1
|
Aishwarya D, Ramakant Dhampalwar V, Pallaprolu N, Peraman R. Nitrosamine Drug Substance-Related Impurities (NDSRIs) in Pharmaceuticals: Formation, Mitigation Strategies, and Emphasis on Mutagenicity Risks. Pharm Res 2025:10.1007/s11095-025-03857-9. [PMID: 40268857 DOI: 10.1007/s11095-025-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES To investigate the formation, detection, mutagenicity, and control strategies of nitrosamine drug substance-related impurities (NDSRIs) in pharmaceutical formulations, emphasizing regulatory compliance, risk mitigation, and the establishment of acceptable intake (AI) limits for enhanced drug safety. METHODS This study reviews the NDSRI formation and mutagenicity assessment methods, including in silico, in vitro, and in vivo assays. It also explores mitigation strategies and approaches for determining AI limits. RESULTS The findings indicate that NDSRIs are primarily formed through the nitrosation of APIs containing amine groups, with key risk factors including reactive functional groups and interactions between drugs and excipients. Mutagenicity evaluation revealed that while in silico and in vitro assays provide initial insights, in vivo assays offer more comprehensive and biologically relevant data by capturing complex metabolic processes and systemic interactions. Effective mitigation strategies, such as optimizing the manufacturing conditions and using nitrosation inhibitors, are crucial in reducing NDSRI formation. Approaches like the carcinogenic potency categorization (CPCA) and read-across methods are proposed for determining AI limits, facilitating safer exposure thresholds and supporting regulatory compliance. CONCLUSION A multifaceted approach is vital for managing NDSRIs in pharmaceuticals. Comprehensive mutagenicity testing, especially in vivo assays, provides biologically relevant insights into NDSRI-associated risks. Implementing control strategies and, determining AI limits are key to minimizing exposure. Strengthening regulatory frameworks and industry practices improves drug safety, quality, and public health protection.
Collapse
Affiliation(s)
- Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Vaishnavi Ramakant Dhampalwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Nikhil Pallaprolu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India.
| |
Collapse
|
2
|
Frydrych A, Jurowski K. The comprehensive prediction of carcinogenic potency and tumorigenic dose (TD 50) for two problematic N-nitrosamines in food: NMAMPA and NMAMBA using toxicology in silico methods. Chem Biol Interact 2024; 389:110864. [PMID: 38199258 DOI: 10.1016/j.cbi.2024.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The identification and toxicological assessment of potential carcinogens is of paramount importance for public health and safety. This study aimed to predict the carcinogenic potency and tumorigenic dose (TD50) for two problematic N-nitrosamines (N-NAs) commonly found in food: N-2-methylpropyl-N-1-methylacetonylnitrosamine (NMAMPA, CAS: 93755-83-0) and N-3-Methylbutyl-N-1-methylacetonylnitrosamine (NMAMBA, CAS: 71016-15-4). To achieve this goal, in silico toxicology methods were employed due to their practical applications and potential in risk assessment. The justification for conducting these studies was incoherent results published by the European Food Safety Authority (EFSA). For this purpose, we applied various in silico tools, including qualitative methods (ToxTree, ProTox II and CarcinoPred-EL) and quantitative methods (QSAR Toolbox and LAZAR) were applied to predict the carcinogenic potency. These tools leverage computational approaches to analyze chemical structures for finding toxicophores and generating predictions, making them efficient alternatives to traditional in vivo experiments. The results obtained indicated that N-NAs are carcinogenic compounds, and quantitative data was obtained in the form of estimated doses of TD50 for the compounds tested.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
3
|
Kobets T, Hickey C, Johnson G, Duan JD, Etter S, Smith B, Williams GM. Assessment of no-observed-effect-levels for DNA adducts formation by genotoxic carcinogens in fetal turkey livers. Toxicology 2024; 501:153714. [PMID: 38141718 DOI: 10.1016/j.tox.2023.153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | - Jian-Dong Duan
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Benjamin Smith
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Gary M Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Kim ST, Shao K, Oleschkewitz C, Hamilton R. Margin of exposure to free formaldehyde in personal care products containing formaldehyde-donor preservatives: Evidence for consumer safety. Regul Toxicol Pharmacol 2023; 145:105519. [PMID: 37866701 DOI: 10.1016/j.yrtph.2023.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Formaldehyde has been classified as carcinogenic to humans by International Agency for Research on Cancer and found in personal care (PC) products containing formaldehyde-donor (FD) preservatives. However, the cancer risk associated with the use of FD-containing PC products has not been well established. Our study provides the quantitative cancer risk assessment of formaldehyde in FD-containing PC products. The carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy was used in this risk assessment to provide reliable exposure information to formaldehyde in PC products and aqueous solutions containing sodium hydroxymethylglycinate. The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMDs) for 10% effect. For hemolymphoreticular neoplasias in male rats, a BMD of 28.03 mg/kg/day and a BMD lower confidence limit (BMDL) of 2.52 mg/kg/day were calculated from available long-term animal experiments. The worst-case consumer exposure to formaldehyde from FD-containing PC products was 0.007 μg/kg/day. Comparing the consumer exposure with BMDL, the resulting MOE was 360,000 for the worst-case scenario. The consumer exposure to formaldehyde (0.007 μg/kg/day) from using FD-containing PC products represents less than 1.0 × 10-6 % of background level endogenous formaldehyde (878-1310 mg/kg/day). The cancer risk from formaldehyde to consumers using FD-containing PC products is negligible.
