1
|
Wang J, Liu J, Li Z, Li Q. Mechanical robust, pH responsive hemicellulose-based PVA film with barrier performance for fruit preservation and monitoring. Food Chem 2025; 481:144028. [PMID: 40184924 DOI: 10.1016/j.foodchem.2025.144028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Barrier films are essential for food packaging, but conventional solutions hinder the circular economy. This study introduces hemicellulose-based antioxidant crosslinked composite films as a sustainable alternative. We develop pH-responsive films (K-B/PVA/OA) using polyvinyl alcohol (PVA), silanized hemicellulose (KHC), blueberry anthocyanin (BA) as a pH indicator, and oxalic acid (OA) as a crosslinker. The films exhibit excellent oxygen and water vapor barrier properties and can be easily fabricated via solution casting with food-safe dispersions. The oxygen permeability (OP) decreases from 13.22 ± 0.65 × 10-14 to 3.24 ± 0.98 × 10-14 cm3·μm/(m2·d·Pa), and the water vapor permeability coefficient (Pv) drops from 15.43 ± 0.85 × 10-13 to 7.27 ± 0.46 × 10-13 g·cm/(cm2·s·Pa). Tensile strength and modulus increase from 32.63 MPa and 765.80 MPa to 41.24 MPa and 1281.39 MPa. Esterification between PVA and hemicellulose raises surface energy, increasing the contact angle from 39.4° to 78.34°. Strawberries packaged in these films maintain their structure and exhibit a visible color change after 7 days, offering sustainable, real-time monitoring packaging.
Collapse
Affiliation(s)
- Junting Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jiaxuan Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhiqiang Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China; State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Qun Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China; State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Wang D, Zhu C, Yang Q, Xu Y, Zhang D, Wang D, Liu F, Hou C. Stretchable, controlled release of active substances, and biodegradable chitosan-polyvinyl alcohol hydrogel film for antibacterial and chilled meat preservation. Food Chem 2025; 477:143608. [PMID: 40023039 DOI: 10.1016/j.foodchem.2025.143608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
In this study, we utilized chitosan (CS) and polyvinyl alcohol (PVA) as the hydrogel matrix to fabricate a multifunctional hydrogel packaging film through the dimethylsulfoxide/hydroxybenzotriazole activation system-mediated. Based on the evaluation of thermal stability and mechanical properties, the optimal polymerization ratio of PVA to CS was determined as 3:1. Hydrogels made of 6 % PVA and 2 % CS have excellent heat resistance and adhesion, with a remarkable breakage elongation of 754.3 %. The cross-linking of PVA, CS, and ε-PL polymers occurred through esterification and amide reactions involving -COOH, -OH, and -NH2. The incorporation of ε-PL improved the thermal stability and strain properties. In vitro antibacterial assays demonstrated that the PVA/CS@ε-PL exhibited remarkable antibacterial efficacy against Staphylococcus aureus and Pseudomonas fluorescein. The PVA/CS@ε-PL-0.144 showed controlled release of ε-PL for over 3 d and extended the shelf life of chilled chicken to 8 d. These findings suggest that PVA/CS@ε-PL-0.144 is a potential antibacterial packaging.
Collapse
Affiliation(s)
- Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chaoqiao Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Qingfeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
3
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025; 7:2446-2473. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
4
|
Muhammed AP, Thangarasu S, Raorane CJ, Kim SC, Oh TH. Integrating hexagonal boron nitride-ZnO nanohybrids as multifunctional active fillers in PLA matrices to extend the shelf-life of fresh strawberries. Food Chem 2025; 485:144539. [PMID: 40319591 DOI: 10.1016/j.foodchem.2025.144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
PLA is a promising sustainable alternative to petroleum-based polymers. However, its suboptimal functional properties and lack of inherent bioactivity limit its applications in active food packaging. This study addresses these constraints and improves PLA's active functionalities through reinforcement with hexagonal boron nitride-ZnO (hBN-ZnO) binary inorganic nanofillers. PLA was fine-tuned with various ratios of hBN, and found that PLA-hBN1.5 film exhibits the optimum characteristics such as excellent film formation, highest tensile strength (62.14 MPa, 19.75 % increase), lowest water vapor permeability (1.23 ± 0.03 × 10-11 g.m-1.s-1.Pa-1, 32.04 % decrease), and improved UV-blocking and thermal resistance. Subsequently, a hydrothermally synthesized hBN-ZnO composite was incorporated into optimal PLA-hBN1.5 films, replacing pure hBN. The ZnO inclusion boosted the films antibacterial, antibiofilm, and antioxidant functionalities without significantly compromising mechanical or moisture barrier properties. Packaging studies on fresh strawberries demonstrated the superior potential of the PLA-hBN-ZnO film, making it a promising material for sustainable and active food packaging.
Collapse
Affiliation(s)
- Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Esmaeili Y, Toiserkani F, Qazanfarzadeh Z, Ghasemlou M, Naebe M, Barrow CJ, Timms W, Jafarzadeh S. Unlocking the potential of green-engineered carbon quantum dots for sustainable packaging biomedical applications and water purification. Adv Colloid Interface Sci 2025; 338:103414. [PMID: 39889506 DOI: 10.1016/j.cis.2025.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Carbon quantum dots (CQDs) with well-defined architectures offer highly fascinating properties such as excellent water-solubility, exceptional luminescence, large specific surface area, non-toxicity, biocompatibility and tuneable morphological, structural, and chemical features. This review comprehensively overviews recent breakthroughs and critical milestones in the green synthesis of CQDs from renewable sources and provides guidance for their sustainable development towards fulfilling the goals of green chemistry. It also discusses the interaction of CQDs with various biopolymers to improve the material performance and functionality. This paper also highlights the latest technological applications of CQDs in numerous fields, including sustainable packaging, biosensing, bioimaging, cancer therapy, drug delivery as well as water purification. Finally, it summarizes the main challenges and provides an outlook on the future directions of CQDs in packaging and biomedical fields. This review can act as a roadmap to guide researchers for tailoring the properties of CQDs for important composite and biomedical fields.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Farzad Toiserkani
- School of Polymer Science and Polymer Engineering, University of Akron, OH 44325, United States
| | - Zeinab Qazanfarzadeh
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mehran Ghasemlou
- Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Minoo Naebe
- Institute for Frontier Materials (IFM), Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Wendy Timms
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia.
