1
|
Mlingo TAM, Theron J, Mokoena NB. Plasmid DNA-based reverse genetics as a platform for manufacturing of bluetongue vaccine. J Virol 2025; 99:e0013925. [PMID: 40130823 PMCID: PMC11998535 DOI: 10.1128/jvi.00139-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Control of bluetongue disease is predominantly through vaccination with licensed inactivated or live-attenuated vaccines (LAVs). Manufacturing of LAVs in endemic countries requires formulation with a high number of serotypes for effective protection. Herein, we evaluated a plasmid DNA-based reverse genetics platform for manufacturing a multivalent vaccine. The synthetic vaccine was characterized by a common BTV1 backbone, with exchange of outer capsid proteins. Recombinant South African vaccine serotypes 1, 5, and 14 were rescued by exchanging the VP2 protein on the backbone. BTV6 rescue was achieved following the exchange of VP2 and VP5 proteins. The particle sizes were comparable to commercial vaccines of respective serotypes. BTV1, BTV5, and BTV6 had distinct growth profiles compared to commercial vaccines, while BTV14 was indistinguishable. Stability and shelf-life determination under various storage conditions showed that commercial vaccines were more stable. Formulated antigens were evaluated for vaccine safety and immunogenicity in sheep. Serotyped BTV1 monovalent vaccine was safe, as no clinical signs were observed. Neutralizing antibodies (nAbs) were induced on day 14 and peaked at 32 on day 28. The multivalent synthetic vaccine containing four serotypes elicited BTV6 nAbs from day 21 with a titer of 52, which decreased to 33 by day 42. BTV1 elicited a weak immune response with a titer of 1 on day 42. No nAbs were detected against BTV5 and BTV14. This is a first report comparing reverse genetics-derived antigens with commercial vaccines. Data generated on production yields, stability, and immunogenicity demonstrated that some serotypes can be implemented as novel synthetic vaccines using this platform.IMPORTANCEVaccination is the most effective control strategy for viral diseases that affect livestock. To date, only live-attenuated and inactivated vaccines have been licensed for control of bluetongue (BT). This study demonstrated the use of reverse genetics as a possible platform for BTV vaccine production. Data generated in the study contribute toward the advancement of an alternative manufacturing platform for licensing of BT vaccines. Information on production yields and stability of synthetic vaccines in comparison to the conventional products demonstrated that optimization is required for some serotypes to fully translate the reverse genetics platform for manufacturing the BTV vaccine. The study highlighted the safety and immunogenicity of vaccines manufactured using the plasmid DNA-based reverse-genetics platform.
Collapse
MESH Headings
- Animals
- Bluetongue virus/immunology
- Bluetongue virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Sheep
- Plasmids/genetics
- Plasmids/immunology
- Bluetongue/prevention & control
- Bluetongue/immunology
- Bluetongue/virology
- Reverse Genetics/methods
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Serogroup
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Tendai A. M. Mlingo
- Onderstepoort Biological Products SOC Ltd., Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
2
|
Sinha PR, Hegde SR, Mittal R, Jagat CC, Gowda U, Chandrashekhar R, Muthaiah G, Shamshad S, Chanda MM, Ganji V, Putty K, Hemadri D. In Silico Development of a Multi-Epitope Subunit Vaccine against Bluetongue Virus in Ovis aries Using Immunoinformatics. Pathogens 2024; 13:944. [PMID: 39599497 PMCID: PMC11597718 DOI: 10.3390/pathogens13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 11/29/2024] Open
Abstract
The bluetongue virus (BTV), transmitted by biting midges, poses a significant threat to livestock globally. This orbivirus induces bluetongue disease, leading to substantial economic losses in the agricultural sector. The current control measures have limitations, necessitating the development of novel, efficient vaccines. In this study, an immunoinformatics approach is employed to design a multi-epitope subunit vaccine for Ovis aries targeting six BTV serotypes. Focusing on the VP2 capsid protein, the vaccine incorporates B-cell, helper-T lymphocytes (HTL), and cytotoxic T-cell lymphocytes (CTL) epitopes. Molecular docking reveals stable interactions with TLR2 and TLR4 receptors, suggesting the stability of the complex, indicating the potential viability of the multi-epitope vaccine. The computational approach offers a rapid and tailored strategy for vaccine development, highlighting potential efficacy and safety against BTV outbreaks. This work contributes to understanding BTV and presents a promising avenue for effective control.
