1
|
K V, L S, N V K, R P, M P DR, Suneetha C, Palpandi Raja R, Muthusamy S. Promising approaches in the extraction, characterization, and biotechnological applications of ursolic acid: a review. Prep Biochem Biotechnol 2025:1-12. [PMID: 40088207 DOI: 10.1080/10826068.2025.2475094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attention for its pharmacological properties and industrial uses. This study explores natural sources of UA, including Plumeria rubra, apple peels, sage, rosemary, and holy basil, while emphasizing sustainable extraction methods. Advanced techniques like Soxhlet extraction, solvent extraction, supercritical fluid extraction (SFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) are optimized to enhance yield and purity. Ethanol and methanol solvent extraction provide effective recovery, while SFE with supercritical CO2 increases selectivity and reduces solvent residue. EAE boosts efficiency by breaking down cell membranes, allowing sustained UA release. With antibacterial, anticancer, antidiabetic, and anti-inflammatory effects, UA holds promise in therapeutics and has applications in nutraceuticals, cosmetics, and food preservation. However, its low water solubility and bioavailability require innovative delivery methods like dendrimers and nanoparticles. This review merges traditional and modern approaches to UA extraction, bioavailability enhancement, and sustainable use, offering new perspectives on its potential in medicine, food technology, and cosmetics.
Collapse
Affiliation(s)
- Vijayalakshmi K
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Sonali L
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Kanimozhi N V
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Pavithra R
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Drisya Raj M P
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Chinta Suneetha
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - R Palpandi Raja
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Sukumar Muthusamy
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| |
Collapse
|
2
|
Nascimento Júnior JAC, Oliveira AMS, Porras KDL, Menezes PDP, Araujo AADS, Nunes PS, Aragón DM, Serafini MR. Exploring trends in natural product-based treatments to skin burn: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156481. [PMID: 39951972 DOI: 10.1016/j.phymed.2025.156481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Burns are traumatic injuries caused by thermal, chemical, or other external factor, significantly impacting organic tissue. They are among the most common and severe types of trauma worldwide, often resulting in considerable morbidity and mortality. Natural products, owing to their pharmacological properties, present promising avenues for burn management and treatment. PURPOSE This study aims to provide a comprehensive review of patented pharmaceutical formulations containing natural products for burn treatment and to define trends in the market. METHODS Patent documents were identified through searches in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) databases using "burn*" as a keyword in the title and/or abstract and International Patent Classification (IPC) code A61K36/00. The review also examines clinical trials and SWOT analyses to evaluate strengths, weaknesses, opportunities, and threats in this field. RESULTS A total of 82 patents were selected, highlighting the use of natural products, such as Aloe vera, Coptis chinensis, borneol, menthol, and propolis, predominantly derived from Traditional Chinese Medicine. These findings are supplemented with clinical trial data and market insights. The results underscore both the therapeutic efficacy and challenges, such as standardization and regulatory hurdles, of using natural products. CONCLUSION This patent review highlights the potential of natural-origin formulations in addressing the limitations of conventional burn treatments. Continued research is essential to overcome existing barriers, ensuring broader accessibility and enhanced therapeutic outcomes.
Collapse
Affiliation(s)
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Paula Dos Passos Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil; SejaPhD, Brazil
| | - Adriano Antunes de Souza Araujo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Paula Santos Nunes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional da Colombia, Bogotá D.C., Colombia
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
3
|
Xu Y, Chen G, Mao M, Jiang M, Chen J, Ma Z. Causal associations between dietary factors with head and neck cancer: A two-sample Mendelian randomization study. Laryngoscope Investig Otolaryngol 2025; 10:e70070. [PMID: 39780859 PMCID: PMC11705461 DOI: 10.1002/lio2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Objective Although an association exists between dietary habits and head and neck cancer (HNC), the direct cause-and-effect connection remains elusive. Our objective was to investigate the causal associations between dietary factors and the likelihood of developing HNC. Methods Genome-wide association study (GWAS) summary statistics for dietary habits were screened from the UK Biobank, the OncoArray Oral Cavity and Oropharyngeal Cancer consortium, and the FinnGen biobank for HNC. A two-sample Mendelian randomization (MR) analysis was utilized to establish causality. The primary method of analysis was inverse variance weighting (IVW). Results Clear evidence of an inverse association existed between dried fruit intake and HNC in both cohorts (OncoArray consortium: IVW OR = 0.183; 95% CI, 0.037-0.915; p = .03864; FinnGen: IVW OR = 0.281; 95% CI, 0.115-0.688; p = .00547). In addition, fresh fruit (IVW-mre OR = 0.066; 95% CI, 0.011-0.413; p = .00369), beef (IVW OR = 15.094; 95% CI, 1.950-116.853; p = .00934), and lamb/mutton intakes (IVW OR = 5.799; 95% CI, 1.044-32.200; p = .0448) were significantly associated with HNC in the OncoArray consortium cohort. Conclusions Dried fruit intake may be a protective factor against HNC. The association of fresh fruit and red meat intakes with HNC warrants careful interpretation. Additional studies are necessary to explore potential mechanisms for further evidence.Level of evidence: III.
Collapse
Affiliation(s)
- Yali Xu
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guangui Chen
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Min Mao
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Minqiong Jiang
- Department of NursingThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jinhai Chen
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhaoen Ma
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2025; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
5
|
Xu HL, Wei YF, Bao Q, Wang YL, Li XY, Huang DH, Liu FH, Li YZ, Zhao YY, Zhao XX, Xiao Q, Gao S, Chen RJ, Ouyang L, Meng X, Qin X, Gong TT, Wu QJ. Dietary protein intake and PM 2.5 on ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117798. [PMID: 39875252 DOI: 10.1016/j.ecoenv.2025.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Evolving evidence suggests both protein consumption and particulate matter less than 2.5 micrometers (PM2.5) might be related to ovarian cancer (OC) mortality. However, no epidemiological studies have explored their potential interaction. OBJECTIVE The objective of this study was to explore the association of dietary protein, PM2.5, and their interaction with the survival of OC patients. METHODS A prospective cohort study was carried out, which encompassed 658 newly diagnosed OC patients (18-79 years) residing in China. Dietary protein intakes were collected through a food frequency questionnaire examination, including total protein and protein from diverse sources. Average residential PM2.5 concentrations were evaluated using satellite-derived models. We calculated the hazard ratio (HR) and its 95 % confidence interval (CI) by adjusting for multiple variables using Cox proportional risk models. By assessing the relative excess risk due to interaction (RERI) arising from the interplay between PM2.5 exposure and dietary protein intake, we explored the additive interaction between the two. Multiplicative interaction was assessed through a cross-product interaction term. RESULTS During a median follow-up of 37.60 months, 123 deaths were documented. As for all-cause mortality, the multivariate-adjusted HRs (95 % CIs) in the highest vs. the lowest tertile were 0.57 (0.35-0.93), 0.60 (0.36-0.99), and 0.58 (0.37-0.90) for intakes of fish, egg, as well as fruit/vegetable protein, respectively (all P for trend < 0.05). A positive association between PM2.5 exposure and all-cause mortality was observed (HR=1.52; 95 % CI: 1.13-2.05, per interquartile range increment). Notably, dietary fish, egg, and fruit/vegetable protein modified these associations, as patients with lower intakes had significantly higher PM2.5-related mortality in the cohort (all P for interaction < 0.05). CONCLUSIONS This study provides evidence linking the potential interactions between dietary fish, egg, and fruit/vegetable protein intake and PM2.5 exposure on all-cause mortality of OC patients. Our study demonstrates the importance of adherence to a certain protein diet in reducing PM2.5-related mortality risk for OC patients.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Li Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Information Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Library, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Xin Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Hospice Care, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
6
|
Korge M, Alaru M, Keres I, Möll K, Talgre L, Voor I, Altosaar I, Loit-Harro E. Phytate Content in Cereals Impacted by Cropping System and Harvest Year. Foods 2025; 14:446. [PMID: 39942039 PMCID: PMC11817012 DOI: 10.3390/foods14030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Phytate is a substance that has been considered mainly as an antinutrient, but at the same time it is a significant source of phosphorus and has several useful health-related properties that could be exploited. In this respect, a field experiment was conducted to study the effect of organic and conventional cropping systems with nitrogen (N) and phosphorus (P) amounts from 0 to 150 kg ha-1 and 0-25 kg ha-1, respectively, in six years (2017-2022) of weather conditions on phytate content in Estonia. Winter wheat had a higher phytate content of 1.9 ± 0.13 g 100 g-1 compared to spring barley with 1.1 ± 0.05 g 100 g-1. Fertilization with N or P did not affect phytate content in grains. Harvest year weather conditions (precipitation and air temperature) had a strong effect on phytate content. at a specific stage of plant development. Higher values of growing degree days in June and July, which sum in the experimental period varied between 609 and 978 °C, increased phytate content in winter wheat grains (flowering and grain filling stage), while the impact on spring barley phytate content was opposite (heading and flowering stage). Future research should study phytate content in grains grown on varying fertility level soils.
