotenoids, anthocyanins, ascorbic acid, total and reducing sugars, and the antioxidant activity of five Brassicaceae species: broccoli (Brassica oleracea L.), daikon (Raphanus raphanistrum subsp. sativus (L.) Domin), mustard (Brassica juncea (L.) Czern.), rocket salad (Eruca vesicaria (L.) Cav.), and watercress (Nasturtium officinale R.Br.). Broccoli had the highest polyphenol, carotenoid and chlorophyll contents, as well as a good antioxidant ability. Mustard was characterized by high ascorbic acid and total sugar contents. By contrast, rocket salad exhibited the lowest antioxidant content and activity. The essential oil (EO) composition of all of these species was determined in order to identify their profile and isothiocyanates content, which are compounds with many reported health benefits. Isothiocyanates were the most abundant group in broccoli (4-pentenyl isothiocyanate), mustard (allyl isothiocyanate), and watercress (benzyl isothiocyanate) EOs, while rocket salad and daikon exhibited higher contents of monoterpene hydrocarbons (myrcene) and oxygenated diterpenes (phytol), respectively. Broccoli microgreens exhibited the overall best nutritional profile, appearing as the most promising species to be consumed as a functional food among those analyzed.
Collapse
|
41
|
Johnson SA, Prenni JE, Heuberger AL, Isweiri H, Chaparro JM, Newman SE, Uchanski ME, Omerigic HM, Michell KA, Bunning M, Foster MT, Thompson HJ, Weir TL. Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Curr Dev Nutr 2021; 5:nzaa180. [PMID: 33644632 PMCID: PMC7897203 DOI: 10.1093/cdn/nzaa180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microgreens are the young leafy greens of many vegetables, herbs, grains, and flowers with potential to promote human health and sustainably diversify the global food system. For successful further integration into the global food system and evaluation of their health impacts, it is critical to elucidate and optimize their nutritional quality. OBJECTIVES We aimed to comprehensively evaluate the metabolite and mineral contents of 6 microgreen species, and the influence of maturity on their contents. METHODS Plant species evaluated were from the Brassicaceae (arugula, broccoli, and red cabbage), Amaranthaceae (red beet and red amaranth), and Fabaceae (pea) plant families. Nontargeted metabolomics and ionomics analyses were performed to examine the metabolites and minerals, respectively, in each microgreen species and its mature counterpart. RESULTS Nontargeted metabolomics analysis detected 3321 compounds, 1263 of which were annotated and included nutrients and bioactive compounds. Ionomics analysis detected and quantified 26 minerals including macrominerals, trace minerals, ultratrace minerals, and other metals. Principal component analysis indicated that microgreens have distinct metabolite and mineral profiles compared with one another and with their mature counterparts. Several compounds were higher (P < 0.05; fold change ≥2) in microgreens compared with their mature counterparts, whereas some were not different or lower. In many cases, compounds that were higher in microgreens compared with the mature counterpart were also unique to that microgreen species. CONCLUSIONS These data provide evidence for the nutritional quality of microgreens, and can inform future research and development aimed at characterizing and optimizing microgreen nutritional quality and health impacts.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Analytical Resources Core: Bioanalysis and Omics, Colorado State University, Fort Collins, CO, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hanan Isweiri
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Faculty of Education, University of Benghazi, Benghazi, Libya
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Analytical Resources Core: Bioanalysis and Omics, Colorado State University, Fort Collins, CO, USA
| | - Steven E Newman
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Mark E Uchanski
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Heather M Omerigic
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Marisa Bunning
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Henry J Thompson
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
42
|
Acharya J, Gautam S, Neupane P, Niroula A. Pigments, ascorbic acid, and total polyphenols content and antioxidant capacities of beet ( Beta vulgaris) microgreens during growth. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1955924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jyoti Acharya
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| | - Sonila Gautam
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| | - Prakshya Neupane
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Nepal
| | - Anuj Niroula
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| |
Collapse
|
43
|
Sharma P, Sharma A, Rasane P, Dey A, Choudhury A, Singh J, Kaur S, Dhawan K, Kaur D. Optimization of a process for microgreen and fruit-based functional beverage. AN ACAD BRAS CIENC 2020; 92:e20190596. [PMID: 33111819 DOI: 10.1590/0001-3765202020190596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
Microgreen based functional juice blends containing fenugreek (Trigonella foenum-graecum), kinnow mandarin (Citrus reticulate) and aloe vera (Aloe brobadensis) in different ratios were blended with sorbitol and stevia. The different ratios of juice blends were analyzed for total soluble solids, sedimentation, viscosity and titrable acidity. They were also screened for total phenolic content, total carotenoid content and antioxidant properties such as DPPH, reducing power and metal chelating activity. The formulation with highest TPC, TCC and antioxidant property was selected to optimize a microgreen based functional juice. The optimized microgreen blend formulation had 20 ml 100-1 ml microgreen juice, 40 ml 100-1 ml kinnow juice, 8.5 ml 100-1 ml sorbitol, 1.78 g 100-1 ml stevia and 29.72 ml 100-1 ml aloe vera juice. It had high protein, minerals (sodium and potassium) and vitamin (vitamin C) content as well as good source beta-carotene, phenols and antioxidants. Antioxidant helps in reducing diabetic complications by reducing the oxidative stress and because of their protective action against reactive oxygen species.
