1
|
Adtani PN, Al-Bayati SAAF, Elsayed WS. Sulforaphane from Brassica Oleracea Induces Apoptosis in Oral Squamous Carcinoma Cells via p53 Activation and Mitochondrial Membrane Potential Dysfunction. Pharmaceuticals (Basel) 2025; 18:393. [PMID: 40143169 PMCID: PMC11944603 DOI: 10.3390/ph18030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Oral squamous cell carcinoma (OSCC) is a significant global health concern, necessitating the development of novel treatment strategies. The present study investigated the in vitro anticancer activity of sulforaphane (SFN), an isothiocyanate derived from Brassica oleracea, on the OECM-1 human oral squamous carcinoma cell line. Methods: OECM-1 cells were cultured and exposed to a range of SFN concentrations. To assess the cell viability and determine the half maximal inhibitory concentration (IC50) of SFN following 24 h of treatment, an MTT assay was performed. Apoptosis was evaluated using AO/PI staining, a TUNEL assay, Annexin V-FITC analysis, and a DNA fragmentation assay. Changes in the mitochondrial membrane potential were analyzed using a JC-1 staining assay. A Western blot assay was performed to assess the expression levels of apoptosis-associated proteins (Bax, Bcl2, caspase-3, caspase-9, PARP, Smad-4, p53, cytochrome c, and GAPDH). Cell cycle analysis was performed to validate the apoptotic findings. Results: The IC50 concentration of SFN was 5.7 µM. The apoptotic assays demonstrated an effective induction of apoptosis in the OECM-1 cells. Western blot analysis demonstrated the dose-dependent upregulation of p53, caspase-3, caspase-9, PARP, cytochrome c, and Bax and the downregulation of the anti-apoptotic proteins Bcl-2 and Smad-4 after SFN treatment. Conclusions: The data obtained indicate that SFN has significant potential to induce apoptosis in OECM-1 cells by disrupting mitochondrial function and modulating apoptotic pathways. The outcomes of our research indicate SFN's potential as a viable treatment drug for OSCC.
Collapse
Affiliation(s)
- Pooja Narain Adtani
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sura Ali Ahmed Fuoad Al-Bayati
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Walid Shaaban Elsayed
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman 4184, United Arab Emirates
- Department of Oral Biology, College of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Baldelli S, Lombardo M, D’Amato A, Karav S, Tripodi G, Aiello G. Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention. Foods 2025; 14:912. [PMID: 40231924 PMCID: PMC11940962 DOI: 10.3390/foods14060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025] Open
Abstract
Glucosinolates (GSLs) are sulfur-containing compounds predominantly found in cruciferous vegetables such as broccoli, kale, and Brussels sprouts, and are recognized for their health-promoting properties. Upon consumption, GSLs undergo hydrolysis by the enzyme myrosinase, resulting in bioactive compounds like isothiocyanates and specific indole glucosinolate degradation products, such as indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), which contribute to a range of health benefits, including anti-cancer, anti-inflammatory, and cardioprotective effects. This review explores the structure, metabolism, and bioavailability of GSLs. Recent evidence supports the protective role of GSLs in chronic diseases, with mechanisms including the modulation of oxidative stress, inflammation, and detoxification pathways. Furthermore, the innovative strategies to enhance GSL bioactivity, such as biofortification, genetic introgression, and optimized food processing methods, have been examined. These approaches seek to increase GSL content in edible plants, thereby maximizing their health benefits. This comprehensive review provides insights into dietary recommendations, the impact of food preparation, and recent advances in GSL bioavailability enhancement, highlighting the significant potential of these bioactive compounds in promoting human health and preventing chronic diseases.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye;
| | - Gianluca Tripodi
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| |
Collapse
|
3
|
Uthaman SK, Kang WS, Park JY, Kim S, Le DD, Oh SJ, Murugesh K, Oh LM, Lee M, Park JW. Endogenous extraction yielded high quality sulforaphane from broccoli sprouts unveils potent antioxidant and anti-Alzheimer's activities. Heliyon 2025; 11:e42673. [PMID: 40034321 PMCID: PMC11875816 DOI: 10.1016/j.heliyon.2025.e42673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
The extraction of sulforaphane (SFN) is challenging due to its instability and low water solubility, with existing methods often involving toxic solvents or yielding low SFN. We optimized an endogenous extraction protocol for high SFN content, characterized by HPLC and LC-MS analyses. SFN remained stable in refrigerated broccoli sprout extract powder (BSEP) for over a month. BSEP showed four times higher oxygen radical absorbance capacity (ORAC) than the SFN standard, indicating high antioxidant capacity. It also reduced inflammatory responses by down-regulating COX-2, IL-6, and TNF-α gene expression in LPS-induced RAW 264.7 macrophages. Additionally, BSEP exhibited neuroprotective properties in amyloid-beta (1-42) (Aβ1-42)-induced Alzheimer's disease (AD) mice, enhancing memory and learning retention in water maze and passive avoidance tests. BSEP mitigated spatial cognitive impairment and improved memory function in Aβ1-42-induced memory-deficient mice. While BSEP did not alter acetylcholine (ACh) concentration, it improved memory and learning by inhibiting acetylcholinesterase (AChE) activity. BSEP with SFN content exceeding 200 mg/kg ameliorated neurobehavioral deficits and protected the brain from amyloid deposition, suggesting its therapeutic potential in AD treatment. We propose an eco-friendly form of SFN-rich BSEP for daily intake and commercial therapeutics.