| | - Shima Jafarzadeh
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia.
| |
Collapse
|
6
|
Musa AA, Bello A, Adams SM, Onwualu AP, Anye VC, Bello KA, Obianyo II. Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges. Polymers (Basel) 2025; 17:893. [PMID: 40219283 PMCID: PMC11991163 DOI: 10.3390/polym17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 04/14/2025] Open
Abstract
Nanomaterials have demonstrated significant potential in enhancing the performance and functionality of composite materials across various industrial applications. This review delves into the unique properties of nanomaterials, with a particular focus on carbon-based nanomaterials, and presents key findings on their effectiveness in improving composite performance. The study emphasizes specific nano-based composite materials, highlighting their substantial promise in advancing the field of nanocomposites. Additionally, it addresses the challenges associated with the production and utilization of nanocomposite materials and discusses potential solutions to overcome these obstacles. The review concludes with recommendations for further research and innovation in nanocomposites to fully harness the advantages of these advanced materials for broader future applications.
Collapse
Affiliation(s)
- Abdulrahman Adeiza Musa
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Abdulhakeem Bello
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Sani Mohammed Adams
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka 410105, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Vitalis Chioh Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Kamilu Adeyemi Bello
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
| | | |
Collapse
|
7
|
Maddirala S, Tadepalli SP, Lakshiakanthan E, Ganesan JJ, Issac R, Basavegowda N, Baek KH, Haldar D. Biodegradable composite films of barley fibers for food packaging applications: A review. Int J Biol Macromol 2025; 295:139611. [PMID: 39788235 DOI: 10.1016/j.ijbiomac.2025.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors. Hence, this review focuses on barley lignocellulose fibers incorporated into different film matrix phases, showing promising enhanced mechanical, and functional properties. Barley biocomposites provide the necessary protective functions to replace traditional plastic for food packaging applications and that could reduce the negative effects on the environment. In addition, we highlighted various recently developed barley lignocellulose-based biocomposite films for a variety of food packaging applications. Furthermore, an overview of the environmental impact of plastic pollution and its effects on ecological niches has been emphasized. Additionally, aspects of different sustainable goals (SDGs 9, 12, 13) are discussed. Based on the existing research gaps, this article is concluded with the challenges and discussed further perspectives of biocomposites enriched with barley lignocellulose fibers.
Collapse
Affiliation(s)
- Samuel Maddirala
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Sai Prabhat Tadepalli
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Emisha Lakshiakanthan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Janet Joshiba Ganesan
- Railway Technical Centre, Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First campus), No 1, Daxue road, Yanchao District, Kaohsiung City 82445, Taiwan
| | - Reya Issac
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
8
|
Vyas A, Ng SP, Fu T, Anum I. ZnO-Embedded Carboxymethyl Cellulose Bioplastic Film Synthesized from Sugarcane Bagasse for Packaging Applications. Polymers (Basel) 2025; 17:579. [PMID: 40076072 PMCID: PMC11902478 DOI: 10.3390/polym17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC's properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film's crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength-15.12 ± 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry.
Collapse
Affiliation(s)
- Anand Vyas
- Division of Science, Engineering and Health Studies, SPEED, The Hong Kong Polytechnic University, Hong Kong 999077, China; (S.-p.N.); (I.A.)
| | - Sun-pui Ng
- Division of Science, Engineering and Health Studies, SPEED, The Hong Kong Polytechnic University, Hong Kong 999077, China; (S.-p.N.); (I.A.)
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Ifrah Anum
- Division of Science, Engineering and Health Studies, SPEED, The Hong Kong Polytechnic University, Hong Kong 999077, China; (S.-p.N.); (I.A.)
| |
Collapse
|
9
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
10
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
11
|
Pillai ARS, Bhosale YK, Roy S. Extraction of Bioactive Compounds From Centella asiatica and Enlightenment of Its Utilization Into Food Packaging: A Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:1249553. [PMID: 39363888 PMCID: PMC11449555 DOI: 10.1155/2024/1249553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
Centella asiatica is a medicinal herb, well known for its phytochemical activities because of the presence of terpenoids and polyphenols, which contribute to the bioactivity of herb extract that can be effectively utilized in the packaging industry. Biopolymers infused with C. asiatica extract could be a promising solution in the food sector. The antibacterial and antioxidant qualities of C. asiatica can help preserve the quality and lengthen the freshness of food products, thereby preventing food loss. Selection of a suitable extraction method is essential to retain the yield and properties of the bioactive compounds of C. asiatica extract. Many research has been conducted on the separation of C. asiatica by using conventional and novel extraction techniques and its execution in packaging as a functional component. This review provides an overview of the extraction of phytochemicals from C. asiatica and its utilization in biopolymer film as an active component to modify the packaging film characteristics.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| | - Yuvraj Khasherao Bhosale
- Agricultural and Food Engineering DepartmentIndian Institute of Technology Kharagpur 721302, Kharagpur, West Bengal, India
| | - Swarup Roy
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| |
Collapse
|
12
|
Chandrababu V, Parameswaranpillai J, Gopi JA, Pathak C, Midhun Dominic CD, Feng NL, Krishnasamy S, Muthukumar C, Hameed N, Ganguly S. Progress in food packaging applications of biopolymer-nanometal composites - A comprehensive review. BIOMATERIALS ADVANCES 2024; 162:213921. [PMID: 38870740 DOI: 10.1016/j.bioadv.2024.213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Eco-friendly nanotechnology-enabled biopolymers are one of the novel concepts of packaging materials to substitute traditional synthetic polymers and their composites. This article succinctly reviews the recent developments of introducing additional functionalities to biopolymers using metal and metal oxide nanoparticles. The functionality of metal nanoparticles such as silver, zinc oxide, titanium dioxide, copper oxide, gold, and magnesium oxide, as food packaging materials were discussed. The addition of nanoparticles in biopolymers improves mechanical properties, gas barrier properties, durability, temperature stability, moisture stability, antimicrobial activity, antioxidant property, and UV absorbance and can prevent the presence of ethylene and oxygen, hence extending the shelf life of foodstuffs. Other than this, the functional activity of these biopolymer composite films helps them to act like smart or intelligent packaging. The selection of metal nanoparticles, particle migration, toxicological effect, and potential future scope in the food packaging industry are also reviewed.