Collapse
Affiliation(s)
- Priyansha Raj Sinha
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
- School of Biosciences, Chanakya University, Bengaluru 562110, India
| | - Ruchika Mittal
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | | | - Ullas Gowda
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Rathna Chandrashekhar
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Gayathri Muthaiah
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Samer Shamshad
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Mohammed Mudassar Chanda
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Vishweshwar Ganji
- Department of Veterinary Biotechnology, CoVsc, PVNRTVU, Hyderabad 500030, India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, CoVsc, PVNRTVU, Hyderabad 500030, India
| | - Divakar Hemadri
- ICAR—National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| |
Collapse
|
3
|
Spedicato M, Ronchi GF, Profeta F, Traini S, Capista S, Leone A, Iorio M, Portanti O, Palucci C, Pulsoni S, Testa L, Serroni A, Rossi E, Armillotta G, Laguardia C, D'Alterio N, Savini G, Di Ventura M, Lorusso A, Mercante MT. Efficacy of an inactivated EHDV-8 vaccine in preventing viraemia and clinical signs in experimentally infected cattle. Virus Res 2024; 347:199416. [PMID: 38897236 PMCID: PMC11261067 DOI: 10.1016/j.virusres.2024.199416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Epizootic haemorrhagic disease (EHD), caused by the EHD virus (EHDV), is a vector-borne viral disease transmitted through Culicoides biting midges. EHDV comprises seven serotypes (1, 2, and 4-8), with EHDV-8 having recently emerged and spread in Europe over the last two years. Such event has raised concerns about the significant threat posed by EHDV-8 to livestock industry. In this study, an inactivated vaccine against EHDV-8 (vEHDV8-IZSAM) was developed. Safety and efficacy of the vaccine were evaluated in calves through clinical, serological, and virological monitoring following experimental challenge. The vaccine was proven safe, with only transient fever and localized reactions observed in a few animals, consistent with adjuvanted vaccine side effects. vEHDV8-IZSAM elicited a robust humoral response, as evidenced by the presence of neutralizing antibodies. After challenge with a virulent isolate, viraemia and clinical signs were evidenced in control animals but in none of the vaccinated animals. This study highlights the potential of vEHDV8-IZSAM as a safe and highly effective vaccine against EHDV-8 in cattle. It offers protection from clinical disease and effectively prevents viraemia. With the recent spread of EHDV-8 in European livestock, the use of an inactivated vaccine could be key in protecting animals from clinical disease and thus to mitigate the economic impact of the disease. Further investigations are warranted to assess the duration of the induced immunity and the applicability of this vaccine in real-world settings. Accordingly, joint efforts between public veterinary institutions and pharmaceutical companies are recommended to scale up vaccine production.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy.
| | | | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Traini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Cristiano Palucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Simone Pulsoni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Lilia Testa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Caterina Laguardia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| |
Collapse
|
4
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Gwynn A, Mbewana S, Lubisi BA, Tshabalala HM, Rybicki EP, Meyers AE. Chimaeric plant-produced bluetongue virus particles as potential vaccine candidates. Arch Virol 2023; 168:179. [PMID: 37310539 DOI: 10.1007/s00705-023-05790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/29/2023] [Indexed: 06/14/2023]
Abstract
Bluetongue virus (BTV) causes bluetongue disease in ruminants and sheep. The current live attenuated and inactivated vaccines available for prevention pose several risks, and there is thus a need for vaccines that are safer, economically viable, and effective against multiple circulating serotypes. This work describes the development of recombinant virus-like particle (VLP) vaccine candidates in plants, which are assembled by co-expression of the four BTV serotype 8 major structural proteins. We show that substitution of a neutralising tip domain of BTV8 VP2 with that of BTV1 VP2 resulted in the assembly of VLPs that stimulated serotype-specific antibodies as well as virus-specific neutralising antibodies.
Collapse
Affiliation(s)
- A Gwynn
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - S Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - B A Lubisi
- Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research Institute, Pretoria, 0110, South Africa
| | - H M Tshabalala
- Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research Institute, Pretoria, 0110, South Africa
| | - E P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, CapeTown, 7925, South Africa
| | - A E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa.
| |
Collapse
|
6
|
Mee JF, Hayes C, Stefaniak T, Jawor P. Review: Bovine foetal mortality - risk factors, causes, immune responses and immuno-prophylaxis. Animal 2023; 17 Suppl 1:100774. [PMID: 37567672 DOI: 10.1016/j.animal.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
This review of bovine foetal mortality (>42 d gestation) concluded that while the majority of risk factors associated with sporadic loss operate at animal-level, e.g. foetal plurality, those that operate at herd-level, e.g. some foetopathogenic infections, are more likely to result in abortion outbreaks. While the causes of foetal mortality have traditionally been classified as infectious and non-infectious, in fact, the latter category is a diagnosis of exclusion, generally without determination of the non-infectious cause. This review has also established that the traditional dichotomisation of infectious agents into primary and secondary pathogens is based on a flawed premise and these terms should be discontinued. The delicate balance of the maternal gestational immune system between not rejecting the allograft (conceptus) but rejecting (attacking) foetopathogens is stage-of-pregnancy-dependent thus the timing of infection determines the clinical outcome which may result in persistent infection or foetal mortality. Utilisation of our knowledge of the materno-foetal immune responses to foetopathogenic infection has resulted in the development of numerous mono- and polyvalent vaccines for metaphylactic or prophylactic control of bovine foetal mortality. While some of these have been shown to significantly contribute to reducing the risk of both infection and foetal mortality, others have insufficient, or conflicting evidence, on efficacy. However, recent developments in vaccinology, in particular the development of subunit vaccines and those that stimulate local genital tract immunity, show greater promise.
Collapse
Affiliation(s)
- J F Mee
- Teagasc, Moorepark Research Centre, Animal and Bioscience Research Department, Fermoy P61P302, Ireland.
| | - C Hayes
- Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - P Jawor
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
7
|
Vector-Borne Diseases in Ruminants. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
8
|
Charlier J, Barkema HW, Becher P, De Benedictis P, Hansson I, Hennig-Pauka I, La Ragione R, Larsen LE, Madoroba E, Maes D, Marín CM, Mutinelli F, Nisbet AJ, Podgórska K, Vercruysse J, Vitale F, Williams DJL, Zadoks RN. Disease control tools to secure animal and public health in a densely populated world. Lancet Planet Health 2022; 6:e812-e824. [PMID: 36208644 DOI: 10.1016/s2542-5196(22)00147-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Animal health is a prerequisite for global health, economic development, food security, food quality, and poverty reduction, while mitigating against climate change and biodiversity loss. We did a qualitative review of 53 infectious diseases in terrestrial animals with data from DISCONTOOLS, a specialist database and prioritisation model focusing on research gaps for improving infectious disease control in animals. Many diseases do not have any appropriate control tools, but the prioritisation model suggests that we should focus international efforts on Nipah virus infection, African swine fever, contagious bovine pleuropneumonia, peste des petits ruminants, sheeppox and goatpox, avian influenza, Rift Valley fever, foot and mouth disease, and bovine tuberculosis, for the greatest impact on the UN's Sustainable Development Goals. Easy to use and accurate diagnostics are available for many animal diseases. However, there is an urgent need for the development of stable and durable diagnostics that can differentiate infected animals from vaccinated animals, to exploit rapid technological advances, and to make diagnostics widely available and affordable. Veterinary vaccines are important for dealing with endemic, new, and emerging diseases. However, fundamental research is needed to improve the convenience of use and duration of immunity, and to establish performant marker vaccines. The largest gap in animal pharmaceuticals is the threat of pathogens developing resistance to available drugs, in particular for bacterial and parasitic (protozoal, helminth, and arthropod) pathogens. We propose and discuss five research priorities for animal health that will help to deliver a sustainable and healthy planet: vaccinology, antimicrobial resistance, climate mitigation and adaptation, digital health, and epidemic preparedness.