Collapse
Affiliation(s)
- Priyanka Sharma
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Anjali Sharma
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Prasad Rasane
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India.,Banaras Hindu University, Department of Dairy Science and Food Technology (Formerly known as Centre of Food Science and Technology), Varanasi, 221005, Uttar Pradesh, India
| | - Anirban Dey
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India.,Pimpernel Food Products Pvt. Ltd., Nilkantha Sarkar Street Bagbazar, Chandannagar, Hooghly, 712136, West Bengal, India
| | - Asish Choudhury
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Jyoti Singh
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Sawinder Kaur
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Kajal Dhawan
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| | - Damanpreet Kaur
- Lovely Professional University, Department of Food Technology and Nutrition, Jalandhar-Delhi, G.T. Road, Phagwara, 144411, Punjab, India
| |
Collapse
|
44
|
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020; 25:molecules25204648. [PMID: 33053861 PMCID: PMC7587365 DOI: 10.3390/molecules25204648] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to analyze potential health-promoting and nutritional components (polyphenols, L-ascorbic acid, carotenoids, chlorophylls, amino acids, organic acid, sugars, ash and pectins) of selected sprouts (radish, lentil, black medick, broccoli, sunflower, leek, beetroot, mung beans) and microgreens (kale, radish, beetroot, green peas, amaranth). Moreover, antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC)), in vitro anti-diabetic potential (inhibition of α-amylase and α-glucosidase), and anti-obesity (pancreatic lipase) and anti-cholinergic (acetylcholinesterase and butyrylcholinesterase) activity were evaluated. The results of this study show that sprouts are effective in antioxidant capacity as a result of a high content of polyphenols and L-ascorbic acid. Additionally, sprouts are better sources of amino acids, pectins and sugars than microgreens. Microgreens were characterized by high content of carotenoids and chlorophylls, and organic acid, without any sugars, exhibiting higher anti-diabetic and anti-cholinergic activity than sprouts. Some selected sprouts (broccoli, radish, lentil) and microgreens (radish, amaranths, kale) should be used daily as superfoods or functional food.
Collapse
|
45
|
Rahman M, Browne JJ, Van Crugten J, Hasan MF, Liu L, Barkla BJ. In Silico, Molecular Docking and In Vitro Antimicrobial Activity of the Major Rapeseed Seed Storage Proteins. Front Pharmacol 2020; 11:1340. [PMID: 33013372 PMCID: PMC7508056 DOI: 10.3389/fphar.2020.01340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In addition to their use as an edible oil and condiment crop, mustard and rapeseed (Brassica napus L., B. juncea (L.) Czern., B. nigra (L.) W.D.J.Koch, B. rapa L. and Sinapis alba L.) have been commonly used in traditional medicine for relieving pain, coughs and treating infections. The seeds contain high amounts of oil, while the remaining by-product meal after oil extraction, about 40% of seed dry weight, has a low value despite its high protein-content (~85%). The seed storage proteins (SSP) 2S albumin-type napin and 12S globulin-type cruciferin are the two predominant proteins in the seeds and show potential for value adding to the waste stream; however, information on their biological activities is scarce. In this study, purified napin and cruciferin were tested using in silico, molecular docking, and in vitro approaches for their bioactivity as antimicrobial peptides. MATERIALS AND METHODS The 3D-structure of 2S albumin and 12S globulin storage proteins from B. napus were investigated to predict antimicrobial activity employing an antimicrobial peptide database survey. To gain deeper insights into the potential antimicrobial activity of these SSP, in silico molecular docking was performed. The purified B. napus cruciferin and napin were then tested against both Gram-positive and Gram-negative bacteria for in vitro antimicrobial activity by disc diffusion and microdilution antimicrobial susceptibility testing. RESULTS In silico analysis demonstrated both SSP share similar 3D-structure with other well studied antimicrobial proteins. Molecular docking revealed that the proteins exhibited high binding energy to bacterial enzymes. Cruciferin and napin proteins appeared as a double triplet and a single doublet, respectively, following SDS-PAGE. SDS-PAGE and Western blotting also confirmed the purity of the protein samples used for assessment of antimicrobial activity. Antimicrobial susceptibility testing provided strong evidence for antimicrobial activity for the purified napin protein; however, cruciferin showed no antimicrobial activity, even at the highest dose applied. DISCUSSION In silico and molecular docking results presented evidence for the potential antimicrobial activity of rapeseed cruciferin and napin SSP. However, only the in vitro antimicrobial activity of napin was confirmed. These findings warrant further investigation of this SSP protein as a potential new agent against infectious disease.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jessica J. Browne