Collapse
Affiliation(s)
- Vibha Chandrababu
- Wimpey Laboratories, Warehouse 1 & 2, Wimpey Building, Plot No: 364-8730, Al Quoz Industrial Area 1, Dubai, United Arab Emirates
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India; AU-Sophisticated Testing and Instrumentation Center, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India.
| | - Jineesh Ayippadath Gopi
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - Chandni Pathak
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College, Cochin 682013, Kerala, India
| | - Ng Lin Feng
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, India
| | - Chandrasekar Muthukumar
- SIMCRASH CENTRE, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Tamil Nadu 603103, India
| | - Nishar Hameed
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
| | - Sayan Ganguly
- Bar-Ilan Institute of Nanotechnology & Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
13
|
Qin Z, Fang W, Jiang Q, Li J, Zhang H. The urchin-like gold nanoparticles/poly(ε-caprolactone)/chitosan electrospun nanofibers for antibacterial active packaging. Int J Biol Macromol 2024; 274:133287. [PMID: 38909730 DOI: 10.1016/j.ijbiomac.2024.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Inspired by the natural antimicrobial effect of the topographical features of insect wings, this study prepared urchin-like gold nanoparticles (UGNPs) and deposited them on poly(ε-caprolactone) (PCL)/chitosan (P/C) electrospun nanofiber film to strengthen antibacterial activities of this active packaging. Results showed that L-Dopa was a suitable reducing agent to prepare UGNPs, and the spine length of UGNPs increased from 21.23 to 35.83 nm as the molar ratio of L-Dopa:HAuCl4 increased from 1 to 3. As the nanofiber film was immersed in the nanoparticle solution for a longer time, the UGNP content in P/C nanofibers increased. As the spine length of UGNPs and depositing UGNP content increased, the inhibition rate against S. aureus and E. coli. of P/C nanofiber film increased. In addition, P/C nanofiber film deposited with UGNPs also exhibited good thermal stability, hydrophilicity, mechanical strength, and water vapor permeability, exhibiting its potential as an antibacterial active packaging.
Collapse
Affiliation(s)
- Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wangyang Fang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Tavassoli M, Bahramian B, Abedi-Firoozjah R, Ehsani A, Phimolsiripol Y, Bangar SP. Application of lactoferrin in food packaging: A comprehensive review on opportunities, advances, and horizons. Int J Biol Macromol 2024; 273:132969. [PMID: 38857733 DOI: 10.1016/j.ijbiomac.2024.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sneh Punia Bangar
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food, Nutrition and Packaging Sciences, Clemson University, SC, 29634, USA.
| |
Collapse
|
15
|
Teshager AA, Atlabachew M, Alene AN. Development of biodegradable film from cactus ( Opuntia Ficus Indica) mucilage loaded with acid-leached kaolin as filler. Heliyon 2024; 10:e31267. [PMID: 38845886 PMCID: PMC11153097 DOI: 10.1016/j.heliyon.2024.e31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nowadays, substituting petroleum-based plastics with biodegradable polymers made from polysaccharides loaded with various reinforcing materials has recently gained attention due to the impact of conventional plastics wastes. In this study, polysaccharidic mucilage from Ethiopian cactus (Opuntia Ficus Indica) was derived using microwave-assisted extraction technique to develop biodegradable polymers that were inexpensive, readily available, simple to make, and ecofriendly. The effect of microwave power 300-800 W, solid-liquid (cactus-sodium hydroxide solution) ratio 1:5-1:25, sodium hydroxide concentration 0.1-0.8 mol/L, and extraction time 2-10 min on mucilage extraction were studied and the maximum yield of mucilage was attained at optimized parameters of 506 W, 1:20, 0.606 mol/L, and 9.5 min, respectively. Biodegradable polymers made with mucilage alone have poor mechanical characteristics and are thermally unstable. Thus, to overcome the stated problems, glycerol as a plasticizer and acid-leached kaolin crosslinked with urea as a reinforcing material were used. Moreover, the effect of acid-leached kaolin and glycerol on the physico-chemical properties of the films was studied, and a maximum tensile strength of 6.74 MPa with 18.45 % elongation at break, thermally improved biodegradability of 26 %, were attained at 10 % acid-leached kaolin and 20 % glycerol crosslinking with 2 % urea. But the maximum degradability of 53.5 % was attained at 30 % glycerol content. The control and reinforced biodegradable films were characterized using TGA, FTIR, SEM, and XRD to determine the thermal, functional group, morphology, and crystallinity of the bioplastics, respectively. These biodegradable plastics may be used for packaging application.