Collapse
Affiliation(s)
- Johannes Charlier
- DISCONTOOLS, AnimalhealthEurope, Brussels, Belgium; Kreavet, Kruibeke, Belgium.
| | - Herman W Barkema
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | | | - Ingrid Hansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology in Bakum, University of Veterinary Medicine, Hannover, Germany
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - Lars E Larsen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Empangeni, South Africa
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Clara M Marín
- Department of Animal Science, Agrifood Research and Technology Centre of Aragón (CITA) and AgriFood Institute of Aragón-IA2 (CITA), University of Zaragoza, Zaragoza, Spain
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alasdair J Nisbet
- Vaccines and Diagnostics Department, Moredun Research Institute, Mithlothian, Scotland
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jozef Vercruysse
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fabrizio Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Diana J L Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
van Rijn PA, Maris-Veldhuis MA, Spedicato M, Savini G, van Gennip RGP. Pentavalent Disabled Infectious Single Animal (DISA)/DIVA Vaccine Provides Protection in Sheep and Cattle against Different Serotypes of Bluetongue Virus. Vaccines (Basel) 2021; 9:vaccines9101150. [PMID: 34696258 PMCID: PMC8537505 DOI: 10.3390/vaccines9101150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bluetongue (BT) is a midge-borne OIE-notifiable disease of ruminants caused by the bluetongue virus (BTV). There are at least 29 BTV serotypes as determined by serum neutralization tests and genetic analyses of genome segment 2 encoding serotype immunodominant VP2 protein. Large parts of the world are endemic for multiple serotypes. The most effective control measure of BT is vaccination. Conventionally live-attenuated and inactivated BT vaccines are available but have their specific pros and cons and are not DIVA compatible. The prototype Disabled Infectious Single Animal (DISA)/DIVA vaccine based on knockout of NS3/NS3a protein of live-attenuated BTV, shortly named DISA8, fulfills all criteria for modern veterinary vaccines of sheep. Recently, DISA8 with an internal in-frame deletion of 72 amino acid codons in NS3/NS3a showed a similar ideal vaccine profile in cattle. Here, the DISA/DIVA vaccine platform was applied for other serotypes, and pentavalent DISA/DIVA vaccine for “European” serotypes 1, 2, 3, 4, 8 was studied in sheep and cattle. Protection was demonstrated for two serotypes, and neutralization Ab titers indicate protection against other included serotypes. The DISA/DIVA vaccine platform is flexible in use and generates monovalent and multivalent DISA vaccines to combat specific field situations with respect to Bluetongue.
Collapse
Affiliation(s)
- Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +31-320-238-686
| | - Mieke A. Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| | - Massimo Spedicato
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - Giovanni Savini
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - René G. P. van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| |
Collapse
|
11
|
Abdrakhmanov SK, Beisembayev KK, Sultanov AA, Mukhanbetkaliyev YY, Kadyrov AS, Ussenbayev AY, Zhakenova AY, Torgerson PR. Modelling bluetongue risk in Kazakhstan. Parasit Vectors 2021; 14:491. [PMID: 34563238 PMCID: PMC8465711 DOI: 10.1186/s13071-021-04945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bluetongue is a serious disease of ruminants caused by the bluetongue virus (BTV). BTV is transmitted by biting midges (Culicoides spp.). Serological evidence from livestock and the presence of at least one competent vector species of Culicoides suggests that transmission of BTV is possible and may have occurred in Kazakhstan. Methods We estimated the risk of transmission using a mathematical model of the reproduction number R0 for bluetongue. This model depends on livestock density and climatic factors which affect vector density. Data on climate and livestock numbers from the 2466 local communities were used. This, together with previously published model parameters, was used to estimate R0 for each month of the year. We plotted the results on isopleth maps of Kazakhstan using interpolation to smooth the irregular data. We also mapped the estimated proportion of the population requiring vaccination to prevent outbreaks of bluetongue. Results The results suggest that transmission of bluetongue in Kazakhstan is not possible in the winter from October to March. Assuming there are vector-competent species of Culicoides endemic in Kazakhstan, then low levels of risk first appear in the south of Kazakhstan in April before spreading north and intensifying, reaching maximum levels in northern Kazakhstan in July. The risk declined in September and had disappeared by October. Conclusion These results should aid in surveillance efforts for the detection and control of bluetongue in Kazakhstan by indicating where and when outbreaks of bluetongue are most likely to occur. The results also indicate where vaccination efforts should be focussed to prevent outbreaks of disease. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04945-6.