Collapse
Affiliation(s)
- Mailiis Korge
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Maarika Alaru
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Indrek Keres
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Kaidi Möll
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Liina Talgre
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Ivo Voor
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Illimar Altosaar
- Proteins Easy Corp, 75 Campus Drive, Kemptville Agricultural College Campus, Kemptville, ON K0G1J0, Canada
| | - Evelin Loit-Harro
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| |
Collapse
|
7
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
8
|
Qin A, Wang M, Yang H, Xin T, Xu L. Chinese-modified MIND Diet and subjective well‑being in adults aged 60 years or older in China: a national community-based cohort study. Eur J Nutr 2024; 63:2999-3012. [PMID: 39231869 DOI: 10.1007/s00394-024-03484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Observing the dietary principles of the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet has exhibited an association with a diminished occurrence of diverse ailments, enhanced mental well-being, and extended longevity. Nevertheless, current literature is deficient in terms of investigating the link between the MIND diet and subjective well-being (SWB) specifically in older adults. Hence, this study endeavors to examine the correlation between adhering to a Chinese-modified Mediterranean-DASH Intervention for Neurodegenerative Delay (cMIND) diet and SWB in the older Chinese adults, taking into account the unique dietary attributes of the Chinese population. METHODS Using data from the latest four waves of the Chinese Longitudinal Healthy Longevity Survey. Multiple linear regression and multinomial ordered logistic regression were employed to examine the relationship between the duration of adherence to cMIND diet and SWB in Chinese older adults. RESULTS The results indicated a significant association between the duration of adherence to cMIND diet and SWB (1 ∼ 6 years: B = 0.907, 95%CI = 0.508 ∼ 1.307, P < 0.001; 7 ∼ 9 years: B = 1.286, 95%CI = 0.767 ∼ 1.805, P < 0.001; 10 years and above: B = 2.320, 95%CI = 1.677 ∼ 2.963, P < 0.001). The longer the duration of adherence to cMIND diet, the higher the scores for life satisfaction (B = 0.184, 95%CI = 0.110 ∼ 0.259; B = 0.312, 95%CI = 0.217 ∼ 0.407; B = 0.321, 95%CI = 0.193 ∼ 0.448), positive affect (B = 0.434, 95%CI = 0.209 ∼ 0.658; B = 0.701, 95%CI = 0.400 ∼ 1.003; B = 1.167, 95%CI = 0.775 ∼ 1.559), and negative affect (B = 0.289, 95%CI = 0.078 ∼ 0.500; B = 0.832, 95%CI = 0.479 ∼ 1.185), suggesting a higher SWB score. Sensitivity analysis further supports our findings. CONCLUSION Considering the poor knowledge, attitudes, and behaviors related to diet among Chinese adults, especially older adults, it is imperative to implement dietary policies that promote SWB in older adults to enhance their happiness in later life.
Collapse
Affiliation(s)
- Afei Qin
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 WenhuaxiRoad, Jinan, 250012, Shandong, China
- Key Laboratory of Health Economics and Policy Research, National Health Commission (NHC), Shandong University), Jinan, 250012, Shandong, China
- Center for Health Economics Experiment and Public Policy Research, Shandong University, Jinan, 250012, Shandong, China
| | - Meiqi Wang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 WenhuaxiRoad, Jinan, 250012, Shandong, China
- Key Laboratory of Health Economics and Policy Research, National Health Commission (NHC), Shandong University), Jinan, 250012, Shandong, China
| | - Haifeng Yang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 WenhuaxiRoad, Jinan, 250012, Shandong, China
- Key Laboratory of Health Economics and Policy Research, National Health Commission (NHC), Shandong University), Jinan, 250012, Shandong, China
- Center for Health Economics Experiment and Public Policy Research, Shandong University, Jinan, 250012, Shandong, China
| | - Tianjiao Xin
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 WenhuaxiRoad, Jinan, 250012, Shandong, China
- Key Laboratory of Health Economics and Policy Research, National Health Commission (NHC), Shandong University), Jinan, 250012, Shandong, China
- Center for Health Economics Experiment and Public Policy Research, Shandong University, Jinan, 250012, Shandong, China
| | - Lingzhong Xu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 WenhuaxiRoad, Jinan, 250012, Shandong, China.
- Key Laboratory of Health Economics and Policy Research, National Health Commission (NHC), Shandong University), Jinan, 250012, Shandong, China.
- Center for Health Economics Experiment and Public Policy Research, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Özdemir A, Buyuktuncer Z. Dietary legumes and gut microbiome: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39607793 DOI: 10.1080/10408398.2024.2434725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The gut microbiome plays a crucial role in human health, affecting metabolic, immune, and cognitive functions. While the impact of various dietary components on the microbiome is well-studied, the effect of legumes remains less explored. This review examines the influence of legume consumption on gut microbiome composition, diversity, and metabolite production, based on 10 human and 21 animal studies. Human studies showed mixed results, with some showing increased microbial diversity and others finding no significant changes. However, legume consumption was linked to increases in beneficial bacteria like Bifidobacterium and Faecalibacterium. Animal studies generally indicated enhanced microbial diversity and composition changes, though these varied by legume type and the host's health. Some studies highlighted legume-induced shifts in bacteria associated with better metabolic health. Overall, the review emphasizes the complexity of legume-microbiome interactions and the need for standardized methodologies and longitudinal studies. While legumes have the potential to positively affect the gut microbiome, the effects are nuanced and depend on context. Future research should investigate the long-term impacts of legume consumption on microbiome stability and its broader health implications, particularly for disease prevention and dietary strategies.
Collapse
Affiliation(s)
- Aslıhan Özdemir
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| | - Zehra Buyuktuncer
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
10
|
Lockhart A, Simon JE, Wu Q. Stability study of Nepeta cataria iridoids analyzed by LC/MS. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1674-1687. [PMID: 39099156 DOI: 10.1002/pca.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Catnip (Nepeta cataria, L.) has well-documented applications in arthropod repellency because of its bioactive iridoids. Long-term stability of nepetalactones and other iridoids in N. cataria are needed to develop as effective pest repellents. OBJECTIVES The present work intends to measure iridoid concentration over time in biomass, plant extracts, and extract solution while identifying degradative byproducts under different storage conditions. METHODOLOGY Samples of desiccated biomass, ethanol extract, and extract in ethanol solution were stored in ambient light or darkness. Through UHPLC-QTOF/MS or UHPLC-QQQ/MS, the concentration of Z,E-nepetalactone, E,Z-nepetalactone, nepetalic acid, and dihydronepetalactone were examined over 2 years and statistically analyzed for determination of best storage practices. Degradation kinetics were applied to each analyte using graphical estimation. With targeted formula searching, degradative byproducts were identified and quantified. RESULTS Light exposure caused significant decreases in E,Z-nepetalactone concentration in all sample types, while having no effect on Z,E-nepetalactone as it decayed more rapidly. Extract samples lost nepetalactone content faster than biomass or extract solution. Dihydronepetalactone levels were low, but never declined over 2 years. Nepetalic acid increased over some periods, depending on sample type, indicating a relationship between the acid and nepetalactone. Four degradative byproducts-nepetonic acid, dehydronepetalactone, an anhydride, and an ethanolic ester-were identified, with variable responses to light exposure. CONCLUSIONS Protecting catnip products from light is necessary to preserve nepetalactones, and a discernable difference in nepetalactone isomer stability was discovered. Identifying Nepeta chemotypes rich in dihydronepetalactone may provide more resilient botanicals as starting materials for processing.