Collapse
Affiliation(s)
- Sang-Tae Kim
- Product Safety & Toxicology, Ashland LLC, Wilmington, DE, USA.
| | - Kan Shao
- Department of Environmental and Occupational Health Indiana University School of Public Health, 1025 E. Seventh Street, Bloomington, IN, USA
| | | | - Ryan Hamilton
- Product Safety & Toxicology, Ashland LLC, Wilmington, DE, USA
| |
Collapse
|
5
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
6
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Cox LA, Ketelslegers HB, Lewis RJ. The shape of low-concentration dose-response functions for benzene: implications for human health risk assessment. Crit Rev Toxicol 2021; 51:95-116. [PMID: 33853483 DOI: 10.1080/10408444.2020.1860903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/21/2022]
Abstract
Are dose-response relationships for benzene and health effects such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations, e.g. below 1 ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic information and modern data science techniques to quantify air benzene-urinary metabolite relationships in a previously studied data set for Tianjin, China factory workers. We find that physiologically based pharmacokinetics (PBPK) models and data for Tianjin workers show approximately linear production of benzene metabolites for air benzene (AB) concentrations below about 15 ppm, with modest sublinearity at low concentrations (e.g. below 5 ppm). Analysis of the Tianjin worker data using partial dependence plots reveals that production of metabolites increases disproportionately with increases in air benzene (AB) concentrations above 10 ppm, exhibiting steep sublinearity (J shape) before becoming saturated. As a consequence, estimated cumulative exposure is not an adequate basis for predicting risk. Risk assessments must consider the variability of exposure concentrations around estimated exposure concentrations to avoid over-estimating risks at low concentrations. The same average concentration for a specified duration is disproportionately risky if it has higher variance. Conversely, if chronic inflammation via activation of inflammasomes is a critical event for induction of MDS and other health effects, then sufficiently low concentrations of benzene are predicted not to cause increased risks of inflammasome-mediated diseases, no matter how long the duration of exposure. Thus, we find no evidence that the dose-response relationship is supra-linear at low doses; instead sublinear or zero excess risk at low concentrations is more consistent with the data. A combination of physiologically based pharmacokinetic (PBPK) modeling, Bayesian network (BN) analysis and inference, and partial dependence plots appears a promising and practical approach for applying current data science methods to advance benzene risk assessment.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates LLC, Denver, CO, USA
- Department of Business Analytics, University of Colorado, Denver, CO, USA
| | - Hans B Ketelslegers
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium
| | - R Jeffrey Lewis
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium
- ExxonMobil Biomedical Sciences, Inc, Clinton, NJ, USA
| |
Collapse
|
8
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
9
|
Nickel Nanoparticles Induce the Synthesis of a Tumor-Related Polypeptide in Human Epidermal Keratinocytes. NANOMATERIALS 2020; 10:nano10050992. [PMID: 32455808 PMCID: PMC7279538 DOI: 10.3390/nano10050992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Although nickel allergy and carcinogenicity are well known, their molecular mechanisms are still uncertain, thus demanding studies at the molecular level. The nickel carcinogenicity is known to be dependent on the chemical form of nickel, since only certain nickel compounds can enter the cell. This study investigates, for the first time, the cytotoxicity, cellular uptake, and molecular targets of nickel nanoparticles (NiNPs) in human skin cells in comparison with other chemical forms of nickel. The dose-response curve that was obtained for NiNPs in the cytotoxicity assays showed a linear behavior typical of genotoxic carcinogens. The exposure of keratinocytes to NiNPs leads to the release of Ni2+ ions and its accumulation in the cytosol. A 6 kDa nickel-binding molecule was found to be synthesized by cells exposed to NiNPs at a dose corresponding to medium mortality. This molecule was identified to be tumor-related p63-regulated gene 1 protein.