Collapse
Affiliation(s)
| | | | | | | | - Ablaikhan S Kadyrov
- Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan (Astana), Kazakhstan
| | - Altay Y Ussenbayev
- Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan (Astana), Kazakhstan
| | - Aigerim Y Zhakenova
- Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan (Astana), Kazakhstan
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
14
|
Es-Sadeqy Y, Bamouh Z, Ennahli A, Safini N, El Mejdoub S, Omari Tadlaoui K, Gavrilov B, El Harrak M. Development of an inactivated combined vaccine for protection of cattle against lumpy skin disease and bluetongue viruses. Vet Microbiol 2021; 256:109046. [PMID: 33780805 DOI: 10.1016/j.vetmic.2021.109046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
Lumpy Skin Disease (LSD) and Bluetongue (BT) are the main ruminants viral vector-borne diseases. LSD is endemic in Africa and has recently emerged in Europe and central Asia as a major threat to cattle industry. BT caused great economic damage in Europe during the last decade with a continuous spread to other countries. To control these diseases, vaccination is the only economically viable tool. For LSD, only live-attenuated vaccines (LAVs) are commercially available, whilst for BT both LAVs and inactivated vaccines are available with a limited number of serotypes. In this study, we developed an inactivated, oil adjuvanted bivalent vaccine against both diseases based on LSDV Neethling strain and BTV4. The vaccine was tested for safety and immunogenicity on cattle during a one-year period. Post-vaccination monitoring was carried out by VNT and ELISA. The vaccine was completely safe and elicited high neutralizing antibodies starting from the first week following the second injection up to one year. Furthermore, a significant correlation (R = 0.9040) was observed when comparing VNT and competitive ELISA in BTV4 serological response. Following BTV4 challenge, none of vaccinated and unvaccinated cattle were registered clinical signs, however vaccinated cattle showed full protection from viraemia. In summary, this study highlights the effectiveness of this combined vaccine as a promising solution for both LSD and BT control. It also puts an emphasis on the need for the development of other multivalent inactivated vaccines, which could be greatly beneficial for improving vaccination coverage in endemic countries and prophylaxis of vector-borne diseases.
Collapse
Affiliation(s)
- Youness Es-Sadeqy
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco.
| | - Zahra Bamouh
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Abderrahim Ennahli
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Najete Safini
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Soufiane El Mejdoub
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Khalid Omari Tadlaoui
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, 1113, Bulgaria
| | - Mehdi El Harrak
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| |
Collapse
|
15
|
EVIDENCE OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS AND BLUETONGUE VIRUS EXPOSURE IN NONNATIVE RUMINANT SPECIES IN NORTHERN FLORIDA. J Zoo Wildl Med 2021; 51:745-751. [PMID: 33480554 DOI: 10.1638/2019-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are vector-borne viruses of ruminants nearly worldwide. They can affect white-tailed deer (WTD; Odocoileus virginianus), the ranching industry, and nonindigenous hoof stock species managed for conservation. One potential risk factor for ranched WTD is commingling with nonindigenous species on high-fenced properties. Nonindigenous species provide novel viewing and hunting opportunities; however, their presence may create disease hazards. Furthermore, animals within conservation properties may be at a risk from commingling exotics and adjacent wild WTD. Currently, knowledge about EHDV and BTV seroprevalence and transmission is limited in nonindigenous populations in the southeastern United States. The authors conducted a serological survey of 10 Bovidae and 5 Cervidae species residing within two properties in northern Florida. The first site was a conservation property breeding threatened nonindigenous species for conservation. The second property was a private high-fenced game preserve managing WTD and nonindigenous species for breeding, sale, and harvest. Blood samples were tested for titers to three EHDV serotypes (1, 2, and 6) and active circulating viral EHDV and BTV. The private ranch had evidence of EHDV or BTV in one of three (33.3%) Bovidae species and four of five (80%) Cervidae species sampled. At the conservation property, evidence of EHDV infection was found in four of seven (57.1%) Bovidae and one of one (100%) Cervidae species sampled. The presence of antibodies in many nonindigenous species sampled might indicate these species are potential viral hosts and may be a risk to ranched WTD and other species within the same property. Nonindigenous species within the private ranch and conservation properties are at risk of contracting EHDV and BTV, and herd managers should reduce vector-host interactions and consider increased biosecurity measures when translocating animals.
Collapse
|
16
|
Wang A, Yin J, Zhou J, Ma H, Chen Y, Liu H, Qi Y, Liang C, Liu Y, Li J, Zhang G. Soluble expression and purification of Bluetongue Virus Type 1 (BTV1) structure protein VP2 in Escherichia coli and its immunogenicity in mice. PeerJ 2021; 9:e10543. [PMID: 33505791 PMCID: PMC7789859 DOI: 10.7717/peerj.10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Background The VP2 on the surface of the virus particle is the main structural protein of BTV, which can induce the host to produce neutralizing antibodies and play an important role in the antiviral immunity process. This study aimed to obtain the soluble VP2 and analyze its immunogenicity. Methods The gene encoding the full-length VP2 of BTV1 was amplified by PCR. The products from restriction enzyme digestion and ligase reaction between VP2 and vector pET-28a were transformed into E.coli DH5α. After PCR and sequencing detection, the positive plasmid PET28a-VP2 was transformed into E.coli BL21(DE3) and Rosetta(DE3) competent cells, expression induced by IPTG. The fusion protein was expressed in the optimized conditions with the induction of IPTG, purified by affinity chromatography and identified by SDS-PAGE and Western blotting. A total of 5 Balb/c mice aged 6–8 weeks were immunized with the fusion protein at a dose of 30 µg per mouse. Each mouse was immunized three times at an interval of 3 weeks. Results The recombinant plasmid PET28a-VP2 was successfully constructed. The expression strains were induced by 0.4 mmol/L IPTG at 16 °C for 10 h, and BTV1 VP2 was expressed in a soluble form. The purity of the recombinant VP2 protein (∼109 kDa) was about 90% in the concentration at 0.2 mg/ml afterpurification. The purified VP2 had good immunoreactivity with BTV1 positive serum. Taken together, thisstudy offered a route for producing soluble BTV VP2, which retains activity and immunogenicity, to bebeneficial to the research on developing BTV vaccine, and lay the foundation for further research on BTV.