Collapse
Affiliation(s)
- Anthony Lockhart
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, New Jersey, USA
- New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health and Natural Products, Rutgers University, New Brunswick, New Jersey, USA
| | - James Edward Simon
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, New Jersey, USA
- New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health and Natural Products, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingli Wu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Core Facility for Natural Products and Bioanalysis, Rutgers University, New Brunswick, New Jersey, USA
- New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health and Natural Products, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Leo M, D'Angeli F, Genovese C, Spila A, Miele C, Ramadan D, Ferroni P, Guadagni F. Oral Health and Nutraceutical Agents. Int J Mol Sci 2024; 25:9733. [PMID: 39273680 PMCID: PMC11395598 DOI: 10.3390/ijms25179733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Oral health is essential for both overall health and quality of life. The mouth is a window into the body's health, and nutrition can strongly impact the state of general and oral health. A healthy diet involves the synergistic effect of various nutraceutical agents, potentially capable of conferring protective actions against some inflammatory and chronic-degenerative disorders. Nutraceuticals, mostly present in plant-derived products, present multiple potential clinical, preventive, and therapeutic benefits. Accordingly, preclinical and epidemiological studies suggested a protective role for these compounds, but their real preventive and therapeutic effects in humans still await confirmation. Available evidence suggests that plant extracts are more effective than individual constituents because they contain different phytochemicals with multiple pharmacological targets and additive/synergistic effects, maximizing the benefits for oral health. Moreover, nutritional recommendations for oral health should be personalized and aligned with valid suggestions for overall health. This review is aimed to: introduce the basic concepts of nutraceuticals, including their main food sources; examine the logic that supports their relationship with oral health, and summarize and critically discuss clinical trials testing the utility of nutraceuticals in the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Floriana D'Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l., Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| |
Collapse
|
13
|
Gan X, Yang S, Zhou C, He P, Ye Z, Liu M, Zhang Y, Huang Y, Xiang H, Zhang Y, Qin X. Association of Quantity and Diversity of Different Types of Fruit Intake with New-Onset Kidney Stones. Mol Nutr Food Res 2024; 68:e2400373. [PMID: 39192471 DOI: 10.1002/mnfr.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Indexed: 08/29/2024]
Abstract
SCOPE This study aims to assess the association between intake of different types of fruit (citrus, pomes, tropical fruits, berries, gourds, drupes, dried fruits, and other fruits), the intake diversity of fruit types, and risk of new-onset kidney stones in general population. METHODS AND RESULTS A total of 205 896 participants with at least one completed 24-h dietary recall from the UK Biobank are included. During a median follow-up of 11.6 years, 2074 cases of kidney stones are documented. Compared with nonconsumers, participants with higher intake of citrus (50-<100 g day-1; hazards ratio [HR] = 0.78; 95% confidence interval [CI], 0.66-0.91; ≥100 g day-1; HR = 0.75; 95%CI, 0.63-0.89), pomes (≥100 g day-1; HR = 0.86; 95%CI, 0.77-0.96), or tropical fruits (50-<100 g day-1; HR = 0.86; 95%CI, 0.75-0.99; ≥100 g day-1; HR = 0.88; 95%CI, 0.79-0.99) have a lower risk of new-onset kidney stones. However, there is no significant association of intake of berries, gourds, drupes, dried fruits, and other fruits with kidney stones. A higher fruit variety score is significantly associated with a lower risk of new-onset kidney stones (per 1-score increment, HR = 0.86; 95%CI, 0.81-0.91). CONCLUSIONS Higher intake of citruses (≥50 g day-1), pomes (≥100 g day-1), and tropical fruits (≥50 g day-1), as well as increasing diversity of intake of these three fruits, are associated with a lower risk of new-onset kidney stones.
Collapse
Affiliation(s)
- Xiaoqin Gan
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Yang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zhou
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Panpan He
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziliang Ye
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengyi Liu
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanjun Zhang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Huang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Xiang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xianhui Qin
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
14
|
Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, Lopez-Yus M, Aranaz P, Oteo JA, Escoté X, Lorente-Cebrian S, Roche E, Courtois A, López V, Portillo MP, Milagro FI, Carpéné C. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem 2024; 80:603-625. [PMID: 39377969 PMCID: PMC11502541 DOI: 10.1007/s13105-024-01046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, 03202, Spain
| | - Claude Atgié
- Equipe ClipIn (Colloïdes pour l'Industrie et la Nutrition), Bordeaux INP, Institut CBMN, UMR 5248, Pessac, 33600, France
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
- Hospital Universitario San Pedro, Logroño, 26006, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
| | - Silvia Lorente-Cebrian
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Zaragoza, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), Elche, 03202, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, 03010, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Arnaud Courtois
- Département des Sciences de l'Environnement, Institut des Sciences de la Vigne et du Vin, UMR OEnologie (UMR 1366, INRAE, Bordeaux INP), AXE Molécules à Intérêt Biologique, Bordeaux, 33882, France
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, 31432, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse, 31432, France
| |
Collapse
|
15
|
Yamaga M, Kawabe H, Tani H, Yamaki A. Enhanced absorption of prenylated cinnamic acid derivatives from Brazilian green propolis by turmeric in humans and rats. Food Sci Nutr 2024; 12:4680-4691. [PMID: 39055207 PMCID: PMC11266932 DOI: 10.1002/fsn3.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroshi Kawabe
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Ayanori Yamaki
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| |
Collapse
|
16
|
Malin AJ, Wang Z, Khan D, McKune SL. The Potential Systemic Role of Diet in Dental Caries Development and Arrest: A Narrative Review. Nutrients 2024; 16:1463. [PMID: 38794700 PMCID: PMC11124059 DOI: 10.3390/nu16101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Current conceptualizations of dental caries etiology center primarily on the local role of sugar, starch, or other fermentable carbohydrates on tooth enamel demineralization-a well-established and empirically supported mechanism. However, in addition to this mechanism, studies dating back to the early 1900s point to an important systemic role of diet and nutrition, particularly from pasture-raised animal-source foods (ASF), in dental caries etiology and arrest. Findings from animal and human studies suggest that adherence to a diet high in calcium, phosphorus, fat-soluble vitamins A and D, and antioxidant vitamin C, as well as low in phytates, may contribute to arrest and reversal of dental caries, particularly among children. Furthermore, findings from observational and experimental studies of humans across the life-course suggest that fat-soluble vitamins A, D, and K2 may interact to protect against dental caries progression, even within a diet that regularly contains sugar. While these historic studies have not been revisited in decades, we emphasize the need for them to be reinvestigated and contextualized in the 21st century. Specifically, methodologically rigorous studies are needed to reinvestigate whether historical knowledge of systemic impacts of nutrition on dental health can help to inform current conceptualizations of dental caries etiology, prevention, and arrest.
Collapse
Affiliation(s)
- Ashley J. Malin
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhilin Wang
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Durdana Khan
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sarah L. McKune
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
| |
Collapse
|
17
|
Wen J, Sui Y, Shi J, Cai S, Xiong T, Cai F, Zhou L, Li S, Mei X. In Vitro Gastrointestinal Digestion of Various Sweet Potato Leaves: Polyphenol Profiles, Bioaccessibility and Bioavailability Elucidation. Antioxidants (Basel) 2024; 13:520. [PMID: 38790625 PMCID: PMC11117659 DOI: 10.3390/antiox13050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
The chemical composition discrepancies of five sweet potato leaves (SPLs) and their phenolic profile variations during in vitro digestion were investigated. The results indicated that Ecaishu No. 10 (EC10) provided better retention capacity for phenolic compounds after drying. Furthermore, polyphenols were progressively released from the matrix as the digestion process proceeded. The highest bioaccessibility of polyphenols was found in EC10 intestinal chyme at 48.47%. For its phenolic profile, 3-, 4-, and 5-monosubstituted caffeoyl quinic acids were 9.75%, 57.39%, and 79.37%, respectively, while 3,4-, 3,5-, and 4,5-disubstituted caffeoyl quinic acids were 6.55, 0.27 and 13.18%, respectively. In contrast, the 3,4-, 3,5-, 4,5-disubstituted caffeoylquinic acid in the intestinal fluid after dialysis bag treatment was 62.12%, 79.12%, and 62.98%, respectively, which resulted in relatively enhanced bioactivities (DPPH, 10.51 μmol Trolox/g; FRAP, 8.89 μmol Trolox/g; ORAC, 7.32 μmol Trolox/g; IC50 for α-amylase, 19.36 mg/g; IC50 for α-glucosidase, 25.21 mg/g). In summary, desirable phenolic acid release characteristics and bioactivity of EC10 were observed in this study, indicating that it has potential as a functional food ingredient, which is conducive to the exploitation of the sweet potato processing industry from a long-term perspective.