Collapse
Affiliation(s)
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju, 58025, Republic of Korea
| | - Ju-Young Park
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju, 58025, Republic of Korea
| | - Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Suk-Jung Oh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Karthik Murugesh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Laura Minju Oh
- Research & Development, Ecoworld Pharm Co. Ltd., Damyang, 57304, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
4
|
Dmytriv TR, Lushchak O, Lushchak VI. Glucoraphanin conversion into sulforaphane and related compounds by gut microbiota. Front Physiol 2025; 16:1497566. [PMID: 39995480 PMCID: PMC11847849 DOI: 10.3389/fphys.2025.1497566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Glucosinolate glucoraphanin, common in cruciferous vegetables, is a biologically stable precursor of isothiocyanates, such as sulforaphane and erucin, potent activators of Nrf2 signaling coordinating an adaptive response to oxidative stress. Sulforaphane is formed by the hydrolysis of glucoraphanin by a plant enzyme called myrosinase, which is inactivated in the stomach of mammals. Since the latter do not have enzymes possessing myrosinase-like activity, glucoraphanin can be metabolized by the gut microbiota, to sulforaphane, sulforaphane-nitrile, glucoerucin, erucin, and erucin-nitrile. Emerging evidence suggests that variations in gut microbiota composition significantly influence the efficiency and outcome of glucoraphanin metabolism, while sulforaphane itself may reciprocally modulate gut microbiota composition and functionality. This review examines the bidirectional interactions between glucoraphanin, sulforaphane, and gut microbiota. We assume that sulforaphane alleviates intestinal inflammation and oxidative stress maintaining intestinal homeostasis and gut barrier integrity. Besides, the role of sulforaphane in breaking the vicious cycle of oxidative stress and gut dysbiosis is reported, demonstrating the potential of dietary isothiocyanates to support gut barrier function.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Zhu W, Cremonini E, Mastaloudis AF, Mitchell AE, Bornhorst GM, Oteiza PI. Optimization of sulforaphane bioavailability from a glucoraphanin-rich broccoli seed extract in a model of dynamic gastric digestion and absorption by Caco-2 cell monolayers. Food Funct 2025; 16:314-328. [PMID: 39670818 DOI: 10.1039/d4fo04561k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Broccoli is recognized for its health benefits, attributed to the high concentrations of glucoraphanin (GR). GR must be hydrolyzed by myrosinase (Myr) to form the bioactive sulforaphane (SF). The primary challenge in delivering SF in the upper gastrointestinal (GI) tract- is improving hydrolysis of GR to SF. Here, we optimized the formulation and delivery methods to improve GR conversion and SF bioavailability. We investigated whether the combination of GR-rich broccoli seed extract powder (BSE[GR]) with Myr-rich mustard seed powder (MSP[Myr]), ± ascorbic acid (AA, a co-factor of Myr), delivered as free powder or encapsulated powder, can: (i) facilitate GR hydrolysis to SF during dynamic in vitro gastric digestion and static in vitro small intestinal digestion, and (ii) increase SF bioavailability in Caco-2 cell monolayers, a model of human intestinal epithelium. Addition of exogenous Myr increased the conversion of GR to SF in free powder during small intestinal digestion, but not during gastric digestion, where Myr activity was inhibited by the acidic environment. Capsule delivery of BSE[GR]/MSP[Myr] (w/w ratio 4 : 1) resulted in a 2.5-fold higher conversion efficiency compared to free powder delivery (72.1% compared to 29.3%, respectively). AA combined with MSP[Myr] further enhanced the conversion efficiency in small intestinal digestion and the bioavailability of SF in Caco-2 cell monolayers. Bioavailability of GR as SF, SF metabolites, and GR was 74.8% in Caco-2 cell monolayers following 30 min gastric digestion and 60 min small intestinal digestion. This study highlights strategies to optimize GR bioconversion in the upper GI tract leading to enhanced SF bioavailability.