Collapse
Affiliation(s)
- Aiping Wang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jiajia Yin
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jingming Zhou
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongfang Ma
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yumei Chen
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongliang Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yanhua Qi
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Chao Liang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yankai Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jinge Li
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Gaiping Zhang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| |
Collapse
|
17
|
Moreno S, Calvo-Pinilla E, Devignot S, Weber F, Ortego J, Brun A. Recombinant Rift Valley fever viruses encoding bluetongue virus (BTV) antigens: Immunity and efficacy studies upon a BTV-4 challenge. PLoS Negl Trop Dis 2020; 14:e0008942. [PMID: 33275608 PMCID: PMC7744063 DOI: 10.1371/journal.pntd.0008942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/16/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Many ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks. Methodology/Principal findings In this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective after a BTV-4 boost. In sheep, a natural host for RVFV and BTV, both vaccines proved immunogenic although conferred only partial protection after a virulent BTV-4 reassortant Morocco strain challenge. Conclusions/Significance Though additional optimization will be needed to improve the efficacy data against BTV in sheep, our findings warrant further developments of attenuated RVFV as a dual vaccine platform carrying heterologous immune relevant antigens for ruminant diseases in RVF risk areas. Live attenuated Rift Valley fever (RVF) vaccines constitute a reliable intervention measure to reduce the burden of the disease in endemic countries. In this work we report the generation of attenuated Rift Valley fever virus (RVFV) that express vaccine antigens of bluetongue virus (BTV) instead of the virulence factor NSs. The recombinant viruses were able to induce protective immune responses against both RVFV and BTV when administered as vaccines in mice and sheep respectively. Though further optimization is needed to enhance the level of protection in sheep upon a single dose, these results demonstrate the potential of attenuated RVFV as a vaccine vector for other ruminant diseases, in this case enabling bluetongue vaccination while immunizing against RVF. Since RVF outbreaks are sporadic events, preventive vaccination is often not perceived as a real need. In such scenario a bivalent vaccine strategy would make RVF vaccination more appealing.
Collapse
Affiliation(s)
- Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
| | - Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
- * E-mail: (JO); (AB)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
- * E-mail: (JO); (AB)
| |
Collapse
|
18
|
Guo Y, Huang L, Bi K, Xu Q, Bu Z, Wang F, Sun E. Recombinant bluetongue virus with hemagglutinin epitopes in VP2 has potential as a labeled vaccine. Vet Microbiol 2020; 248:108825. [PMID: 32891953 DOI: 10.1016/j.vetmic.2020.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022]
Abstract
Bluetongue (BT) is an arbovirus-borne disease of ruminants caused by bluetongue virus (BTV) that has the potential to have a serious economic impact. Currently available commercial vaccines include attenuated vaccines and inactivated vaccines, both of which have achieved great success in the prevention and control of BTV. However, these vaccines cannot distinguish between infected animals and immunized animals. To control outbreaks of BTV, the development of labeled vaccines is urgently needed. In this study, we used the plasmid-based reverse genetics system (RGS) of BTV to rescue four recombinant viruses in which HA (influenza hemagglutinin) tags were inserted at different sites of VP2. In vitro, the recombinant tagged viruses exhibited morphologies, plaque, and growth kinetics similar to the parental BTV-16, and expressed both VP2 and HA tag. Subsequently, the selected recombinant tagged viruses were prepared as inactivated vaccines to immunize IFNAR(-/-) mice and sheep, and serological detection results of anti-HA antibody provided discriminative detection. In summary, we used plasmid-based RGS to rescue BTV recombinant viruses with HA tags inserted into VP2, and detected several sites on VP2 that can accommodate HA tags. Some of the recombinant tagged viruses have potential to be developed into distinctive inactivated vaccines.