Collapse
Affiliation(s)
- Junren Wen
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Sui
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Jianbin Shi
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Sha Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Tian Xiong
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Fang Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Lei Zhou
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| |
Collapse
|
18
|
Twinomujuni SS, Atukunda EC, Mukonzo JK, Nicholas M, Roelofsen F, Ogwang PE. Evaluation of the effects of Artemisia Annua L. and Moringa Oleifera Lam. on CD4 count and viral load among PLWH on ART at Mbarara Regional Referral Hospital: a double-blind randomized controlled clinical trial. AIDS Res Ther 2024; 21:22. [PMID: 38627722 PMCID: PMC11020329 DOI: 10.1186/s12981-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Initiation of ART among people living with HIV (PLWH) having a CD4 count ≤ 350cells/µl, produces poor immunological recovery, putting them at a high risk of opportunistic infections. To mitigate this, PLWH on ART in Uganda frequently use herbal remedies like Artemisia annua and Moringa oleifera, but their clinical benefits and potential antiretroviral (ARV) interactions remain unknown. This study examined the impact of A. annua and M. oleifera on CD4 count, viral load, and potential ARV interactions among PLWH on ART at an HIV clinic in Uganda. METHODS 282 HIV-positive participants on antiretroviral therapy (ART) with a CD4 count ≤ 350cells/µl were randomized in a double-blind clinical trial to receive daily, in addition to their routine standard of care either; 1) A. annua leaf powder, 2) A. annua plus M. oleifera, and 3) routine standard of care only. Change in the CD4 count at 12 months was our primary outcome. Secondary outcomes included changes in viral load, complete blood count, and ARV plasma levels. Participants were followed up for a year and outcomes were measured at baseline, 6 and 12 months. RESULTS At 12 months of patient follow-up, in addition to standard of care, administration of A. annua + M. oleifera resulted in an absolute mean CD4 increment of 105.06 cells/µl, (p < 0.001), while administration of A. annua plus routine standard of care registered an absolute mean CD4 increment of 60.84 cells/µl, (p = 0.001) compared to the control group. The A. annua plus M. oleifera treatment significantly reduced viral load (p = 0.022) and increased platelet count (p = 0.025) and white blood cell counts (p = 0.003) compared to standard care alone, with no significant difference in ARV plasma levels across the groups. CONCLUSION A combination of A. annua and M. oleifera leaf powders taken once a day together with the routine standard of care produced a significant increase in CD4 count, WBCs, platelets, and viral load suppression among individuals on ART. A. annua and M. oleifera have potential to offer an affordable alternative remedy for managing HIV infection, particularly in low-resource communities lacking ART access. TRIAL REGISTRATION ClinicalTrials.gov NCT03366922.
Collapse
Affiliation(s)
- Silvano S Twinomujuni
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda.
| | - Esther C Atukunda
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Jackson K Mukonzo
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Musinguzi Nicholas
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Felicitas Roelofsen
- Action for Natural Medicine in the Tropics (ANAMED INTERNATIONAL), Winnenden, Germany
| | - Patrick E Ogwang
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
19
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
20
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
21
|
Rosell M, Fadnes LT. Vegetables, fruits, and berries - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10455. [PMID: 38327994 PMCID: PMC10845895 DOI: 10.29219/fnr.v68.10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
Vegetables, fruits, and berries comprise a large variety of foods and are recognised to play an important role in preventing chronic diseases. Many observational studies have been published during the last decade, and the aim of this scoping review is to describe the overall evidence for the role of vegetables, fruits, and berries for health-related outcomes as a basis for setting and updating food-based dietary guidelines. A scoping review was conducted according to the protocol developed within the Nordic Nutrition Recommendations 2023 project. Current available evidence strengthens the role of consuming vegetables, fruits, and berries in preventing chronic diseases. The most robust evidence is found for cancer in the gastric system and lung cancer, cardiovascular disease, and all-cause mortality. Steeper risk reductions are generally seen at the lower intake ranges, but further reductions have been seen for higher intakes for cardiovascular disease. Weaker associations are seen for type 2 diabetes. There is evidence that suggests a beneficial role also for outcomes such as osteoporosis, depression, cognitive disorders, and frailty in the elderly. The observed associations are supported by several mechanisms, indicting causal effects. Some subgroups of vegetables, fruits, and berries may have greater benefits than other subgroups, supporting a recommendation to consume a variety of these foods.
Collapse
Affiliation(s)
- Magdalena Rosell
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars T. Fadnes
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Bergen Addiction Research, Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Jain S, Lenaghan S, Dia V, Zhong Q. Co-delivery of curcumin and quercetin in shellac nanocapsules for the synergistic antioxidant properties and cytotoxicity against colon cancer cells. Food Chem 2023; 428:136744. [PMID: 37423108 DOI: 10.1016/j.foodchem.2023.136744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Synergistic bioactivity of dietary polyphenols can enhance functional food development to prevent chronic diseases like cancer. In this study, physicochemical properties and cytotoxicity of curcumin and quercetin co-encapsulated in shellac nanocapsules at different mass ratios were investigated and compared to nanocapsules with one polyphenol and their unencapsulated counterparts. At curcumin and quercetin mass ratio of 4:1, encapsulation efficiency was approximately 80% for both polyphenols, and the nanocapsules showed the highest synergistic antioxidant properties and cytotoxicity for HT-29 and HCT-116 colorectal cancer cells. The nanocapsules had discrete structures smaller than 50 nm and remained stable during 4-week refrigerated storage, and the encapsulated polyphenols were amorphous. After simulated digestions, 48% of the encapsulated curcumin and quercetin were bioaccessible, the digesta retained nanocapsule structures and cytotoxicity, and the cytotoxicity was higher than nanocapsules with only one polyphenol and free polyphenol controls. This study provides insights on utilizing multiple polyphenols as promising anti-cancer agents.
Collapse
Affiliation(s)
- Surangna Jain
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Scott Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA; Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Vermont Dia
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
23
|
Cid-Gallegos MS, Jiménez-Martínez C, Sánchez-Chino XM, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Álvarez-González I. Chemopreventive Effect of Cooked Chickpea on Colon Carcinogenesis Evolution in AOM/DSS-Induced Balb/c Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2317. [PMID: 37375942 PMCID: PMC10304688 DOI: 10.3390/plants12122317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Chickpeas are one of the most widely consumed legumes worldwide and they might prevent diseases such as cancer. Therefore, this study evaluates the chemopreventive effect of chickpea (Cicer arietinum L.) on the evolution of colon carcinogenesis induced with azoxymethane (AOM) and dextran sodium sulfate (DSS) in a mice model at 1, 7, and 14 weeks after induction. Accordingly, the expression of biomarkers-such as argyrophilic nucleolar organizing regions (AgNOR), cell proliferation nuclear antigen (PCNA), β-catenin, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)-was assessed in the colon of BALB/c mice fed diets supplemented with 10 and 20% cooked chickpea (CC). The results showed that a 20% CC diet significantly reduced tumors and biomarkers of proliferation and inflammation in AOM/DSS-induced colon cancer mice. Moreover, body weight loss decreased and the disease activity index (DAI) was lower than the positive control. Lastly, tumor reduction was more evident at week 7 in the groups fed a 20% CC diet. In conclusion, both diets (10% and 20% CC) exert a chemopreventive effect.