Collapse
Affiliation(s)
- Alebel Abebaw Teshager
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Adugna Nigatu Alene
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
16
|
Keerthana L, Dharmalingam G. Chemically engineered plasmonic Au-gallium oxide nanocomposites for harsh environment applications: an investigation into thermal and chemical robustness. Phys Chem Chem Phys 2024; 26:15018-15031. [PMID: 38742899 DOI: 10.1039/d3cp05831j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enhanced thermal, chemical, and mechanical properties of different metal nanoparticle morphologies integrated with metal oxides have been reported in multiple instances. The chemical and material robustness of metal nanoparticles incorporated surficially and into the bulk of distinct as well as spontaneously formed morphologies of metal oxides through solution-based and microwave-based approaches are investigated in this study. These composites were tested for their chemical and material robustness by exposing films formed on quartz substrates to high temperatures (800 °C) in an air ambient as well as to extreme conditions of pH, often encountered in harsh environment applications such as sensing and catalysis. The changes in the optical properties and crystallinity have been studied using in situ absorption and ex situ X-ray diffraction analyses and electron microscopy. The trends observed with respect to the changes in the plasmonic absorbance were validated theoretically and found to be in reasonable agreement with the experimental data. Confirmations of the phenomena occurring in different morphologies and architectures were thereby corroborated through careful interpretations from experiments and predictions from theoretical models. We, therefore, report a simple solution-based process for achieving engineered harsh environment-compatible nanocomposites through studies specifically tailored for such applications such as catalysis, sensing, energy storage, and enhanced luminescence.
Collapse
Affiliation(s)
- L Keerthana
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| | | |
Collapse
|
17
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
18
|
Geeta, Shivani, Devi N, Shayoraj, Bansal N, Sharma S, Dubey SK, Kumar S. Novel chitosan-based smart bio-nanocomposite films incorporating TiO 2 nanoparticles for white bread preservation. Int J Biol Macromol 2024; 267:131367. [PMID: 38583837 DOI: 10.1016/j.ijbiomac.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitosan (CS)-based bio-nanocomposite food packaging films were prepared via solvent-casting method by incorporating a unique combination of additives and fillers, including polyvinyl alcohol (PVA), glycerol, Tween 80, castor oil (CO), and nano titanium dioxide (TiO2) in various proportions to enhance film properties. For a comprehensive analysis of the synthesized films, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile testing, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and UV-vis spectrophotometry were employed. Furthermore, the antimicrobial efficacy of the films against S. aureus, E. coli, and A. niger was examined to assess their potential to preserve food from foodborne pathogens. The results claimed that the inclusion of castor oil and TiO2 nanoparticles considerably improved antimicrobial properties, UV-vis light barrier properties, thermal stability, optical transparency, and mechanical strength of the films, while reducing their water solubility, moisture content, water vapor and oxygen permeability. Based on the overall analysis, CS/PVA/CO/TiO2-0.3 film can be selected as the optimal one for practical applications. Furthermore, the practical application of the optimum film was evaluated using white bread as a model food product. The modified film successfully extended the shelf life of bread to 10 days, surpassing the performance of commercial LDPE packaging (6 days), and showed promising attributes for applications in the food packaging sector. These films exhibit superior antimicrobial properties, improved mechanical strength, and extended shelf life for food products, marking a sustainable and efficient alternative to conventional plastic packaging in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Neha Bansal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
19
|
Jafarzadeh S, Golgoli M, Azizi-Lalabadi M, Farahbakhsh J, Forough M, Rabiee N, Zargar M. Enhanced carbohydrate-based plastic performance by incorporating cerium-based metal-organic framework for food packaging application. Int J Biol Macromol 2024; 265:130899. [PMID: 38490375 DOI: 10.1016/j.ijbiomac.2024.130899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The development of biodegradable active packaging films with hydrophobic characteristics is vital for extending the shelf life of food and reducing the reliance on petroleum-based plastics. In this study, novel hydrophobic cerium-based metal-organic framework (Ce-MOF) nanoparticles were successfully synthesized. The Ce-MOF nanoparticles were then incorporated into the cassava starch matrix at varying concentrations (0.5 %, 1.5 %, 3 %, and 4 % w/w of total solid) to fabricate cassava-based active packaging films via the solution casting technique. The influence of Ce-MOF on the morphology, thermal attributes, and physicochemical properties of the cassava film was subsequently determined through further analyses. Biomedical analysis including antioxidant activity and the cellular morphology evaluation in the presence of the films was also conducted. The results demonstrated that the consistent dispersion of Ce-MOF nanofillers within the cassava matrix led to a significant enhancement in the film's crystallinity, thermal stability, antioxidant activity, biocompatibility, and hydrophobicity. The introduction of Ce-MOF also contributed to the film's reduced water solubility. Considering these outcomes, the developed cassava/Ce-MOF films undoubtedly have significant potential for active food packaging applications.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| |
Collapse
|
20
|
Yousefi N, Zahedi Y, Yousefi A, Hosseinzadeh G, Jekle M. Development of carboxymethyl cellulose-based nanocomposite incorporated with ZnO nanoparticles synthesized by cress seed mucilage as green surfactant. Int J Biol Macromol 2024; 265:130849. [PMID: 38484807 DOI: 10.1016/j.ijbiomac.2024.130849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
This study aimed to enhance carboxymethyl cellulose (CMC)-based films by incorporating zinc oxide nanoparticles (ZnO NPs) and cress seed mucilage (CSM), with a view to augmenting the physical, mechanical, and permeability properties of the resulting nanocomposite films. For the first time, CSM was exploited as a green surfactant to synthetize ZnO NPs using hydrothermal method. Seven distinct film samples were meticulously produced and subjected to a comprehensive array of analyses. The findings revealed that the incorporation of CSM/ZnO-5 % improved the physical properties of the films, demonstrating a significant reduction in moisture content and water vapor permeability (WVP). Increasing the concentration of NPs in conjunction with CSM markedly decreased the solubility of the nanocomposites by up to 56 %. The films containing CSM/ZnO showed higher tensile strength and elongation at the break values. The UV absorption of the films exhibited a substantial rise with the addition of ZnO NPs, particularly with an increased content in the presence of CSM. The thermal stability of nanocomposites containing a high concentration of CSM/ZnO exhibited an improvement compared to the control sample. In light of these results, the CMC/CSM/ZnO-5 % film emerges as a promising candidate for a biocompatible packaging material, exhibiting favorable physical characteristics.