Collapse
Affiliation(s)
- Yunze Guo
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liping Huang
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Kaixuan Bi
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qingyuan Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Fenglong Wang
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Encheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
19
|
Calvo-Pinilla E, Marín-López A, Moreno S, Lorenzo G, Utrilla-Trigo S, Jiménez-Cabello L, Benavides J, Nogales A, Blasco R, Brun A, Ortego J. A protective bivalent vaccine against Rift Valley fever and bluetongue. NPJ Vaccines 2020; 5:70. [PMID: 32793399 PMCID: PMC7393076 DOI: 10.1038/s41541-020-00218-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever (RVF) and bluetongue (BT) are two important ruminant diseases transmitted by arthropods. Both viruses have shown important geographic spread leading to endemicity of BT virus (BTV) in Africa and Europe. In this work, we report a dual vaccine that simultaneously induces protective immune responses against BTV and RVFV based on modified vaccinia Ankara virus (MVA) expressing BTV proteins VP2, NS1, or a truncated form of NS1 (NS1-Nt), and RVFV Gn and Gc glycoproteins. IFNAR(-/-) mice immunized with two doses of MVA-GnGc-VP2 developed a significant neutralizing antibody response against BTV-4 and RVFV. Furthermore, the homologous prime-boost immunization with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt triggered neutralizing antibodies against RVFV and NS1-specific cytotoxic CD8+ T cells in mice. Moreover, all mice immunized with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt remained healthy after lethal challenge with RVFV or BTV-4. The homologous prime-boost vaccination with MVA-GnGc-NS1, which was the best immunization strategy observed in mice, was assayed in sheep. Clinical signs and viremia were absent or highly reduced in vaccinated sheep after challenge with BTV-4 or RVFV. These results indicate that MVA-GnGc-NS1 vaccination elicits immune protection against RVFV and BTV in sheep.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Alejandro Marín-López
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Luis Jiménez-Cabello
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Rafael Blasco
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Departamento de Biotecnología, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| |
Collapse
|
20
|
Flannery J, Frost L, Fay P, Hicks H, Henstock M, Smreczak M, Orłowska A, Rajko-Nenow P, Darpel K, Batten C. BTV-14 Infection in Sheep Elicits Viraemia with Mild Clinical Symptoms. Microorganisms 2020; 8:E892. [PMID: 32545731 PMCID: PMC7355590 DOI: 10.3390/microorganisms8060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
In 2011, Bluetongue virus serotype 14 (BTV-14) was detected in Russia during routine surveillance, and was subsequently found in a number of European countries. The strain had high sequence similarity to a BTV-14 vaccine strain. We aimed to determine the risk of this BTV-14 strain causing disease in a UK sheep breed. Four Poll Dorset sheep were infected with a Polish isolate of BTV-14 and infection kinetics were monitored over 28 days. BTV RNA was detected in EDTA blood by 4 days post-infection (dpi) and remained detectable at 28 days post-infection (dpi). Peak viraemia occurred at 6 and 7 dpi with Ct values ranging between 24.6 and 27.3 in all infected animals. BTV antibodies were detected by 10 dpi using a commercial ELISA and neutralising antibodies were detected from 10 dpi. BTV was isolated between 6 and 12 dpi. All infected sheep developed mild clinical signs such as reddening of conjunctiva and mucosal membranes, with one sheep demonstrating more overt clinical signs. Two uninoculated control animals remained clinically healthy and did not have detectable BTV RNA or antibodies. The overall mild clinical symptoms caused by this BTV-14 in this highly susceptible sheep breed were in accordance with the asymptomatic infections observed in the affected countries.
Collapse
Affiliation(s)
- John Flannery
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Lorraine Frost
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Petra Fay
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Hayley Hicks
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Mark Henstock
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.S.); (A.O.)
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.S.); (A.O.)
| | - Paulina Rajko-Nenow
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Karin Darpel
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| | - Carrie Batten
- Non-Vesicular Reference Laboratories, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (L.F.); (P.F.); (H.H.); (M.H.); (P.R.-N.); (K.D.); (C.B.)
| |
Collapse
|
21
|
Monath TP, Kortekaas J, Watts DM, Christofferson RC, Desiree LaBeaud A, Gowen B, Peters CJ, Smith DR, Swanepoel R, Morrill JC, Ksiazek TG, Pittman PR, Bird BH, Bettinger G. Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile. Vaccine X 2020; 5:100060. [PMID: 32337506 PMCID: PMC7176985 DOI: 10.1016/j.jvacx.2020.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022] Open
Abstract
WHO published draft Target Product Profiles (TPPs) for Rift Valley Fever virus (RVFV) vaccines. The TPPs contain restrictive requirements aimed at reducing the risk of genetic reassortment. We find no evidence for reassortment despite use of live RVFV vaccines. If genetic reassortment occurred with wild-type RVFV it would be of no consequence. The hypothetical risks of reassortment do not outweigh the benefits of vaccination
In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment.
Collapse
Affiliation(s)
- Thomas P Monath
- Managing Partner and Chief Scientific Officer, Crozet BioPharma LLC, Devens, MA, USA
| | - Jeroen Kortekaas
- Professor of Veterinary Arbovirology, Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Douglas M Watts
- Executive Director of Vet Services, and Director of Biosafety Level 3 Laboratory and Co-Director of BBRC Infectious Disease and Immunology, University of Texas at El Paso, El Paso, TX, USA
| | - Rebecca C Christofferson
- Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Angelle Desiree LaBeaud
- Professor of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Senior Fellow at the Woods Institute for the Environment and Professor of Health Research and Policy (Epidemiology) at the Lucile Salter Packard Children's Hospital, Stanford, CA, USA
| | | | - Clarence J Peters
- Professor (Emeritus) Departments of Microbiology & Immunology and Pathology Director (Emeritus) for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Darci R Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| | - John C Morrill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Phillip R Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.,University of California, Davis, One Health Institute, School of Veterinary Medicine, Davis 956164, CA, USA
| | - George Bettinger
- USAID Rift Valley Fever Vaccine Project at The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
22
|
Alternative methods to reduce the animal use in quality controls of inactivated BTV8 Bluetongue vaccines. Prev Vet Med 2020; 176:104923. [PMID: 32066029 DOI: 10.1016/j.prevetmed.2020.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
The acceptance of serology data instead of challenge for market release of new batches of commercial vaccine is under evaluation by regulatory agencies in order to reduce the use of animals and costs for manufacturers. In this study two vaccines for Bluetongue virus serotype 8 were submitted to quality controls required by the European Pharmacopoeia and tested on sheep in comparison with a commercial inactivated vaccine. Body temperature, antibody titres and viraemia of vaccinated and controls sheep were recorded. In addition IL4 and IFNγ in sera and supernatant derived from in vitro stimulation of blood cells were also quantified using two commercial ELISA kit. The outer-capsid protein VP2 contained in vaccine formulations was quantified using a home-made capture-ELISA. Results obtained indicates that in-lab evaluation of cell-mediated and humoral immune response are useful parameters to predict the efficacy of BTV inactivated vaccines avoiding the challenge phase required to release new batches of vaccines with proven clinical efficacy and safety. The correlation observed between serology data and VP2 protein concentration of final product could be useful in-process control to predict if a new vaccine batch of BTV must be discarded or released to the market.