Collapse
Affiliation(s)
- María Stephanie Cid-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Xariss M. Sánchez-Chino
- Catedra-CONAHCYT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Tabasco 86280, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Verónica R. Vásquez-Garzón
- Catedra-CONAHCYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Rafael Baltiérrez-Hoyos
- Catedra-CONAHCYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| |
Collapse
|
24
|
Kaźmierczak T, Bonarska-Kujawa D, Męczarska K, Cyboran-Mikołajczyk S, Oszmiański J, Kapusta I. Analysis of the Polyphenolic Composition of Vaccinium L. Extracts and Their Protective Effect on Red Blood Cell Membranes. MEMBRANES 2023; 13:589. [PMID: 37367793 DOI: 10.3390/membranes13060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The blueberry fruit of the genus Vaccinium, including high blueberry, low blueberry, and wild bilberry, is consumed for its flavor and medicinal properties. The purpose of the experiments was to investigate the protective effect and mechanism of the interaction of blueberry fruit polyphenol extracts with the erythrocytes and their membranes. The content of polyphenolic compounds in the extracts was determined using the chromatographic UPLC-ESI-MS method. The effects of the extracts on red blood cell shape changes, hemolysis and osmotic resistance were examined. Changes in the order of packing and fluidity of the erythrocyte membrane and the lipid membrane model caused by the extracts were identified using fluorimetric methods. Erythrocyte membrane oxidation was induced by two agents: AAPH compound and UVC radiation. The results show that the tested extracts are a rich source of low molecular weight polyphenols that bind to the polar groups of the erythrocyte membrane, changing the properties of its hydrophilic area. However, they practically do not penetrate the hydrophobic part of the membrane and do not damage its structure. Research results suggest that the components of the extracts can defend the organism against oxidative stress if they are delivered to the organism in the form of dietary supplements.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Ireneusz Kapusta
- Institute of Food Technology and Nutrition, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland
| |
Collapse
|
25
|
Kim J, Lee JY, Kim CY. Allium macrostemon whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice. Food Nutr Res 2023; 67:9256. [PMID: 37223261 PMCID: PMC10202093 DOI: 10.29219/fnr.v67.9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Obesity is a major risk factor for metabolic syndrome and a serious health concern worldwide. Various strategies exist to treat and prevent obesity, including dietary approaches using bioactive ingredients from natural sources. Objective This study aimed to investigate the anti-obesity effect of whole-plant Allium macrostemon (also called as long-stamen chive) extract (AME) as a potential new functional food. Design C57BL/6N mice were divided into three groups and fed either a control diet (CD), high-fat diet (HFD), or HFD with AME treatment (200 mg/kg BW daily) for 9 weeks. The mice in the CD and HFD groups were treated with vehicle control. Results AME supplementation reduced HFD-induced body weight gain, fat mass, and adipocyte size. AME suppressed peroxisome proliferator-activated receptor γ and fatty acid synthase mRNA expression, indicating reduced adipogenesis and lipogenesis in adipose tissue. In addition, AME lowered inflammation in adipose tissue, as demonstrated by the lower number of crown-like structures, mRNA, and/or protein expression of macrophage filtration markers, as well as pro-inflammatory cytokines, including F4/80 and IL-6. Endoplasmic reticulum stress was also alleviated by AME administration in adipose tissue. Several phenolic acids known to have anti-obesity effects, including ellagic acid, protocatechuic acid, and catechin, have been identified in AME. Conclusion By suppressing adipose tissue expansion and inflammation, AME is a potential functional food for the prevention and/or treatment of obesity and its complications.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
26
|
Mukherjee D, Ghosal I, Dhar D, Das S, Chakraborty SB. Bioactive compounds from four Indian medicinal plants have different potency to induce sex reversal in Nile tilapia: A chromatographic, molecular docking and in silico analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116263. [PMID: 36781056 DOI: 10.1016/j.jep.2023.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal plants such as Basella alba (Family: Basellaceae), Tribulus terrestris (Family: Zygophyllaceae), Asparagus racemosus (Family: Asparagaceae) and Mucuna pruriens (Family: Fabaceae) are mentioned in Indian traditional system of medicine Ayurveda to possess androgenic activity and increase male virility. The plants have been reported to improve testosterone level and sperm production in experimental male rodents as well. AIM OF THE STUDY Male Nile tilapias grow more quickly than females and hence are preferred for monosex Nile tilapia culture. Ethanol extracts of B. alba leaves (EB) and T. terrestris seeds (ET), and methanol extract of A. racemosus roots (MA) and M. pruriens seeds (MM) were found effective to induce masculinization in Nile tilapia. The present study intends to evaluate the anti-aromatase activity of EB, ET, MA and MM, to identify the androgenic bioactive compounds in the extracts, and to determine their pharmacokinetics. The study may validate the use of those plant extracts and their major bioactive phytoconstituents in the field of aquaculture and pharmaceuticals. MATERIALS AND METHODS The four crude plant extracts were first fractioned through column and thin layer chromatography (TLC). Three days old Nile tilapia juveniles (mean weight 0.025 ± 0.009g; mean length 12.50 ± 0.12 mm; n = 50 fish/replicate, 3 replicates/treatment) were then fed diets fortified with the obtained fractions for 30 days. After 30 days, fish were sacrificed and gonad aromatase mRNA expression, and 11-ketotestosterone (11-KT) and estradiol (E2) levels were measured. Fractions yielding the highest male percentage for each plant were subject to gas chromatography-mass spectrometry (GC-MS) analysis. The in silico docking and SwissADME study were conducted with the components showing higher peak percentage in chromatogram. RESULTS After column chromatography and TLC analysis, EB, ET, MM and MA yielded 6 (EB1 - EB6), 8 (ET1- ET8), 14 (MM1-MM14) and 5 (MA1- MA5) fractions, respectively. Fish fed EB2, ET2, MA2 and MM13 fraction fortified diets showed significantly (p < 0.05) higher male percentage (92.32%-98.39%) compared to other treatment groups. EB2, ET2, MA2 and MM13 fed fish showed significantly (p < 0.05) higher 11-KT level compared to control male (+247.52 - +397.76%) and lower E2 level compared to control female (-95.92% to -90.65%). Aromatase mRNA expression was significantly (p < 0.05) down-regulated by all these four fractions (-1.32 to -5.65 fold) with respect to control female. GC-MS analysis revealed the presence of 1-Octadecene (OD) in EB2, Phenol, 2,4-bis(1,1-dimethylethyl) (PD) in ET2 and MA2, 9,12-Octadecadienoic acid (Z,Z)- (ODDA) in MM13. In silico molecular docking indicated that PD is more effective than ODDA and OD to inhibit aromatase. In addition, PD showed better pharmacokinetics and more drug-likeness compared to OD and ODDA in SwissADME analysis. CONCLUSION The present results indicate that ET and MA are more potent to produce all-male tilapia by means of aromatase inhibition. PD can be an ideal compound to achieve masculinization in Nile tilapia through dietary administration, but further investigation is required.
Collapse
Affiliation(s)
- Debosree Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Indranath Ghosal
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, France.
| | - Dipanjana Dhar
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| | - Souvik Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
27
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
28
|
Miladinovic B, Faria MÂ, Ribeiro M, Sobral MMC, Ferreira IMPLVO. Delphinidin-3-rutinoside from Blackcurrant Berries ( Ribes nigrum): In Vitro Antiproliferative Activity and Interactions with Other Phenolic Compounds. Molecules 2023; 28:molecules28031286. [PMID: 36770953 PMCID: PMC9920764 DOI: 10.3390/molecules28031286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Blackcurrant berries (Rigrum L.) are of great interest for food scientists/technologists as a source of delphinidin-3-rutinoside (D3R). This is an uncommon phenolic compound in diets that unveils potent antiproliferative activity besides its colour. Other phenolic compounds, such as chlorogenic acid (CA) and epicatechin (EC), also known by their antiproliferative effects, are abundant in foods and beverages. To design smart food/supplements combinations containing blackcurrant and improved anticancer properties at the gastrointestinal level, there is the need for more data concerning the combined effects of those molecules. In this work, synergistic, additive, or antagonistic effects against gastric and intestinal cancers of D3R, CA, and EC were assessed in vitro. The antiproliferative activity of D3R, CA, and EC, alone and in binary combinations (D3R+CA, D3R+EC, and CA+EC) on NCI-N87 (gastric) and Caco-2 (intestinal) cells, was assessed following the Chou-Talalay theorem at equipotent contributions (i.e., (IC50)1/(IC50)2). D3R presented the strongest antiproliferative activity of the single molecules tested, with IC50 values of 24.9 µM and 102.5 µM on NCI-N87 and Caco-2 cells, respectively. The combinations D3R+CA and CA+EC were synergic against NCI-N87 until IC50 and IC75, respectively, while D3R+EC shifted from slight antagonism to synergism at higher doses. On Caco-2 cells, antagonism at low doses and synergism at high doses was observed. Therefore, the synergisms observed on the gastric cancer model at low doses occurred on the colon model only at high doses. Data herein described is vital to the targeted smart design of foods and supplements, as it is foreseen that the same combination of phenolic compounds causes different interactions/effects depending on the dose and gastrointestinal compartment.