Collapse
Affiliation(s)
- Nazanin Yousefi
- Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Younes Zahedi
- Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Alireza Yousefi
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Ghader Hosseinzadeh
- Department of Chemical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran
| | - Mario Jekle
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
21
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
22
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
23
|
Said NS, Olawuyi IF, Cho HS, Lee WY. Novel edible films fabricated with HG-type pectin extracted from different types of hybrid citrus peels: Effects of pectin composition on film properties. Int J Biol Macromol 2023; 253:127238. [PMID: 37816465 DOI: 10.1016/j.ijbiomac.2023.127238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
This study investigated the valorization of novel HG-type hybrid citrus pectins derived from three cultivars: Setoka (ST), Kanpei (KP), and Shiranui (SH), and their application as packaging materials. The physicochemical properties of these pectins and their corresponding films were evaluated and compared to commercial citrus pectin. Significant variations were observed in pectin yield (18.15-24.12 %) and other physicochemical characteristics, such as degree of esterification (DE), degree of methoxylation (DM), and monosaccharide composition, among the different cultivars. All hybrid citrus pectins were classified as high-methoxy pectin types (66.67-72.89 %) with typical structural configurations like commercial citrus pectin. However, hybrid citrus pectin films exhibited superior physical properties, including higher mechanical strength, flexibility, and lower water solubility than commercial citrus pectin film, while maintaining similar transparency and moisture content. Additionally, the films displayed smooth and uniform surface morphology, confirming their excellent film-forming properties. Correlation analysis revealed that DE positively influenced mechanical properties (r = 1.0). Furthermore, the monosaccharide composition of pectins showed strong relationships (r = 0.8-1.0) with the film's mechanical and barrier properties. These findings highlight the potential of hybrid citrus pectin as potential packaging material, and the knowledge of the structure-function relationship obtained in this study could be useful for the tailored modification of citrus pectin-based packages.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ha-Seong Cho
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
24
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Zhang W, Azizi-Lalabadi M, Jafarzadeh S, Jafari SM. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging. Carbohydr Polym 2023; 320:121266. [PMID: 37659804 DOI: 10.1016/j.carbpol.2023.121266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
Packaging plays a vital role in safeguarding food from environmental factors and contamination. However, the overuse and improper disposal of non-biodegradable plastic packaging materials have led to environmental concerns and health risks. To address these challenges, the development of degradable food packaging films is crucial. Biodegradable polymers, including natural biopolymers like starch (ST) and gelatin (GE), have emerged as promising alternatives to traditional plastics. This review focuses on the utilization of ST-GE blends as key components in composite films for food packaging applications. We discuss the limitations of pure ST-GE films and explore methods to enhance their properties through the addition of plasticizers, cross-linkers, and nanoparticles. The blending of ST-GE, facilitated by their good miscibility and cross-linking potential, is highlighted as a means to improve film performance. The review also examines the impact of various additives on the properties of ST-GE blend films and summarizes their application in food preservation. By providing a comprehensive overview of ST-GE hybrid systems, this study aims to contribute to the advancement of sustainable and effective food packaging solutions.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
26
|
Sarma S, Rao VR. Emerging synthesis and characterization techniques for hybrid polymer nanocomposites. NANOTECHNOLOGY 2023; 35:012002. [PMID: 37783203 DOI: 10.1088/1361-6528/acfef8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Metallic nanoparticles and carbon nanotubes are two of the most promising nanomaterials, due to their distinctive properties occurring from spatial confinement of electron-hole pairs. The unique combination of metallic nanoparticles and carbon nanotubes (CNTs) in a polymer matrix offers unparalleled advantages, making them highly desirable in various fields. Advanced methods and techniques for synthesizing and characterizing hybrid metal-CNT-polymer nanocomposites have undergone significant progress in recent years, paving their integration into various fields, including aerospace, electronics, energy, water treatment and environmental remediation. These advances have allowed better understanding of nanocomposite properties and imparted ability to tune specific properties through size, shape, and distribution control of the nanofillers within the matrix material or by altering filler properties through functionalization. This study aims to critically judge the emerging tools, techniques and methods used in polymer nanocomposites with specific focus on metal-CNT based hybrid polymer nanocomposites, and suggest new avenues for research in the field. Furthermore, by examining the mechanisms affecting the performance of these composites, we can understand how the inclusion of fillers alters the microstructure and overall behavior of the material. Ultimately, this knowledge could lay the foundation for the development of novel nanocomposites with tailored properties and enhanced performance in a plethora of applications.
Collapse
Affiliation(s)
- Shrutidhara Sarma
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - V Ramgopal Rao
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
27
|
Araya-Hermosilla R, Martínez J, Loyola CZ, Ramírez S, Salazar S, Henry CS, Lavín R, Silva N. Fast and easy synthesis of silver, copper, and bimetallic nanoparticles on cellulose paper assisted by ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106545. [PMID: 37572428 PMCID: PMC10448225 DOI: 10.1016/j.ultsonch.2023.106545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
This work focuses on a systematic method to produce Ag, Cu, and Ag/Cu metallic nanoparticles (MNPs) in situ assisted with ultrasound on cellulose paper. By tuning the concentration of AgNO3 and CuSO4 salt precursors and ultrasound time, combined with a fixed concentration of ascorbic acid (AA) as a reducing agent, it was possible to control the size, morphology, and polydispersity of the resulting MNPs on cellulose papers. Notably, high yield and low polydispersity of MNPs and bimetallic nanoparticles are achieved by increasing the sonication time on paper samples pre-treated with salt precursors before reduction with AA. Moreover, mechanical analysis on paper samples presenting well-dispersed and distributed MNPs showed slightly decreasing values of Young's modulus compared to neat papers. The strain at break is substantially improved in papers containing solely Ag or Cu MNPs. The latter suggests that the elastic/plastic transition and deformation of papers are tuned by cellulose and MNPs interfacial interaction, as indicated by mechanical analysis. The proposed method provides insights into each factor affecting the sonochemistry in situ synthesis of MNPs on cellulose papers. In addition, it offers a straightforward alternative to scale up the production of MNPs on paper, ensuring an eco-friendly method.