Collapse
Affiliation(s)
- Wei Zhu
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Eleonora Cremonini
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Angela F Mastaloudis
- Brassica Protection Products, Baltimore, MD, USA
- LAB Nutrition Consulting, Salt Lake City, UT, USA
| | - Alyson E Mitchell
- Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Gail M Bornhorst
- Food Science and Technology, University of California Davis, Davis, CA, USA
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, USA
| | - Patricia I Oteiza
- Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Amrutkar RD, Amesar MV, Chavan LB, Baviskar NS, Bhamare VG. Precision Targeting of BET Proteins - Navigating Disease Pathways, Inhibitor Insights, and Shaping Therapeutic Frontiers: A Comprehensive Review. Curr Drug Targets 2025; 26:147-166. [PMID: 39385413 DOI: 10.2174/0113894501304747240823111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts. The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.
Collapse
Affiliation(s)
- Rakesh D Amrutkar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Mehul V Amesar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Lokesh B Chavan
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Nilesh S Baviskar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Vaibhav G Bhamare
- Department of Pharmaceutics, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| |
Collapse
|
7
|
Xuan Y, Xu J, Que H, Zhu J. Effects of sulforaphane on prostate cancer stem cells-like properties: In vitro and molecular docking studies. Arch Biochem Biophys 2024; 762:110216. [PMID: 39549984 DOI: 10.1016/j.abb.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The increasing incidence of prostate cancer worldwide has spurred research into novel therapeutics for its treatment and prevention. A critical factor contributing to its incidence and development is the presence of prostate cancer stem cells (PCSCs). Targeting PCSCs has become key in enhancing therapeutic and clinical outcomes of prostate cancer. Sulforaphane (SFN), a compound found in cruciferous vegetables, has shown effective antineoplastic activity in prostate cancer. Yet, its mechanisms of action in PCSCs remains unclear. In the present study, tumorsphere formation assay was used to isolate and enrich PCSCs from PC-3 cells. Our results found that SFN effectively reduced the activity of PCSCs, including the ability of tumorsphere formation, the number of CD133 positive cells, and the expression of PCSCs markers. Moreover, the data showed that SFN inhibited PCSCs through downregulating the activation of Wnt/β-catenin and hedgehog signaling pathways in PCSCs. Furthermore, the verification experiments showed that the activators of Wnt/β-catenin (LiCl) and hedgehog (purmorphamine) attenuated the effects of SFN on PCSCs, including the expression of stem cell markers, cell proliferation and apoptosis. Meanwhile, suppression of β-catenin or Smoothened enhanced the effects of SFN on PCSCs. In addition, molecular docking further indicated that SFN inhibited Wnt/β-catenin and hedgehog pathways by directly targeting β-catenin and Smoothened. Taken together, our results demonstrated that SFN targeted PCSCs through Wnt/β-catenin and hedgehog pathways to inhibit stemness and proliferation and induce apoptosis. Findings from this study could provide new insights into SFN as a dietary supplement or adjunct to chemotherapy.