Collapse
|
23
|
Evaluation of A Baculovirus-Expressed VP2 Subunit Vaccine for the Protection of White-Tailed Deer ( Odocoileus virginianus) from Epizootic Hemorrhagic Disease. Vaccines (Basel) 2020; 8:vaccines8010059. [PMID: 32023812 PMCID: PMC7157196 DOI: 10.3390/vaccines8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted RNA virus and the causative agent of epizootic hemorrhagic disease (EHD) in wild and domestic ruminants. In North America, white-tailed deer (WTD) experience the highest EHD-related morbidity and mortality, although clinical disease is reported in cattle during severe epizootics. No commercially licensed EHDV vaccine is available in North America. The objective of this study was to develop and evaluate a subunit vaccine candidate to control EHD in WTD. Recombinant VP2 (rVP2) outer capsid proteins of EHDV serotypes 2 (EHDV-2) and 6 (EHDV-6) were produced in a baculovirus-expression system. Mice and cattle vaccinated with EHDV-2 or EHDV-6 rVP2 produced homologous virus-neutralizing antibodies. In an immunogenicity/efficacy study, captive-bred WTD received 2 doses of EHDV-2 rVP2 or sham vaccine, then were challenged with wild-type EHDV-2 at 30 d post vaccination. None of the rVP2-vaccinated deer developed clinical disease, no viral RNA was detected in their blood or tissues (liver, lung, spleen, kidney), and no EHDV-induced lesions were observed. Sham-vaccinated deer developed clinical disease with viremia and typical EHD vascular lesions. Here, we demonstrate a rVP2 subunit vaccine that can provide protective immunity from EHDV infection and which may serve as an effective tool in preventing clinical EHD and reducing virus transmission.
Collapse
|
24
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
25
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
26
|
Mokoena NB, Moetlhoa B, Rutkowska DA, Mamputha S, Dibakwane VS, Tsekoa TL, O'Kennedy MM. Plant-produced Bluetongue chimaeric VLP vaccine candidates elicit serotype-specific immunity in sheep. Vaccine 2019; 37:6068-6075. [PMID: 31471154 DOI: 10.1016/j.vaccine.2019.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023]
Abstract
Bluetongue (BT) is a hemorrhagic non-contagious, biting midge-transmitted disease of wild and domestic ruminants that is caused by bluetongue virus (BTV). Annual vaccination plays a pivotal role in BT disease control in endemic regions. Due to safety concerns of the current BTV multivalent live attenuated vaccine (LAV), a safe efficacious new generation subunit vaccine such as a plant-produced BT virus-like particle (VLP) vaccine is imperative. Previously, homogenous BTV serotype 8 (BTV-8) VLPs were successfully produced in Nicotiana benthamiana plants and provided protective immunity in sheep. In this study, combinations of BTV capsid proteins from more than one serotype were expressed and assembled to form chimaeric BTV-3 and BTV-4 VLPs in N. benthamiana plants. The assembled homogenous BTV-8, as well as chimaeric BTV-3 and chimaeric BTV-4 VLP serotypes, were confirmed by SDS-PAGE, Transmission Electron microscopy (TEM) and protein confirmation using liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing. As VP2 is the major determinant eliciting protective immunity, the percentage coverage and number of unique VP2 peptides detected in assembled chimaeric BT VLPs were used as a guide to assemble the most appropriate chimaeric combinations. Both plant-produced chimaeric BTV-3 and BTV-4 VLPs were able to induce long-lasting serotype-specific neutralizing antibodies equivalent to the monovalent LAV controls. Antibody levels remained high to the end of the trial. Combinations of homogenous and chimaeric BT VLPs have great potential as a safe, effective multivalent vaccine with the ability to distinguish between vaccinated and infected individuals (DIVA) due to the absence of non-structural proteins.
Collapse
Affiliation(s)
| | | | - Daria A Rutkowska
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Sipho Mamputha
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Vusi S Dibakwane
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Tsepo L Tsekoa
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa.
| |
Collapse
|
27
|
Fay PC, Attoui H, Batten C, Mohd Jaafar F, Lomonossoff GP, Daly JM, Mertens PP. Bluetongue virus outer-capsid protein VP2 expressed in Nicotiana benthamiana raises neutralising antibodies and a protective immune response in IFNAR -/- mice. Vaccine X 2019; 2:100026. [PMID: 31384743 PMCID: PMC6668234 DOI: 10.1016/j.jvacx.2019.100026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Bluetongue is a severe, economically important disease of ruminants that is widely distributed in tropical and temperate regions around the world. It is associated with major production losses, restrictions of animal movements and trade, as well as costs associated with developing and implementing effective surveillance and control measures. Mammalian hosts infected with bluetongue virus (BTV) generate a protective neutralising antibody response targeting the major BTV outer-capsid protein and serotype-specific antigen, VP2. BTV VP2 proteins that have been expressed in plants are soluble, with a native conformation displaying neutralising epitopes and can assemble with other BTV structural proteins to form virus-like particles (VLPs). His-tagged VP2 proteins of BTV serotypes 4 and 8 were transiently expressed in Nicotiana benthamiana then purified by immobilised metal affinity chromatography (IMAC). Antisera from IFNAR -/- mice prime/boost vaccinated with the purified proteins, were shown to contain VP2-specific antibodies by Indirect ELISA (I-ELISA), western blotting and serum neutralisation tests (SNT). Vaccinated mice, subsequently challenged with either the homologous or heterologous BTV serotype, developed viraemia by day 3 post-infection. However, no clinical signs were observed in mice challenged with the homologous serotype (either prime-boost or single-shot vaccinated), all of which survived for the duration of the study. In contrast, all of the vaccinated mice challenged with a heterologous serotype, died, showing no evidence of cross-protection or suppression of viraemia, as detected by real-time RT-qPCR or virus isolation. The induction of protective, serotype-specific neutralising antibodies in IFNAR -/- mice, indicates potential for the use of plant-expressed BTV VP2s as subunit vaccine components, or as a basis for serotype-specific serological assays.