Collapse
Affiliation(s)
- Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile.
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo. Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - César Zúñiga Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile.
| | - Sara Ramírez
- Centro de estudios e investigación en salud y sociedad (CEISS), Facultad de Ciencias Médicas, Universidad Bernardo O'Higging, General Gana 1702 Santiago, Chile.
| | - Sebastián Salazar
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Roberto Lavín
- Instituto de Ciencias Básicas, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Ejército 441, Santiago 8370191, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170124, Chile.
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| |
Collapse
|
28
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
29
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
30
|
Marin-Silva DA, Romano N, Damonte L, Giannuzzi L, Pinotti A. Hybrid materials based on chitosan functionalized with green synthesized copper nanoparticles: Physico-chemical and antimicrobial analysis. Int J Biol Macromol 2023; 242:124898. [PMID: 37207748 DOI: 10.1016/j.ijbiomac.2023.124898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Recently, the development of materials with antimicrobial properties has become a challenge under scrutiny. The incorporation of copper nanoparticles (NpCu) into a chitosan matrix appears to represent a viable strategy to contain the particles and prevent their oxidation. Regarding the physical properties, the nanocomposite films (CHCu) showed a decrease in the elongation at break (5 %) and an increase in the tensile strength of 10 % concerning chitosan films (control). They also showed solubility values lower than 5 % while the swelling diminished by 50 %, on average. The dynamical mechanical analysis (DMA) of nanocomposites revealed two thermal events located at 113° and 178 °C, which matched the glass transitions of the CH-enriched phase and nanoparticles-enriched phase, respectively. In addition, the thermogravimetric analysis (TGA) detected a greater stability of the nanocomposites. Chitosan films and the NpCu-loaded nanocomposites demonstrated excellent antibacterial capacity against Gram-negative and Gram-positive bacteria, proved through diffusion disc, zeta potential, and ATR-FTIR techniques. Additionally, the penetration of individual NpCu particles into bacterial cells and the leakage of cell content were verified by TEM. The mechanism of the antibacterial activity of the nanocomposites involved the interaction of chitosan with the bacterial outer membrane or cell wall and the diffusion of the NpCu through the cells. These materials could be applied in diverse fields of biology, medicine, or food packaging.
Collapse
Affiliation(s)
- Diego Alejandro Marin-Silva
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Nelson Romano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Laura Damonte
- Dto. de Física, UNLP-IFLP, CCT-CONICET La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ingeniería, UNLP, La Plata, Argentina.
| |
Collapse
|
31
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
32
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
33
|
Candra A, Tsai HC, Saragi IR, Hu CC, Yu WT, Krishnamoorthi R, Hong ZX, Lai JY. Fabrication and characterization of hybrid eco-friendly high methoxyl pectin/gelatin/TiO 2/curcumin (PGTC) nanocomposite biofilms for salmon fillet packaging. Int J Biol Macromol 2023; 232:123423. [PMID: 36716833 DOI: 10.1016/j.ijbiomac.2023.123423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Hybrid eco-friendly nanocomposite films were fabricated by blending high-methoxyl pectin, gelatin, TiO2, and curcumin through the solution casting method. Various concentrations (0-5 wt%) of TiO2 nanoparticles (TNPs) and curcumin as an organic filler were added to the blend solutions. A high TNP concentration affected the surface morphology, roughness, and compactness of the films. Additionally, 3D mapping revealed the nanoparticle distribution in the film layers. Moisture content, water solubility, and light transmittance reduced dramatically with increasing TNP content, in accordance with the water vapor and oxygen permeabilities. X-ray diffraction revealed that the films were semicrystalline nanocomposites, and the thermal properties of the films increased when 5 wt% of TNPs was incorporated into the blend solution. Fourier-transform infrared and Raman analyses revealed interactions among biopolymers, nanoparticles, and organic fillers through hydrogen bonding. The shelf life of fresh salmon fillets was prolonged to six days for all groups, revealed by total viable counts and psychrotrophic bacteria counts, and the pH of the salmon fillets could be extended until the sixth day for all groups. Biodegradation assays demonstrated a significant weight loss in the nanocomposite films. Therefore, a nanocomposite film with 5 wt% TNPs could potentially be cytotoxic to NIH 3T3 cells.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Wan-Ting Yu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan, ROC
| |
Collapse
|
34
|
Venkatesan R, Alagumalai K, Kim SC. Preparation and Antimicrobial Characterization of Poly(butylene adipate- co-terephthalate)/Kaolin Clay Biocomposites. Polymers (Basel) 2023; 15:polym15071710. [PMID: 37050324 PMCID: PMC10097211 DOI: 10.3390/polym15071710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The biodegradable polymer poly(butylene adipate-co-terephthalate) (PBAT) starts decomposing at room temperature. Kaolin clay (KO) was dispersed and blended into PBAT composites using a solution-casting method. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to evaluate the structure and morphology of the composite materials. PBAT/kaolin clay composites were studied by thermogravimetric analysis (TGA). The PBAT composite loaded with 5.0 wt% kaolin clay shows the best characteristics. The biocomposites of PBAT/kaolin [PBC-5.0 (37.6MPa)] have a good tensile strength when compared to virgin PBAT (18.3MPa). The oxygen transmission rate (OTR), with ranges from 1080.2 to 311.7 (cc/m2/day), leads the KO content. By including 5.0 wt% kaolin 43.5 (g/m2/day), the water vapor transmission rate (WVTR) of the PBAT/kaolin composites was decreased. The pure PBAT must have a WVTR of 152.4 (g/m2/day). Gram-positive (S. aureus) and Gram-negative (E. coli) food-borne bacteria are significantly more resistant to the antimicrobial property of composites. The results show that PBAT/kaolin composites have great potential as food packaging materials due to their ability to decrease the growth of bacteria and improve the shelf life of packaged foods.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
35
|
Mitra D, Adhikari P, Djebaili R, Thathola P, Joshi K, Pellegrini M, Adeyemi NO, Khoshru B, Kaur K, Priyadarshini A, Senapati A, Del Gallo M, Das Mohapatra PK, Nayak AK, Shanmugam V, Panneerselvam P. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:103-120. [PMID: 36706690 DOI: 10.1016/j.plaphy.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, West Bengal, India; Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Priyanka Adhikari
- Centre for excellence on GMP extraction facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Pooja Thathola