Collapse
Affiliation(s)
- Yanling Xuan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Hongliang Que
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
8
|
Zhang C, Ma J, Wang B, Pu C, Chang K, Zhu J, Zhang B, Li J, Qi Q, Xu R. Sulforaphane modulates some stress parameters in TPT-exposed Cyprinus carpio in relation to liver metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116882. [PMID: 39173223 DOI: 10.1016/j.ecoenv.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to investigate the protective effect of sulforaphane (SFN) on liver injury induced by triphenyltin (TPT) in Cyprinus carpio (C. carpio). The fish (average weight of 56.9±0.4 g) were divided into 4 groups with four replicates: the control, TPT, SFN+TPT and SFN groups. Twenty fish were selected from each tank and cultured for 8 weeks. Then, serum and liver samples were collected for physiological, biochemical and metabolomic analyses. In the present study, TPT downregulated the expression of the lysozyme gene, upregulated HSP70 and Hsp90 gene expression, and decreased the activities of serum antioxidant enzymes (SOD, CAT, and GPX). However, dietary SFN alleviated oxidative stress, and prevented changes in immune genes. Metabolomic analysis revealed that TPT exposure changed key metabolites in the main phenylalanine, fatty acid and glycerophosphatide metabolic pathways, which are related to inflammation, oxidative stress and immunity and might also lead to an imbalance of liver energy and lipid metabolism. Dietary SFN promoted amino acid metabolism and increased metabolites related to immunity, anti-inflammation, antioxidation, and protein synthesis in liver of C. carpio. In summary, dietary SFN supplementation reversed TPT-induced decreases in immunity and oxidative stress and regulated amino acid metabolism, lipid metabolism, inflammation and immunity-related metabolic pathways.
Collapse
Affiliation(s)
- Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kuo Chang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiaxiang Zhu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Boyang Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiajin Li
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
9
|
Zhu W, Cremonini E, Mastaloudis A, Oteiza PI. Glucoraphanin and sulforaphane mitigate TNFα-induced Caco-2 monolayers permeabilization and inflammation. Redox Biol 2024; 76:103359. [PMID: 39298837 PMCID: PMC11426148 DOI: 10.1016/j.redox.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Intestinal permeabilization is central to the pathophysiology of chronic gut inflammation. This study investigated the efficacy of glucoraphanin (GR), prevalent in cruciferous vegetables, particularly broccoli, and its derivative sulforaphane (SF), in inhibiting tumor necrosis factor alpha (TNFα)-induced Caco-2 cell monolayers inflammation and permeabilization through the regulation of redox-sensitive events. TNFα binding to its receptor led to a rapid increase in oxidant production and subsequent elevation in the mRNA levels of NOX1, NOX4, and Duox2. GR and SF dose-dependently mitigated both these short- and long-term alterations in redox homeostasis. Downstream, GR and SF inhibited the activation of the redox-sensitive signaling cascades NF-κB (p65 and IKK) and MAPK ERK1/2, which contribute to inflammation and barrier permeabilization. GR (1 μM) and SF (0.5-1 μM) prevented TNFα-induced monolayer permeabilization and the associated reduction in the levels of the tight junction (TJ) proteins occludin and ZO-1. Both GR and SF also mitigated TNFα-induced increased mRNA levels of the myosin light chain kinase, which promotes TJ opening. Molecular docking suggests that although GR is mostly not absorbed, it could interact with extracellular and membrane sites in NOX1. Inhibition of NOX1 activity by GR would mitigate TNFα receptor downstream signaling and associated events. These findings support the concept that not only SF, but also GR, could exert systemic health benefits by protecting the intestinal barrier against inflammation-induced permeabilization, in part by regulating redox-sensitive pathways. GR has heretofore not been viewed as a biologically active molecule, but rather, the benign precursor of highly active SF. The consumption of GR and/or SF-rich vegetables or supplements in the diet may offer a means to mitigate the detrimental consequences of intestinal permeabilization, not only in disease states but also in conditions characterized by chronic inflammation of dietary and lifestyle origin.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA
| | | | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