Collapse
Affiliation(s)
- Petra C. Fay
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Houssam Attoui
- UMR VIROLOGIE 1161, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort F-94700, France
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Fauziah Mohd Jaafar
- UMR VIROLOGIE 1161, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort F-94700, France
| | | | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Peter P.C. Mertens
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| |
Collapse
|
28
|
Attenuation of Bluetongue Virus (BTV) in an in ovo Model Is Related to the Changes of Viral Genetic Diversity of Cell-Culture Passaged BTV. Viruses 2019; 11:v11050481. [PMID: 31130699 PMCID: PMC6563285 DOI: 10.3390/v11050481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The embryonated chicken egg (ECE) is routinely used for the laboratory isolation and adaptation of Bluetongue virus (BTV) in vitro. However, its utility as an alternate animal model has not been fully explored. In this paper, we evaluated the pathogenesis of BTV in ovo using a pathogenic isolate of South African BTV serotype 3 (BTV-3) derived from the blood of an infected sheep. Endothelio- and neurotropism of BTV-3 were observed by immunohistochemistry of non-structural protein 1 (NS1), NS3, NS3/3a, and viral protein 7 (VP7) antigens. In comparing the pathogenicity of BTV from infectious sheep blood with cell-culture-passaged BTV, including virus propagated through a Culicoides-derived cell line (KC) or ECE, we found virus attenuation in ECE following cell-culture passage. Genomic analysis of the consensus sequences of segments (Seg)-2, -5, -6, -7, -8, -9, and -10 identified several nucleotide and amino-acid mutations among the cell-culture-propagated BTV-3. Deep sequencing analysis revealed changes in BTV-3 genetic diversity in various genome segments, notably a reduction of Seg-7 diversity following passage in cell culture. Using this novel approach to investigate BTV pathogenicity in ovo, our findings support the notion that pathogenic BTV becomes attenuated in cell culture and that this change is associated with virus quasispecies evolution.
Collapse
|
29
|
Maclachlan NJ, Zientara S, Wilson WC, Richt JA, Savini G. Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Curr Opin Virol 2019; 34:56-62. [PMID: 30654271 DOI: 10.1016/j.coviro.2018.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022]
Abstract
Bluetongue (BT) and epizootic hemorrhagic disease (EHD) are globally re-emerging diseases of domestic and wild ruminants, respectively caused by BT virus (BTV) and EHD virus. Both viruses are transmitted by hematophagous midges; however, newly recognized BTV serotypes may be transmitted horizontally without requirement for any biological vector. The global range of these viruses and/or their associated diseases have changed remarkably in recent years, most notably with the invasion of Europe by multiple serotypes of BTV since 1998. Although not zoonoses, the unanticipated emergence of BT and EHD in several different areas of the world provides a uniquely sobering and unambiguous reminder of the potential consequences of climate change on the distribution and severity of vector-borne diseases. Recent experiences with these viruses have also emphasized the need for effective, DIVA-compatible vaccines to combat anticipated future incursions, as existing vaccines have serious inherent deficiencies.
Collapse
Affiliation(s)
- Nigel James Maclachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Stephan Zientara
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, USDA, Manhattan, KS, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, OIE Reference Laboratory for BTV, Teramo, Italy
| |
Collapse
|
30
|
van Rijn PA, Maris-Veldhuis MA, Boonstra J, van Gennip RGP. Diagnostic DIVA tests accompanying the Disabled Infectious Single Animal (DISA) vaccine platform for African horse sickness. Vaccine 2018; 36:3584-3592. [PMID: 29759377 DOI: 10.1016/j.vaccine.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
31
|
van Rijn PA, Maris-Veldhuis MA, Potgieter CA, van Gennip RG. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform. Vaccine 2018. [DOI: 10.1016/j.vaccine.2018.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Russell BL, Parbhoo N, Gildenhuys S. Analysis of Conserved, Computationally Predicted Epitope Regions for VP5 and VP7 Across three Orbiviruses. Bioinform Biol Insights 2018; 12:1177932218755348. [PMID: 29434468 PMCID: PMC5802602 DOI: 10.1177/1177932218755348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022] Open
Abstract
Orbiviruses are double-stranded RNA viruses that have profound economic and veterinary significance, 3 of the most important being African horse sickness virus (AHSV), bluetongue virus (BTV), and epizootic hemorrhagic disease virus (EHDV). Currently, vaccination and vector control are used as preventative measures; however, there are several problems with the current vaccines. Comparing viral amino acid sequences, we obtained an AHSV-BTV-EHDV consensus sequence for VP5 (viral protein 5) and for VP7 (viral protein 7) and generated homology models for these proteins. The structures and sequences were analyzed for amino acid sequence conservation, entropy, surface accessibility, and epitope propensity, to computationally determine whether consensus sequences still possess potential epitope regions. In total, 5 potential linear epitope regions on VP5 and 11 on VP7, as well as potential discontinuous B-cell epitopes, were identified and mapped onto the homology models created. Regions identified for VP5 and VP7 could be important in vaccine design against orbiviruses.
Collapse
Affiliation(s)
- Bonnie L Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Nishal Parbhoo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|