Collapse
|
10
|
Metzler M, Bitsch A, Degen GH. The life of Hans-Günter Neumann and his contributions to chemical carcinogenesis. Arch Toxicol 2020; 94:1773-1778. [DOI: 10.1007/s00204-020-02713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
11
|
Sykes PJ. Until There Is a Resolution of the Pro-LNT/Anti-LNT Debate, We Should Head Toward a More Sensible Graded Approach for Protection From Low-Dose Ionizing Radiation. Dose Response 2020; 18:1559325820921651. [PMID: 32425725 PMCID: PMC7218310 DOI: 10.1177/1559325820921651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023] Open
Abstract
Current regulation of ionizing radiation is based on the linear no-threshold (LNT) model where any radiation dose increases cancer risk and is independent of dose rate, resulting in large amounts of time and money being spent protecting from extremely small radiation exposures and hence extremely small risk. There are animal studies which demonstrate that LNT is incorrect at low doses, supporting a threshold or hormesis model and thus indicating that there is no need to protect from very low doses. This has led to a sometimes bitter debate between pro-LNT and anti-LNT camps, and the debate has been at a stalemate for some time. This commentary is not aimed at taking either side of the debate. It is likely that the public, workers, and the environment are adequately protected under current regulation, which is the most important outcome. Until those on one side of the debate can convince the other, it would be sensible to move forward toward a graded (risk-based) approach to regulation, where the stringency of control is commensurate with the risk, resulting hopefully in more sensible practical thresholds. This approach is gradually being put forward by international radiation protection advisory bodies.
Collapse
Affiliation(s)
- Pamela J Sykes
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University. Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Paz MFCJ, de Alencar MVOB, de Lima RMP, Sobral ALP, do Nascimento GTM, dos Reis CA, Coêlho MDPSDS, do Nascimento MLLB, Gomes Júnior AL, Machado KDC, de Menezes AAPM, de Lima RMT, de Oliveira Filho JWG, Dias ACS, dos Reis AC, da Mata AMOF, Machado SA, Sousa CDDC, da Silva FCC, Islam MT, de Castro e Sousa JM, Melo Cavalcante AADC. Pharmacological Effects and Toxicogenetic Impacts of Omeprazole: Genomic Instability and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3457890. [PMID: 32308801 PMCID: PMC7146093 DOI: 10.1155/2020/3457890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
Omeprazole (OME) is commonly used to treat gastrointestinal disorders. However, long-term use of OME can increase the risk of gastric cancer. We aimed to characterize the pharmacological effects of OME and to correlate its adverse effects and toxicogenetic risks to the genomic instability mechanisms and cancer-based on database reports. Thus, a search (till Aug 2019) was made in the PubMed, Scopus, and ScienceDirect with relevant keywords. Based on the study objective, we included 80 clinical reports, forty-six in vitro, and 76 in vivo studies. While controversial, the findings suggest that long-term use of OME (5 to 40 mg/kg) can induce genomic instability. On the other hand, OME-mediated protective effects are well reported and related to proton pump blockade and anti-inflammatory activity through an increase in gastric flow, anti-inflammatory markers (COX-2 and interleukins) and antiapoptotic markers (caspases and BCL-2), glycoprotein expression, and neutrophil infiltration reduction. The reported adverse and toxic effects, especially in clinical studies, were atrophic gastritis, cobalamin deficiencies, homeostasis disorders, polyp development, hepatotoxicity, cytotoxicity, and genotoxicity. This study highlights that OME may induce genomic instability and increase the risk of certain types of cancer. Therefore, adequate precautions should be taken, especially in its long-term therapeutic strategies and self-medication practices.