Shi Z, Zeng H, Zhao B, Zeng C, Zhang F, Liu Z, Kwan HY, Su T. Sulforaphane reverses the enhanced NSCLC metastasis by regulating the miR-7-5p/c-Myc/LDHA axis in the acidic tumor microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155874. [PMID: 39079314 DOI: 10.1016/j.phymed.2024.155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The presence of distant metastasis at the time of initial diagnosis is a prevalent issue in non-small cell lung cancer (NSCLC), affecting around 30-40 % of the patients. Acidic tumor microenvironment (TME) provides favorable conditions that increase the invasiveness and aggressiveness of NSCLC. The activity of the glycolytic enzyme lactate dehydrogenase (LDHA) increases intracellular lactate accumulation, which creates an acidic TME. However, it is not yet known whether LDHA is involved in enhancing the metastatic potential of NSCLC and if LDHA is a druggable therapeutic target for NSCLC. PURPOSE We aimed to investigate the molecular mechanisms underlying the enhanced NSCLC metastasis in acidic TME, and to explore whether sulforaphane (SFN), an active compound in Raphani Semen, can serve as a LDHA inhibitor to inhibit NSCLC metastasis in the acidic TME. METHODS To mimic the acidic TME, NSCLC cells were cultured in acidic medium (pH 6.6), normal medium (pH 7.4) served as control. Western blotting, bioinformatic analysis, luciferase assay and rescue experiments were used to explore the mechanism and investigate the anti-metastatic effect of SFN both in vitro and in vivo. RESULTS Acidic environment increases the expression of LDHA which in turn increases the production of lactic acid that contributes to the acidity of TME. Interestingly, elevated LDHA expression results from increased c-Myc expression, which transactivates LDHA. c-Myc expression is directly regulated by miR-7-5p. In vitro study shows that overexpression of miR-7-5p reverses the acidic pH-enhanced c-Myc and LDHA expressions and also abolishes the enhanced NSCLC cell migration. More importantly, SFN significantly inhibits NSCLC growth and metastasis by reducing lactate production via the miR-7-5p/c-Myc/LDHA axis. Besides, it also regulates the expressions of monocarboxylate transporter 1 (MCT1) and MCT4 that transport lactate across cell membrane. CONCLUSIONS The miR-7-5p/c-Myc/LDHA axis is involved in the enhanced NSCLC metastasis in the acidic TME. SFN, a novel LDHA inhibitor, reduces lactate production by targeting the miR-7-5p/c-Myc/LDHA axis, and hence inhibits NSCLC metastasis. Our findings not only delineate a novel mechanism, but also support the clinical translation of SFN as a novel therapeutic agent for treating metastatic NSCLC.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Huiyan Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Bingquan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chen Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China.
| | - Tao Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Scognamiglio A, Cerqua I, Citi V, Martelli A, Spezzini J, Calderone V, Rimoli MG, Sodano F, Caliendo G, Santagada V, Fiorino F, Frecentese F, Perissutti E, Magli E, Simonelli M, Corvino A, Roviezzo F, Severino B. Isothiocyanate-Corticosteroid Conjugates against asthma: Unity makes strength. Eur J Med Chem 2024; 275:116636. [PMID: 38944936 DOI: 10.1016/j.ejmech.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Asthma is a major noncommunicable disease, affecting both children and adults, and represents one of the major causes leading to high health care costs due to the need for chronic pharmacological treatments. The standard gold therapy of inflammation in asthmatic patients involves the use of glucocorticoids even if their chronic use is often related to serious adverse effects. Growing evidence suggests the biological relevance of hydrogen sulfide (H2S) in the pathogenesis of airway diseases. Hence, aiming to associate the beneficial effects of steroidal anti-inflammatory drugs (SAIDs) to H2S biological activity, we designed and synthesized novel multi-target molecules by chemically combining a group of glucocorticoids, usually employed in asthma treatment, with an isothiocyanate moiety, well-known for its H2S releasing properties. Firstly, the synthesized compounds have been screened for their H2S-releasing profile using an amperometric approach and for their in vitro effects on the degranulation process, using RBL-2H3 cell line. The physicochemical profile, in terms of solubility, chemical and enzymatic stability of the newly hybrid molecules, has been assessed at different physiological pH values and in esterase-rich medium (bovine serum albumin, BSA). The selected compound 5c, through both its corticosteroid and H2S releasing component, has been evaluated in vivo in experimental model of asthma. The compound 5c inhibited in vivo all asthma features with a significative effect on the restoration of pulmonary structure and reduction of lung inflammation.