Collapse
Affiliation(s)
- Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Dr Zoran Djindjic blvd. 81, 18000 Niš, Serbia
| | - Miguel Ângelo Faria
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia—Universidade do Porto, 4050-313 Porto, Portugal
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia—Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Madalena Costa Sobral
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia—Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia—Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-2204-28639 or +351-2260-93390
| |
Collapse
|
29
|
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr 2023; 9:1047026. [PMID: 36712534 PMCID: PMC9879610 DOI: 10.3389/fnut.2022.1047026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background In recent years, marine-based functional foods and combination therapy are receiving greater recognition for their roles in healthy lifestyle applications and are being investigated as viable and effective strategies for disease treatment or prevention. Aim of the review This review article presents and discusses the relevant scientific publications that have studied the synergistic and additive effects of natural marine bioactive compounds and extract combinations with anti-obesity, anti-inflammatory, antioxidant, and chemopreventive activities in the last two decades. The paper presents the mechanism of action and health benefits of developed combinations and discusses the limitation of the studies. Furthermore, it recommends alternatives and directions for future studies. Finally, it highlights the factors for developing novel combinations of marine bioactive compounds. Key scientific concepts of review Combination of marine bioactive compounds or extracts affords synergistic or additive effects by multiple means, such as multi-target effects, enhancing the bioavailability, boosting the bioactivity, and neutralizing adverse effects of compounds in the mixture. For the development of marine-based combinations, there are key points for consideration and issues to address: knowledge of the mechanism of action of individual compounds and their combinations, optimum ratio and dosing of compounds, and experimental models must all be taken into account. Strategies to increase the number and diversity of marine combinations, and further development of marine-based functional foods, are available. However, only a small number of natural marine bioactive combinations have been assessed, and most research has been focused on fish oil and carotenoid synergy. Therefore, more research and resources should be spent on developing novel marine bioactive combinations as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Belgheis Ebrahimi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China,College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Jun Lu ✉
| |
Collapse
|
30
|
Hui Y, Tu C, Liu D, Zhang H, Gong X. Risk factors for gastric cancer: A comprehensive analysis of observational studies. Front Public Health 2023; 10:892468. [PMID: 36684855 PMCID: PMC9845896 DOI: 10.3389/fpubh.2022.892468] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background Multifarious factors have a causal relationship with gastric cancer (GC) development. We conducted a comprehensive analysis to evaluate the strength of the evidence examining non-genetic risk factors for gastric cancer. Methods PubMed, Web of Science, and the Cochrane Library were searched from inception to November 10, 2021 to identify meta-analyses of observational studies examining the association between environmental factors and GC risk. For each meta-analysis, the random effect size, 95% confidence interval, heterogeneity among studies, and evidence of publication bias were assessed; moreover, the evidence was graded using predefined criteria, and the methodological quality was evaluated using AMSTAR 2. Results A total of 137 associations were examined in 76 articles. Among these meta-analyses, 93 associations yielded significant estimates (p < 0.05). Only 10 associations had strong epidemiologic evidence, including 2 risk factors (waist circumference and bacon), and 8 protective factors (dietary total antioxidant capacity, vegetable fat, cruciferous vegetable, cabbage, total vitamin, vitamin A, vitamin C, and years of fertility); 26 associations had moderate quality of evidence; and the remaining 57 associations were rated as weak. Ninety-four (68.61%) associations showed significant heterogeneity. Twenty-five (18.25%) associations demonstrated publication bias. Conclusions In this comprehensive analysis, multiple associations were found between environmental factors and GC with varying levels of evidence. Healthy dietary habits and lifestyle patterns could reduce the risk for GC. However, further high-quality prospective studies are still necessary to draw more definitive conclusions.
Collapse
Affiliation(s)
| | | | | | | | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Kaeppler MS, Smith JB, Davis CR, Simon PW, Tanumihardjo SA. Anthocyanin and Lycopene Contents Do Not Affect β-Carotene Bioefficacy from Multicolored Carrots (Daucus carota L.) in Male Mongolian Gerbils. J Nutr 2023; 153:76-87. [PMID: 36913481 PMCID: PMC10196587 DOI: 10.1016/j.tjnut.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anthocyanins and carotenoids are phytochemicals that may benefit health through provitamin A carotenoid (PAC), antioxidant, and anti-inflammatory activities. These bioactives may mitigate chronic diseases. Consumption of multiple phytochemicals may impact bioactivity in synergistic or antagonistic manners. OBJECTIVES Two studies in weanling male Mongolian gerbils assessed the relative bioefficacy of β-carotene equivalents (BCEs) to vitamin A (VA) with simultaneous consumption of the non-PAC lycopene or anthocyanins from multicolored carrots. METHODS After 3-wk VA depletion, 5-6 gerbils were killed as baseline groups. The remaining gerbils were divided into 4 carrot treatment groups; the positive control group received retinyl acetate and the negative control group was given vehicle soybean oil (n = 10/group; n = 60/study). In the lycopene study, gerbils consumed feed varying in lycopene sourced from red carrots. In the anthocyanin study, gerbils consumed feed varying in anthocyanin content sourced from purple-red carrots, and positive controls received lycopene. Treatment feeds had equalized BCEs: 5.59 ± 0.96 μg/g (lycopene study) and 7.02 ± 0.39 μg/g (anthocyanin study). Controls consumed feeds without pigments. Serum, liver, and lung samples were analyzed for retinol and carotenoid concentrations using HPLC. Data were analyzed by ANOVA and Tukey's studentized range test. RESULTS In the lycopene study, liver VA did not differ between groups (0.11 ± 0.07 μmol/g) indicating no effect of varying lycopene content. In the anthocyanin study, liver VA concentrations in the medium-to-high (0.22 ± 0.14 μmol/g) and medium-to-low anthocyanin (0.25 ± 0.07 μmol/g) groups were higher than the negative control (0.11 ± 0.07 μmol/g) (P < 0.05). All treatment groups maintained baseline VA concentrations (0.23 ± 0.06 μmol/g). Combining studies, serum retinol had 12% sensitivity to predict VA deficiency, defined as 0.7 μmol/L. CONCLUSIONS These gerbil studies suggested that simultaneous consumption of carotenoids and anthocyanins does not impact relative BCE bioefficacy. Breeding carrots for enhanced pigments to improve dietary intake should continue.
Collapse
Affiliation(s)
- Mikayla S Kaeppler
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jordan B Smith
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Philipp W Simon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA; USDA Agricultural Research Service, Vegetable Crops Research Unit; Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
32
|
Umashankar M, Sahoo M. Metabolite fingerprinting and profiling of selected medicinal plants using nuclear magnetic resonance. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2023. [DOI: 10.4103/ajprhc.ajprhc_93_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
33
|
The Effects of Fixation Methods on the Composition and Activity of Sea Buckthorn (Hippophae rhamnoides L.) Leaf Tea. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3909958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fixation is the key step to improve the quality of sea buckthorn leaf tea. Composition and activity are important indexes to evaluate the quality of sea buckthorn leaf tea. Comparing the effects of fixation methods on components and activities provides a theoretical basis for the contemporary, controllable, and continuous production of sea buckthorn leaf tea. The effects of six different fixed methods, pan-firing fixed (PF), steaming fixed (SF), boiling water fixed (BF), hot air fixed (HF), microwave fixed (MWF), and infrared fixed (IRF) for sea buckthorn leaf tea in terms of α-glucosidase inhibitory activity, lipase inhibitory ability, and the antioxidant capacity were studied. The total flavonoids (TF) content, total soluble phenolics (TP) content, water-soluble carbohydrate (WSC) content, the inhibitory activity of α-glucosidase, lipase inhibitory ability, and the antioxidant capacity of fixed sea buckthorn leaf tea were significantly higher (
) compared with sea buckthorn leaf. IRF and MWF samples had higher (
) contents of TF (92.48 mg RE/g and 79.20 mg RE/g), TP (115.37 mg GA/g and 135.18 mg GA/g) and WSC (4.24% and 4.39%). The DPPH radical scavenging activity of the SF sample was the strongest one, followed by the MWF sample and IRF sample (
). The hydroxyl radical scavenging ability and reducing power of IRF were the strongest one, followed by the MWF sample (
). The IRF sample had the strongest α-glucosidase inhibitory activity (
), and the MWF sample had the strongest lipase inhibitory ability while samples contained the same amount of total polyphenols (
). Principal component analysis results showed that the IRF sample, MWF sample, and SF sample had higher comprehensive principal component values. MWF takes less time than IRF, which operated at 2,450 MHz (full power of 700 W) for 2 min. Therefore, MWF was the most suitable fixation method for sea buckthorn leaf tea. Practical Applications. Leaf tea is the main product of sea buckthorn leaf. However, at present, the quality of sea buckthorn leaf tea in the market is uneven, the processing methods are diverse, and there is no certain quality standard. This paper provides some data support and theoretical support for the production, processing, and purchase of sea buckthorn leaf tea.