Collapse
Affiliation(s)
- Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | - André Luiz Pinho Sobral
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
- University Hospital, Teresina, PI, Brazil
| | | | | | | | | | - Antonio Luiz Gomes Júnior
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
- University Centre UNINOVAFAPI, Teresina, PI, Brazil
| | | | | | - Rosália Maria Torres de Lima
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Ana Carolina Soares Dias
- Laboratory of Genetics and Molecular Biology, Federal University of Maranhão, São Luís, MA, Brazil
| | - Antonielly Campinho dos Reis
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Department of Biological Sciences, Federal University of Piauí, Picos, PI, Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | | | - Ana Amélia de Carvalho Melo Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| |
Collapse
|
13
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
14
|
Buchholz BA, Carratt SA, Kuhn EA, Collette NM, Ding X, Van Winkle LS. Naphthalene DNA Adduct Formation and Tolerance in the Lung. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B, BEAM INTERACTIONS WITH MATERIALS AND ATOMS 2019; 438:119-123. [PMID: 30631217 PMCID: PMC6322674 DOI: 10.1016/j.nimb.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Naphthalene (NA) is a respiratory toxicant and possible human carcinogen. NA is a ubiquitous combustion product and significant component of jet fuel. The National Toxicology Program found that NA forms tumors in two species, in rats (nose) and mice (lung). However, it has been argued that NA does not pose a cancer risk to humans because NA is bioactivated by cytochrome P450 monooxygenase enzymes that have very high efficiency in the lung tissue of rodents but low efficiency in the lung tissue of humans. It is thought that NA carcinogenesis in rodents is related to repeated cycles of lung epithelial injury and repair, an indirect mechanism. Repeated in vivo exposure to NA leads to development of tolerance, with the emergence of cells more resistant to NA insult. We tested the hypothesis that tolerance involves reduced susceptibility to the formation of NA-DNA adducts. NA-DNA adduct formation in tolerant mice was examined in individual, metabolically-active mouse airways exposed ex vivo to 250 μΜ 14C-NA. Ex vivo dosing was used since it had been done previously and the act of creating a radioactive aerosol of a potential carcinogen posed too many safety and regulatory obstacles. Following extensive rinsing to remove unbound 14C-NA, DNA was extracted and 14C-NA-DNA adducts were quantified by AMS. The tolerant mice appeared to have slightly lower NA-DNA adduct levels than non-tolerant controls, but intra-group variations were large and the difference was statistically insignificant. It appears the tolerance may be more related to other mechanisms, such as NA-protein interactions in the airway, than DNA-adduct formation.
Collapse
Affiliation(s)
- Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Sarah A Carratt
- Center for Health and the Environment, University of California, Davis, CA USA
| | - Edward A Kuhn
- Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Nicole M Collette
- Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, Davis, CA USA
| |
Collapse
|
15
|
Abstract
Human biomonitoring studies aim to identify potential exposures to environmental, occupational, or lifestyle toxicants in human populations and are commonly used by public health decision makers to predict disease risk. The Comet assay measures changes in genomic stability and is one of the most reliable biomarkers to indicate early biological effects and therefore accepted by various governmental regulatory agencies. The appeal of the Comet assay lies in its relative simplicity, rapidity, sensitivity, and economic efficiency. Furthermore, the assay is known for its broad versatility, as it can be applied to virtually any human cell and easily adapted in order to detect particular biomarkers of interest, such as DNA repair capacity or single and double-strand breaks. In a standard experiment, isolated single cells are first embedded in agarose, and then lysed in high-salt solutions in order to remove all cellular contents except the DNA attached to a nuclear scaffold. Subsequent electrophoresis results in accumulation of undamaged DNA sequences at the proximity of the nuclear scaffold, while damaged sequences migrate toward the anode. When visualized with fluorochromes, these migrated DNA fragments resemble a Comet tail and can be quantified for their intensity and shape according to internationally drafted guidelines.