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nurudeen O Adeyemi
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Ankita Priyadarshini
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | | | - Amaresh Kumar Nayak
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
36
|
Liu L, Wang J, Zhang J, Huang C, Yang Z, Cao Y. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biol Toxicol 2023; 39:259-275. [PMID: 34766255 DOI: 10.1007/s10565-021-09678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 μg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 μg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 μg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 μg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Junkang Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Zhaogang Yang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
37
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Pradhan D, Jaiswal AK, Jaiswal S. Nanocellulose Based Green Nanocomposites: Characteristics and Application in Primary Food Packaging. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dileswar Pradhan
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Raza ZA, Rehman MSU, Riaz S. Zinc sulfide mediation of poly(hydroxybutyrate)/poly(lactic acid) nanocomposite film for potential UV protection applications. Int J Biol Macromol 2022; 222:2072-2082. [DOI: 10.1016/j.ijbiomac.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
40
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment. Int J Biol Macromol 2022; 216:655-669. [PMID: 35798081 DOI: 10.1016/j.ijbiomac.2022.06.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Color indicator films for fish freshness were fabricated by incorporating κ-carrageenan (CAR) polymer with red grape skin extract (GSE) as a pH-sensing agent and silver nanoparticles (AgNPs) as an antimicrobial agent. Anthocyanins in GSE exhibited distinguished pH responsive color changes. GSE and AgNPs were well compatible with CAR with intramolecular interactions, approved by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). GSE-containing films displayed distinguished color changes in response to pH variations and volatile ammonia. Enhanced UV blocking ability and strong antioxidant activity were revealed for GSE included films without sacrificing the physico-chemical properties of the CAR film. Films containing AgNPs showed improved mechanical strength and strong antimicrobial ability against both Escherichia coli and Staphylococcus aureus. The CAR/AgNPs/GSE film displayed a distinctive color change corresponding to changes in the total volatile basic nitrogen (TVB-N) of fish during storage. In addition, the CAR/AgNPs/GSE film showed excellent color stability to consecutive UV exposure and its storage time at 25 °C is expected to be at least 240 days, which indicates that it has high potential as an intelligent food freshness indicator film.
Collapse
|
42
|
Bai MY, Zhou Q, Zhang J, Li T, Cheng J, Liu Q, Xu WR, Zhang YC. Antioxidant and antibacterial properties of essential oils-loaded β-cyclodextrin-epichlorohydrin oligomer and chitosan composite films. Colloids Surf B Biointerfaces 2022; 215:112504. [PMID: 35453062 DOI: 10.1016/j.colsurfb.2022.112504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023]
Abstract
Chitosan (CS) is becoming increasingly popular in food packaging due to its natural degradability and great film-forming properties. Nevertheless, its poor antibacterial properties and inadequate antioxidant properties prevent it from being used effectively. In this study, β-cyclodextrin-epichlorohydrin (β-CD-EP) oligomers were prepared and encapsulated with natural essential oils cinnamaldehyde and thymol, and then the inclusion complexes (IC) were incorporated into chitosan in various contents to afford a series of CS-IC composite films. The impacts of IC on the morphological, mechanical, thermal, and water resistance properties, antioxidant and antibacterial activities of chitosan films, as well as the loading and sustained release behavior of IC, were thoroughly examined. The results turned out that the essential oils were well-loaded with high encapsulation efficiency and showed a significant slow-release effect. It was also found that the tensile strength and the elongation at break decreased with increasing IC contents, while the thermal stability was enhanced. The incorporation of IC dramatically promoted the antioxidant and antibacterial properties of the chitosan films towards Gram-positive bacteria. Based on our findings, chitosan films containing essential oils-loaded β-CD-EP oligomers may serve as an effective food packaging material.
Collapse
Affiliation(s)
- Mei-Yan Bai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China; Hainan Health Management College, Haikou 570228, China
| | - Ting Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jun Cheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
43
|
Alghamdi HM, Abutalib M, Mannaa MA, Nur O, Abdelrazek E, Rajeh A. Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 19:3421-3432. [DOI: 10.1016/j.jmrt.2022.06.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
44
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
45
|
Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. FOOD BIOPROCESS TECH 2022; 15:1284-1298. [PMID: 35495090 PMCID: PMC9033524 DOI: 10.1007/s11947-022-02815-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 01/23/2023]
Abstract
To meet the demands for more effective and ecofriendly food packaging strategies, the potential of nisin-loaded rhamnolipid functionalized nanofillers (rhamnosomes) has been explored after embedding in hydroxypropyl-methylcellulose (HPMC) and κ-carrageenan (κ-CR)-based packaging films. It was observed that intrinsically active rhamnosomes based nanofillers greatly improved the mechanical and optical properties of nano-active packaging (NAP) films. Incorporation of rhamnosomes resulted in higher tensile strength (5.16 ± 0.06 MPa), Young’s modulus (2777 ± 0.77 MPa), and elongation (2.58 ± 0.03%) for NAP than active packaging containing free nisin (2.96 ± 0.03 MPa, 1107 ± 0.67 MPa, 1.48 ± 0.06%, respectively). NAP demonstrated a homogenous distribution of nanofillers in the biopolymer matrix as elucidated by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) confirmed that NAP prepared with nisin-loaded rhamnosomes was thermally stable even above 200 °C. Differential scanning calorimetry (DSC) analyses revealed that addition of nisin in nanofillers resulted in a slight increase in Tg (108.40 °C), indicating thermal stability of NAP. Fourier transform infrared spectroscopy (FTIR) revealed slight shift in all characteristic bands of nano-active packaging, which indicated the embedding of rhamnosomes inside the polymer network without any chemical interaction. Finally, when tested on chicken breast filets and cheese slices under refrigerated storage conditions, NAP demonstrated broad-spectrum antimicrobial activity (up to 4.5 log unit reduction) and inhibited the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. These results suggest that HPMC and κ-CR-based NAP containing functionalized nanofillers can serve as an innovative packaging material for the food industry to improve the safety, quality, and shelf-life of dairy and meat products.