Collapse
Affiliation(s)
- Antonia Scognamiglio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Federica Sodano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Elisa Magli
- Department of Public Health, School of Medicine, University of Naples Federico II, Via Panzini, 5, 80131, Napoli, Italy
| | - Martina Simonelli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| |
Collapse
|
12
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Peng ZT, Hu R, Fu JY. Sulforaphane suppresses cell proliferation and induces apoptosis in glioma via the ACTL6A/PGK1 axis. Toxicol Mech Methods 2024; 34:507-516. [PMID: 38221767 DOI: 10.1080/15376516.2024.2306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
This study aimed to examine the expression and biological functions of ACTL6A in glioma cells (U251), the effects of sulforaphane on the growth of U251 cells and the involvement of the ACTL6A/PGK1 pathway in those effects. The U251 cell line was transfected with ACTL6A over-expression plasmids to upregulate the protein, or with ACTL6A inhibitor to underexpress it, then treated with different concentrations of sulforaphane. Cell viability, proliferation, and apoptosis were assessed using standard assays, and levels of mRNAs encoding ACTL6A, PGK1, cyclin D1, Myc, Bax or Bcl-2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). ACTL6A and PGK1 were expressed at higher levels in glioma cell lines than in normal HEB cells. ACTL6A overexpression upregulated PGK1, whereas ACTL6A inhibition had the opposite effect. ACTL6A overexpression induced proliferation, whereas its inhibition repressed proliferation, enhanced apoptosis, and halted the cell cycle. Moreover, sulforaphane suppressed the growth of U251 cells by inactivating the ACTL6A/PGK1 axis. ACTL6A acts via PGK1 to play a critical role in glioma cell survival and proliferation, and sulforaphane targets it to inhibit glioma.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Rong Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Jing-Yu Fu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| |
Collapse
|
14
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
15
|
Baralić K, Živanović J, Marić Đ, Bozic D, Grahovac L, Antonijević Miljaković E, Ćurčić M, Buha Djordjevic A, Bulat Z, Antonijević B, Đukić-Ćosić D. Sulforaphane-A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies. Antioxidants (Basel) 2024; 13:147. [PMID: 38397745 PMCID: PMC10886109 DOI: 10.3390/antiox13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (Đ.M.); (D.B.); (L.G.); (E.A.M.); (M.Ć.); (A.B.D.); (Z.B.); (B.A.); (D.Đ.-Ć.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Holczer M, Besze B, Lehel A, Kapuy O. The Dual Role of Sulforaphane-Induced Cellular Stress-A Systems Biological Study. Int J Mol Sci 2024; 25:1220. [PMID: 38279216 PMCID: PMC11154497 DOI: 10.3390/ijms25021220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress. Our goal was to investigate how SFN-dependent autophagy activation affects different stages of ER stress induction. We approached our scientific analysis from a systems biological perspective using both theoretical and molecular biological techniques. We found that SFN induced the various cell-death mechanisms in a concentration- and time-dependent manner. The short SFN treatment at low concentrations promoted autophagy, whereas the longer treatment at higher concentrations activated cell death. We proved that SFN activated autophagy in a mTORC1-dependent manner and that the presence of ULK1 was required for its function. A low concentration of SFN pre- or co-treatment combined with short and long ER stress was able to promote cell survival via autophagy induction in each treatment, suggesting the potential medical importance of SFN in ER stress-related diseases.
Collapse
Affiliation(s)
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary; (M.H.); (B.B.); (A.L.)
| |
Collapse
|
17
|
Grady R, Traustadóttir T, Lagalante AF, Eggler AL. Bioavailable Sulforaphane Quantitation in Plasma by LC-MS/MS Is Enhanced by Blocking Thiols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12875-12882. [PMID: 37584212 PMCID: PMC10472501 DOI: 10.1021/acs.jafc.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Quantifying sulforaphane (SFN) and its thiol metabolites in biological samples using liquid chromatography-tandem mass spectrometry is complicated by SFN's electrophilic nature and the facile dissociation of SFN-thiol conjugates. SFN can be lost during sample preparation due to conjugation with protein thiols, which are precipitated and discarded. We observe that only 32 ± 3% of SFN is recovered 2 h after spiking into fetal bovine serum. The SFN-glutathione conjugate prepared at 10 mM in 0.1% formic acid in water (pH 3) dissociated by approximately 95% to free SFN, highlighting the difficulty in preparing thiol metabolite standards. We used the alkylating agent iodoacetamide (IAA) to both release SFN from protein thiols and force the dissociation of SFN metabolites. This thiol-blocking method increased SFN percent recovery from serum from 32 to 94 ± 5%, with a 4.7 nM method limit of quantitation. Applying the method to clinical samples, SFN concentrations were on average 6 times greater than when IAA was omitted. The IAA thiol-blocking method streamlines the analysis of bioavailable SFN in plasma samples.