Collapse
|
34
|
Bezna MC, Pisoschi C, Bezna M, Danoiu S, Tudorascu IR, Negroiu CE, Melinte PR. Decrease of glutathione peroxidase in arrhythmic cardiac pathology in young individuals and its therapeutic implications. Biomed Rep 2022; 17:93. [PMID: 36382261 PMCID: PMC9634505 DOI: 10.3892/br.2022.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Glutathione peroxidase (GPx), as an antioxidant enzyme, is involved in the regulation of processes that cause cellular oxidative stress, with implications in various pathologies. The aim of the present study was to evaluate GPx variations in patients with arrhythmic, non-structural cardiac disorders. The research was performed on 120 patients, with a mean age of 33 years old, divided into 3 equal groups, of which 2 groups included patients with cardiac arrhythmias, the first group, associated with dyslipidemia and the second one, without dyslipidemia, and a control group consisting of healthy individuals. The method for determining GPx was based on the GPx enzyme catalysis reaction of the reduced glutathione (GSH) oxidation reaction by cumene hydroperoxide. The results revealed that GPx variation was decreased in patients with cardiac arrhythmias, with or without dyslipidemia, up to 66 and 74% of mean control values, respectively, the differences being statistically significant, showing the existence of an oxidative stress imbalance, that may be involved in triggering arrhythmogenic electrochemical mechanisms. The GPx deficiency determined in relation to cardiac arrhythmias was in dyslipidemic and non-lipidemic patients as follows: 29-35% in sinus bradycardia, 31-35% in associated cardiac arrhythmias, 30-33% in sinus tachycardia, 27-33% in atrial fibrillation, 32-33% in atrial flutter, 27-32% in atrial extrasystolic arrhythmia, 28-30% in ventricular extrasystolic arrhythmia and 18-26% in paroxysmal supraventricular tachycardia. Collectively, the results revealed that GPx, an antioxidant enzyme, is a specific biomarker, whose decrease indicated the existence of oxidative stress in young individuals with cardiac arrhythmias and its involvement in arrhythmogenic electrochemical processes. In addition, GPx deficiencies were between 18-35% in all types of cardiac arrhythmias, the highest being recorded in sinus bradycardia and the lowest in paroxysmal supraventircular tachycardia. Furthermore, the oxidative stress favored by the decrease of GPx induced lipid oxidation, regardless of the presence or absence of dyslipidemia, which triggered the formation of anti-lipid antibodies and a subclinical endothelial aggression, with early atherosclerotic potential. GPx evaluation may argue for the existence of oxidative stress in non-structural cardiac arrhythmias, and by its proper correction (antioxidants), prophylaxis of atherogenic dysfunction.
Collapse
Affiliation(s)
- Maria Cristina Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cătălina Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Marinela Bezna
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Iulia-Robertina Tudorascu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cristina-Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Petru Razvan Melinte
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| |
Collapse
|
35
|
Labban RSM, Alfawaz HA, Amina M, Bhat RS, Hassan WM, El-Ansary A. Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats. Nutrients 2022; 14:nu14214630. [PMID: 36364892 PMCID: PMC9657435 DOI: 10.3390/nu14214630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to explore the effects of Garcinia mangostana (mangosteen) and Curcuma longa independently and synergistically in modulating induced inflammation and impaired brain neurotransmitters commonly observed in high-fat diet-induced obesity in rodent models. Male albino Wistar rats were divided into four experimental groups. Group I, control, obese, fed on a high-fat diet (HFD), and Group II-IV, fed on HFD then given mangosteen extract (400 mg/kg/day) and/or Curcuma (80 mg/kg/day), or a mixture of both for 6 weeks. Plasma pro-inflammatory cytokines, leptin, and brain serotonin, dopamine, and glutamate were measured in the five studied groups. G. mangostana and Curcuma longa extracts demonstrate antioxidant and DPPH radical scavenging activities. Both induced a significant reduction in the weight gained, concomitant with a non-significant decrease in the BMI (from 0.86 to 0.81 g/cm2). Curcuma either alone or in combination with MPE was more effective. Both extracts demonstrated anti-inflammatory effects and induced a significant reduction in levels of both IL-6 and IL-12. The lowest leptin level was achieved in the synergistically treated group, compared to independent treatments. Brain dopamine was the most affected variable, with significantly lower levels recorded in the Curcuma and synergistically treated groups than in the control group. Glutamate and serotonin levels were not affected significantly. The present study demonstrated that mangosteen pericarp extract (MPE) and Curcuma were independently and in combination effective in treating obesity-induced inflammation and demonstrating neuroprotective properties.
Collapse
Affiliation(s)
- Ranyah Shaker M. Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
- Deputyship for Therapeutic Services, General, Administration of Nutrition, Ministry of Health, Riyadh 11595, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| |
Collapse
|
36
|
Dujmović M, Radman S, Opačić N, Fabek Uher S, Mikuličin V, Voća S, Šic Žlabur J. Edible Flower Species as a Promising Source of Specialized Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:2529. [PMID: 36235395 PMCID: PMC9570977 DOI: 10.3390/plants11192529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Eating habits are changing over time and new innovative nutrient-rich foods will play a great role in the future. Awareness of the importance of a healthy diet is growing, so consumers are looking for new creative food products rich in phytochemicals, i.e., specialized metabolites (SM). The consumption of fruits, vegetables and aromatic species occupies an important place in the daily diet, but different edible flower species are still neglected and unexplored. Flowers are rich in SM, have strong antioxidant capacities and also possess significant functional and biological values with favorable impacts on human health. The main aim of this study was to evaluate the content of SM and the antioxidant capacities of the edible flower species: Calendula officinalis L. (common marigold), Tagetes erecta L. (African marigold), Tropaeolum majus L. (nasturtium), Cucurbita pepo L. convar. giromontiina (zucchini) and Centaurea cyanus L. (cornflower). The obtained results showed the highest content of ascorbic acid (129.70 mg/100 g fw) and anthocyanins (1012.09 mg/kg) recorded for cornflower, phenolic compounds (898.19 mg GAE/100 g fw) and carotenoids (0.58 mg/g) for African marigold and total chlorophylls (0.75 mg/g) for common marigold. In addition to the esthetic impression of the food, they represent an important source of SM and thus can have a significant impact if incorporated in the daily diet.
Collapse
Affiliation(s)
- Mia Dujmović
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Vida Mikuličin
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Varivoda AA, Svetlakova EV, Ziruk IV, Kirichenko IS, Kolosova OY, Povetkin SN, Ivakhnenko BO. Development of a scientific concept of industrial storage systems for environmentally safe apples. POTRAVINARSTVO 2022. [DOI: 10.5219/1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The research project has developed and justified the storage modes of apples in a modified gas environment by creating an isolated "closed loop" of high-pressure polyethylene; the expediency of creating highly efficient technologies for storing fresh fruits in a controlled atmosphere, in bioactive bactericidal packages and by creating microfilm on the surface of fruits has been confirmed. The prospects of using a progressive method of storing fruits in a modified gas atmosphere by creating an isolated "closed circuit" in a separate refrigerating chamber without using expensive equipment (in normal and subnormal gas environments) are proved. New technologies have been developed for storing apple fruits susceptible to infectious and physiological diseases based on improved storage methods with minimal losses. The consumption rates of Phytosporin-M for the surface treatment of fruits were determined and optimized to control the intensity of biochemical and microbiological processes during storage. The modes and technologies of post-harvest fruit processing with the Phytosporin-M biopreparation have been substantiated.
Collapse
|
38
|
Papierska K, Ignatowicz E, Jodynis-Liebert J, Kujawska M, Biegańska-Marecik R. Effects of Long-Term Dietary Administration of Kale (<i>Brassica oleracea</i> L. var.<i> acephala</i> DC) Leaves on the Antioxidant Status and Blood Biochemical Markers in Rats. POL J FOOD NUTR SCI 2022; 72:239-247. [DOI: 10.31883/pjfns/152434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
|
39
|
Pfukwa TM, Pheiffer W, Fawole OA, Manley M, Mapiye C. Cellular antioxidant and viability efficacy of Harpephyllum caffrum peel and Syzygium guineense seed extracts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Guleria K, Sehgal A. Additive to Antagonistic Antioxidant Interaction of Black Tea with Three Different Species of Ocimum. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2086512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khushboo Guleria
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
41
|
Pan Y, Li H, Shahidi F, Luo T, Deng Z. Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2022; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
43
|
Jagadeesan G, Muniyandi K, Manoharan AL, Nataraj G, Thangaraj P. Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R.Br. ex Wight polyphenols during in vitro simulated digestion. Food Chem 2022; 372:131294. [PMID: 34638068 DOI: 10.1016/j.foodchem.2021.131294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
This study renewed focus on Allmania nodiflora, a green leafy vegetable with diverse nutritional and medicinal properties. The bioaccessibility and the impact of in vitro simulated digestion on polyphenolics were investigated and identified using LC-MS. Although in vitro digestion reduced polyphenolics, the pancreatic digested sample showed a significant bioaccessibility of 97% with better metal ion binding activity (99%). Increased α-amylase and α-glucosidase inhibition (>45%) potentials were also observed in the digested samples. The presence of compounds such as rutin, caffeic acid, catechin, saikosaponin was also identified to be responsible for the enzyme inhibition against postprandial hyperglycemia. These results indicated that the pH of the digestive buffers is responsible for the structural changes in polyphenols for assimilation in the intestine. Hence, A. nodiflora leaf could serve as a functional food having higher assimilated polyphenolics with abundant therapeutic potential, which would be indispensible for future nutraceutical product development from green leafy vegetables.