- School of Health and Human Sciences, Southern Cross University, Bilinga, QLD, Australia
| | - Jacoba Van Crugten
- School of Health and Human Sciences, Southern Cross University, Bilinga, QLD, Australia
| | | | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
46
|
Kamal KY, Khodaeiaminjan M, El-Tantawy AA, Moneim DA, Salam AA, Ash-Shormillesy SMAI, Attia A, Ali MAS, Herranz R, El-Esawi MA, Nassrallah AA, Ramadan MF. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. PHYSIOLOGIA PLANTARUM 2020; 169:625-638. [PMID: 32129889 DOI: 10.1111/ppl.13083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 05/05/2023]
Abstract
Microgreens are rich functional crops with valuable nutritional elements that have health benefits when used as food supplements. Growth characterization, nutritional composition profile of 21 varieties representing five species of the Brassica genus as microgreens were assessed under light-emitting diodes (LEDs) conditions. Microgreens were grown under four different LEDs ratios (%); red:blue 80:20 and 20:80 (R80 :B20 and R20 :B80 ), or red:green:blue 70:10:20 and 20:10:70 (R70 :G10 :B20 and R20 :G10 :B70 ). Results indicated that supplemental lighting with green LEDs (R70 :G10 :B20 ) enhanced vegetative growth and morphology, while blue LEDs (R20 :B80 ) increased the mineral and vitamin contents. Interestingly, by linking the nutritional content with the growth yield to define the optimal LEDs setup, we found that the best lighting to promote the microgreen growth was the green LEDs combination (R70 :G10 :B20 ). Remarkably, under the green LEDs combination (R70 :G10 :B20 ) conditions, the microgreens of Kohlrabi purple, Cabbage red, Broccoli, Kale Tucsan, Komatsuna red, Tatsoi and Cabbage green, which can benefit human health in conditions with limited food, had the highest growth and nutritional content.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Mortaza Khodaeiaminjan
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ahmed A El-Tantawy
- Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Cairo, 12613, Egypt
| | - Diaa A Moneim
- Department of Plant production (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, Arish, Egypt
| | - Asmaa Abdel Salam
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | | | - Ahmed Attia
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A S Ali
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Raúl Herranz
- Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Amr A Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, 12613, Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
47
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
48
|
Misra G, Gibson KE. Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J Appl Microbiol 2020; 129:1720-1732. [PMID: 32396260 DOI: 10.1111/jam.14696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
AIMS This study measured the survival of Listeria monocytogenes and Salmonella enterica subsp. enterica serovar Javiana over a 10-day period on four soil-free cultivation matrix (SFCM) types in the absence of microgreens and fertilizers. METHODS AND RESULTS Coco coir (CC), a Sphagnum peat/vermiculite mix, Biostrate® and hemp mat samples were inoculated with 3 × 106 CFU per ml bacteria, incubated at room temperature, and analysed on day 0, 1, 3, 6, and 10. Statistically significant differences in pathogen survival were observed across multiple time points for hemp and Biostrate compared to CC, peat and bacteria in phosphate buffered saline (PBS) (P < 0·05). S. Javiana showed greater overall survival compared to Listeria (P < 0·0002). By day 10, S. Javiana persisted at the initial inoculum concentration for hemp and Biostrate while declining by 1-2 log CFU per ml in CC, peat and PBS. Listeria also persisted at the initial concentration in hemp and Biostrate but decreased to 1 log CFU per ml in peat and below the detection limit in CC and PBS. CONCLUSIONS Overall, there are survival differences between bacterial pathogens in SFCM used in microgreen production systems. To our knowledge, this is the first comparison of survival among SFCM involving a S. enterica serovar and L. monocytogenes, and the first study comparing CC, Biostrate and hemp. SIGNIFICANCE AND IMPACT OF THE STUDY Microgreens production systems predominantly utilize soil alternatives, and it is not well-understood how pathogen transmission risk may be affected by the type of SFCM. The results of this study impact the microgreen industry as media selection may be used to reduce the risk of bacterial pathogen proliferation and transmission to the plant potentially resulting in potential foodborne illness.
Collapse
Affiliation(s)
- G Misra
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - K E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
49
|
Işık H, Topalcengiz Z, Güner S, Aksoy A. Generic and Shiga toxin-producing Escherichia coli (O157:H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods 2020; 9:foods9050547. [PMID: 32369919 PMCID: PMC7278799 DOI: 10.3390/foods9050547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
Collapse
|