Collapse
Affiliation(s)
- Rachel
S. Grady
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Tinna Traustadóttir
- Department
of Biological Sciences, Northern Arizona
University, Flagstaff, Arizona 86001-5766, United States
| | - Anthony F. Lagalante
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aimee L. Eggler
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
18
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
19
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
20
|
HAMEED A, FATIMA N, IFTIKHAR H, MEHMOOD A, TARIQ MR, ALI SW, ALI S, SHAFIQ M, AHMAD Z, ALI U, GHAZANFAR M, IFTIKHAR M, SAFDAR W, AHMAD A, BASHARAT Z, UMER Z, KHALID M. Effect of different drying and cooking treatments on phytochemicals and antioxidant activity in broccoli: an experimental in vitro study. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
22
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|
24
|
Garcia-Ibañez P, Moreno DA, Carvajal M. Nanoencapsulation of Bimi® extracts increases its bioaccessibility after in vitro digestion and evaluation of its activity in hepatocyte metabolism. Food Chem 2022; 385:132680. [PMID: 35294902 DOI: 10.1016/j.foodchem.2022.132680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/04/2022]
Abstract
Isothiocyanates (ITCs) have low stability in aqueous conditions, reducing their bioavailability when used as food ingredients. Therefore, the aim of this work was to increase the stability of the ITCs present in extracts of Bimi® edible parts by nanoencapsulation using cauliflower-derived plasma membrane vesicles. The bioactivity of these nanoencapsulates was evaluated in a HepG2 hepatocyte cell line in a model for low-grade chronic inflammation. The vesicles showed a higher capacity of retention in the in vitro gastrointestinal digestion for 3,3-diindolylmethane (DIM), indole-3-carbinol (I3C) and sulforaphane (SFN). Furthermore, Transmission Electron Microscopy (TEM) analysis of the vesicles revealed a decreased size under acidic pH and a release of their cargo after the intestinal digestion. The HepG2 experiments revealed differences in metabolism under the condition of chronic inflammation. The cauliflower-derived plasma membrane vesicles are able to enhance the stability of ITCs through the in vitro gastrointestinal digestion, improving their bioaccesibility and potential bioavailability.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo - 25, E-30100 Murcia, Spain; Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain.
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo - 25, E-30100 Murcia, Spain
| |
Collapse
|
25
|
Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022; 14:nu14071434. [PMID: 35406047 PMCID: PMC9002472 DOI: 10.3390/nu14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
The list of known health benefits from inclusion of brassica vegetables in the diet is long and growing. Once limited to cancer prevention, a role for brassica in prevention of oxidative stress and anti-inflammation has aided in our understanding that brassica provide far broader benefits. These include prevention and treatment of chronic diseases of aging such as diabetes, neurological deterioration, and heart disease. Although animal and cell culture studies are consistent, clinical studies often show too great a variation to confirm these benefits in humans. In this review, we discuss causes of variation in clinical studies, focusing on the impact of the wide variation across humans in commensal bacterial composition, which potentially result in variations in microbial metabolism of glucosinolates. In addition, as research into host-microbiome interactions develops, a role for bitter-tasting receptors, termed T2Rs, in the gastrointestinal tract and their role in entero-endocrine hormone regulation is developing. Here, we summarize the growing literature on mechanisms of health benefits by brassica-derived isothiocyanates and the potential for extra-oral T2Rs as a novel mechanism that may in part describe the variability in response to brassica among free-living humans, not seen in research animal and cell culture studies.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
26
|
Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Connolly EL, Sim M, Travica N, Marx W, Beasy G, Lynch GS, Bondonno CP, Lewis JR, Hodgson JM, Blekkenhorst LC. Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front Pharmacol 2021; 12:767975. [PMID: 34764875 PMCID: PMC8575925 DOI: 10.3389/fphar.2021.767975] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed.
Collapse
Affiliation(s)
- Emma L Connolly
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Nikolaj Travica
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Gordon S Lynch
- Department of Anatomy and Physiology, Centre for Muscle Research, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|