Collapse
Affiliation(s)
- Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India
| | - Kasipandi Muniyandi
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India
| | - Ashwini Lydia Manoharan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India
| | - Gayathri Nataraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India.
| |
Collapse
|
44
|
|
45
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
46
|
Ridoutt B. An Alternative Nutrient Rich Food Index (NRF-ai) Incorporating Prevalence of Inadequate and Excessive Nutrient Intake. Foods 2021; 10:foods10123156. [PMID: 34945707 PMCID: PMC8701859 DOI: 10.3390/foods10123156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Most nutrient profiling models give equal weight to nutrients irrespective of their ubiquity in the food system. There is also a degree of arbitrariness about which nutrients are included. In this study, an alternative Nutrient Rich Food index was developed (NRF-ai, where ai denotes adequate intake) incorporating prevalence of inadequate and excessive nutrient intake among Australian adults. Weighting factors for individual nutrients were based on a distance-to-target method using data from the Australian Health Survey describing the proportion of the population with usual intake less than the Estimated Average Requirement defined by the Nutrient Reference Values for Australia and New Zealand. All nutrients for which data were available were included, avoiding judgements about which nutrients to include, although some nutrients received little weight. Separate models were developed for females and males and for selected age groups, reflecting differences in nutrient requirements and usual intake. Application of the new nutrient profiling models is demonstrated for selected dairy products and alternatives, protein-rich foods, and discretionary foods. This approach emphasises the need to identify foods that are rich in those specific nutrients for which intake is below recommended levels and can be used to address specific nutrient gaps in subgroups such as older adults. In addition, the new nutrient profiling model is used to explore other sustainability aspects, including affordability (NRF-ai per AUD) and ecoefficiency (NRF-ai/environmental impact score).
Collapse
Affiliation(s)
- Bradley Ridoutt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Clayton, VIC 3169, Australia; ; Tel.: +61-3-9545-2159
- Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
47
|
Hong S, Dia VP, Zhong Q. Synergistic anti-inflammatory activity of apigenin and curcumin co-encapsulated in caseins assessed with lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Biol Macromol 2021; 193:702-712. [PMID: 34717976 DOI: 10.1016/j.ijbiomac.2021.10.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Dietary polyphenols are potential anti-inflammatory agents, and their combinations with enhanced biological activities may lower toxicity and side effects. The objective of this work was to investigate the potential synergistic anti-inflammatory activities of apigenin and curcumin co-nanoencapsulated in sodium caseinate, with comparison to unencapsulated polyphenol combinations. Non-toxic concentrations of apigenin, curcumin, and their combinations in the free and co-encapsulated forms were studied in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Combinations of free polyphenols produced stronger inhibition of nitric oxide (NO) production, more significant at a higher proportion of curcumin, which was further enhanced after co-encapsulation. The enhanced reduction of NO was concomitant with the decreased expression of iNOS, the enhanced inhibition of pro-inflammatory cytokines of IL-6 and TNF-α, and the reduced production of intracellular reactive oxygen species. The potential multi-target effects and the enhanced solubility, proximity, and bioavailability of AP and CUR after co-encapsulation contributed to the synergistic activities. These results demonstrated that co-nanoencapsulation of apigenin and curcumin may enable the practical application utilizing the synergistic anti-inflammation effects to improve health.
Collapse
Affiliation(s)
- Shan Hong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
48
|
Chen X, Deng Z, Zheng L, Zhang B, Luo T, Li H. Interaction between Flavonoids and Carotenoids on Ameliorating Oxidative Stress and Cellular Uptake in Different Cells. Foods 2021; 10:foods10123096. [PMID: 34945647 PMCID: PMC8701200 DOI: 10.3390/foods10123096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids (quercetin, luteolin) and carotenoids (lycopene, lutein) were combined at different molecular ratios in a total concentration of 8 μM to investigate their antioxidant interactions. Cellular uptake of carotenoids, the expression of carotenoid transporters, the ROS scavenging ability, and antioxidant enzymes activities were compared in HUVEC, Caco-2, and L-02 cells. Combinations with flavonoids in the majority showed stronger antioxidant activity. Lycopene combined with quercetin at ratio 1:5 showed stronger ROS scavenging activities, increased 18, 12, and 12 Cellular antioxidant activity (CAA) units in HUVEC, Caco-2, and L-02 cells, respectively, and promoted SOD and CAT activities than individual component. The cell uptake of carotenoids was enhanced by flavonoids in antioxidant synergistic groups, while dampened by flavonoids in antagonistic groups in HUVEC cells. The synergistic group (lycopene:quercetin = 1:5) increased lycopene uptake by 271%, while antagonistic group (lutein:quercetin = 5:1) decreased lutein uptake by 17%. Flavonoids modulated the effects of carotenoids on the expression of active transporters scavenger receptor class B type I (SR-BI) or Niemann-Pick C1-like 1 (NPC1L1). The synergistic group (lycopene:quercetin = 1:5) increased the expression of SR-BI compared to individual lycopene treatment in HUVEC and Caco-2 cells. Thus, a diet rich in both flavonoids and lycopene possesses a great antioxidant activity, especially if a higher amount of flavonoids is included.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Correspondence: ; Tel.: +86-791-88314447-8226; Fax: +86-791-88304402
| |
Collapse
|
49
|
Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med 2021; 68:151-161. [PMID: 34753368 DOI: 10.1080/19396368.2021.1989727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are few treatment options, including the use of natural phenolics-based combination therapy for mitigating male infertility conditions associated with chemotherapy. Busulfan is an anti-cancer drug that leads to testicular problems in humans. Here, we studied the effect of co-treatment of rutin and kolaviron against busulfan-induced testis damage. Young adult male Wistar rats were intraperitoneally injected busulfan (4 mg/kg b.w), and then orally administered rutin (30 mg/kg b.w), and kolaviron (50 mg/kg b.w) alone and combined for 60 days. Results revealed that rutin and kolaviron alone or in combination reversed busulfan-induced increase in oxidative stress along with sperm quality of treated animals. However, kolaviron and rutin separately improved the concentrations of MDA and GSH and sperm quality more than when they were combined. Similarly, rutin and kolaviron separately or in combination preserved spermatogenesis and relieved busulfan-induced increase in nitric oxide concentration, myeloperoxidase and 3β-hydroxysteroid dehydrogenase activities. Co-supplementation with kolaviron but not rutin nor when rutin was combined with kolaviron also improved the testicular level of tumor necrosis-alpha. Finally, the histological features in the testes caused by busulfan were reversed by rutin, whereas treatment with kolaviron alone or in combination with rutin partially protected the testis from busulfan-induced injury as demonstrated by the appearance of few germ cells, damaged tubules, loss of round spermatids and defoliation of the seminiferous epithelium. Thus, the combined treatment regimen of rutin and kolaviron sparingly prevented busulfan-induced testicular injuries in rats.Abbreviations: CAT: Catalase; GSH: Glutathione; 3β-HSD: 3β- hydroxysteroid Dehydrogenase; MDA: Malondialdehyde; TNF-α: Tumor necrosis-alpha; BUS: Busulfan; RUT: Rutin; KV: Kolaviron; TBARS: Thiobarbituric Acid Reactive Substances; MPO: Myeloperoxidase; ELISA: Enzyme-Linked Immunoassay; NAD: Nicotinamide Adenine Dinucleotide (oxidized); ROS: Reactive Oxygen Species.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Rex-Clovis C Njoku
- Department of Chemistry/Biochemistry & Molecular Biology, Alex Ekwueme-Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Ifeoma G John
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Benjamin A Amadi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
50
|
Andrade JKS, Barros RGC, Pereira UC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem 2021; 373:131494. [PMID: 34753077 DOI: 10.1016/j.foodchem.2021.131494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the bioaccessibility, cytotoxicity, antioxidant and antidiabetic potential of peel and seeds of cupuassu (Theobroma grandiflorum). Thus, the extracts of cupuassu were evaluated for inhibition of α-amylase, cytotoxicity, and bioaccessibility after gastrointestinal digestion and probiotic fermentation (Lactobacillus delbrueckii, Lactobacillus jhonsoni, Lactobacillus rhamus and Bifidobacterium longum). Digestion increased concentrations of phenolics, showing bioaccessibility of up to 274.13% (total phenolics) and 1105.15% (ORAC). β-carotene, quinic, tartaric, malic, citric, epicatechin, ethyl gallate, epigallocatechin gallate, gallic acid, pyrocatechol, vanillin, ramnetine were the main compounds while the epicatechin, ethyl gallate, gallic acid and pyrocatechol were the major effective phenolic compounds. The extracts did not show toxic effects and the cupuassu seeds showed 97% inhibition of α-amylase and 47.91% bioaccessibility of pyrocatechol. This study suggests that cupuassu extracts are sources of natural antioxidants with promising antidiabetic potential, and probiotics are able to increase phenolic compounds, responsible for health benefits.
Collapse
Affiliation(s)
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|