Collapse
|
46
|
Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A. The control of fungi and mycotoxins by food active packaging: a review. Crit Rev Food Sci Nutr 2022; 63:6393-6411. [PMID: 35089844 DOI: 10.1080/10408398.2022.2031099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara, Turkey
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
47
|
Jafarzadeh S, Abdolmalek K, Javanmardi F, Hadidi M, Mousavi Khaneghah A. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup WA 6027 Australia
| | - Khadije Abdolmalek
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Hadidi
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
48
|
Perera KY, Jaiswal S, Jaiswal AK. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging. Food Chem 2021; 376:131912. [PMID: 34971895 DOI: 10.1016/j.foodchem.2021.131912] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/21/2023]
Abstract
With an increasing demand for a novel, eco-friendly, high-performance packaging material "bio-nanocomposites" has attracted great attention in recent years. The review article aims at to evaluating recent innovation in bio-nanocomposites for food packaging applications. The current trends and research over the last three years of the various bio-nanocomposites including inorganic, organic nanomaterials, and nanohybrids, which are suitable as food packaging materials due to their advanced properties such as high mechanical, thermal, barrier, antimicrobial, and antioxidant are described in detail. In addition, the legislation, migration studies, and SWOT analysis on bio-nanocomposite film have been discussed. It has been observed that the multifunctional properties of the bio-nanocomposite materials, has the potential to improve the quality and safety of the food together with no /or fewer negative impact on the environment. However, more studies need to be performed on bio-nanocomposite materials to determine the migration levels and formulate relevant legislation.
Collapse
Affiliation(s)
- Kalpani Y Perera
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
49
|
Lai WF. Design of Polymeric Films for Antioxidant Active Food Packaging. Int J Mol Sci 2021; 23:12. [PMID: 35008439 PMCID: PMC8744826 DOI: 10.3390/ijms23010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| |
Collapse
|
50
|
Gzyra-Jagieła K, Sulak K, Draczyński Z, Podzimek S, Gałecki S, Jagodzińska S, Borkowski D. Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry. Polymers (Basel) 2021; 13:polym13213651. [PMID: 34771207 PMCID: PMC8587787 DOI: 10.3390/polym13213651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Plastic products, especially in the packaging industry, have become the main commodities penetrating virtually every aspect of our lives. Unfortunately, their omnipresence is not neutral to the natural environment. Pollution in the form of microplastics is a global problem. Therefore, green technologies that enter into the circular economy become an important topic. As part of the research work, the modification of poly(lactic acid) has been studied for use in the packaging industry. Due to its intrinsic rigidity, plasticizing substances had to be introduced in PLA in order to improve its plastic deformability. Both high-molecular compounds such as ethoxylated lauryl alcohol, block copolymer of ethylene oxide and propylene oxide, and ethoxylated stearic acid as well as low-molecular compounds such as di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, and triethyl citrate were used. The samples extruded from plasticized polymers were characterized using differential scanning calorimetry, thermal gravimetric analysis, and mechanical properties including Young’s modulus. The melt flow rate (MFR) and molar mass distribution were determined. For all modified samples the glass transition temperature, depending on the plasticizer used, was shifted towards lower values compared to the base polymer. The best result was obtained for di-2-ethylhexyl adipate (ADO) and di-2-ethylhexyl sebacate (SDO). The elongation at break increased significantly for ADO at about 21%. The highest elongation was obtained for SDO (about 35%), although it obtained a higher glass temperature. The degradation of the polymer was not observed for both plasticizers. For these plasticizers (ADO and SDO) it also lowered Young’s module by about 26%, and at the infrared spectrum deformation of peaks were observed, which may indicate the interaction of the ester carbonyl group of PLA with plasticizers. Therefore it can be concluded that they are good modifiers. The selected plasticizers that are used in the production of food contact materials, in particular in the production of PVC (polyvinyl chloride) food films, also exhibited great potential to be applied to PLA food films, and exhibit better properties than the citrate, which are indicated in many publications as PLA plasticizers.
Collapse
Affiliation(s)
- Karolina Gzyra-Jagieła
- Lukasiewicz Research Network-Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie Street, 90-570 Łódź, Poland; (K.S.); (S.G.); (S.J.); (D.B.)
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Łódź, Poland;
- Correspondence:
| | - Konrad Sulak
- Lukasiewicz Research Network-Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie Street, 90-570 Łódź, Poland; (K.S.); (S.G.); (S.J.); (D.B.)
| | - Zbigniew Draczyński
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Łódź, Poland;
| | - Stepan Podzimek
- Wyatt Technology Europe, 56307 Dernbach, Germany;
- Faculty of Chemical Technology, Institute of Chemistry and Technology of Macromolecular Materials, University of Pardubice, 53210 Pardubice, Czech Republic
- SYNPO, 53207 Pardubice, Czech Republic
| | - Stanisław Gałecki
- Lukasiewicz Research Network-Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie Street, 90-570 Łódź, Poland; (K.S.); (S.G.); (S.J.); (D.B.)
| | - Sylwia Jagodzińska
- Lukasiewicz Research Network-Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie Street, 90-570 Łódź, Poland; (K.S.); (S.G.); (S.J.); (D.B.)
| | - Dominik Borkowski
- Lukasiewicz Research Network-Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie Street, 90-570 Łódź, Poland; (K.S.); (S.G.); (S.J.); (D.B.)
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Łódź, Poland;
| |
Collapse
|