Collapse
Affiliation(s)
- Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK.
| | - Alok Dhawan
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
16
|
Schrenk D. What is the meaning of 'A compound is carcinogenic'? Toxicol Rep 2018; 5:504-511. [PMID: 29854622 PMCID: PMC5977538 DOI: 10.1016/j.toxrep.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Chemical Carcinogens are compounds which can cause cancer in humans and experimental animals. This property is attributed to many chemicals in the public discussion, resulting in a widespread perception of danger and threat. In contrast, a scientific analysis of the wide and non-critical use of the term 'carcinogenic' is warranted. First, it has to be clarified if the compound acts in a genotoxic or non-genotoxic manner. In the latter case, an ineffective (safe) threshold dose without cancer risk can be assumed. In addition, it needs to be investigated if the mode-of-action causing tumors in laboratory animals is relevant at all for humans. In case the compound is clearly directly genotoxic, an ineffective threshold dose cannot be assumed. However, also in this case it is evident that high doses of the compound are generally associated with a high cancer risk, low doses with a lower one. Based on dose-response data from animal experiments, quantification of the cancer risk is carried out by mathematical modeling. If the safety margin between the lowest carcinogenic dose in animals and the relevant level of exposure in humans exceeds 10,000, the degree of concern is classified as low. Cases, where the compound turns out to be genotoxic in one study or one test only but not in others or only in vitro but not in vivo, are particularly difficult to explain and cause controversial discussions. Also for indirectly genotoxic agents, an ineffective (threshold) dose must be assumed. The situation is aggravated by the use of doubtful epidemiological studies in humans such as in the case of glyphosate, where data from mixed exposure to various chemicals were used. If such considerations are mixed with pure hazard classifications such as 'probably carcinogenic in humans' ignoring dose-response behavior and mode-of-action, the misinformation and public confusion are complete. It appears more urgent but also more difficult than ever to return to a scientifically based perception of these issues.
Collapse
|
17
|
Pack EC, Jang DY, Kim HS, Lee SH, Kim HY, Song SH, Cho HS, Kwon KH, Park KH, Lim KM, Choi DW. Mixture risk assessment of selected mainstream cigarette smoke constituents generated from low-yield cigarettes in South Korean smokers. Regul Toxicol Pharmacol 2018; 94:152-162. [PMID: 29408505 DOI: 10.1016/j.yrtph.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/28/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
A total of 38 hazardous constituents in mainstream cigarette smoke of low-yield cigarettes sold in Korea were selected and analyzed using established methods. Risk calculations were performed using risk algorithms employed in previous studies and Korean population-based exposure parameters. The median cumulative incremental lifetime cancer risk of male smokers could vary from 828 × 10-6 to 2510 × 10-6, and that of female smokers could range from 440 × 10-6 to 1300 × 10-6, depending on the smoking regimens. The median hazard index as the sum of hazard quotients of male smokers varied from 367 to 1,225, and that of female smokers varied from 289 to 970, depending on the smoking regimens. The sensitivity analysis for this risk assessment indicated that the constituent yields in mainstream cigarette smoke, average number of cigarettes smoked per day or year, and mouth-spill rate are the main risk factors. Statistical positive correlations between the average daily dose calculated by the exposure algorithm used in this study for individual smokers and biomarkers verified the reliability of this assessment. It could be concluded that inhalation of the constituents present in the mainstream of low-yield cigarettes has significant cancer and non-cancer health risks, although its effect on risk reduction is still unknown under the fixed machine-smoking conditions.
Collapse
Affiliation(s)
- Eun Chul Pack
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Dae Yong Jang
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hyung Soo Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Seung Ha Lee
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hae Young Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Seok Ho Song
- Korea Conformity Laboratories, Seoul, Republic of Korea
| | - Hoon Sik Cho
- Korea Conformity Laboratories, Seoul, Republic of Korea.
| | - Kyeng Hee Kwon
- College of Pharmacy, Dongguk University, Goyang-city, Gyeonggi-do, Republic of Korea
| | - Kun Ho Park
- Korea Chemical Management Association, Seoul, Republic of Korea
| | - Kyung Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dal Woong Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Kindrat I, Dreval K, Shpyleva S, Tryndyak V, de Conti A, Mudalige TK, Chen T, Erstenyuk AM, Beland FA, Pogribny IP. Effect of methapyrilene hydrochloride on hepatic intracellular iron metabolism in vivo and in vitro. Toxicol Lett 2017; 281:65-73. [DOI: 10.1016/j.toxlet.2017.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/22/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
|
19
|
Martinez-Valenzuela C, Soto FB, Waliszewski SM, Meza E, Arroyo SG, Martínez LDO, Meraz EA, Caba M. Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:539-546. [PMID: 27734313 DOI: 10.1007/s11356-016-7821-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.
Collapse
Affiliation(s)
- Carmen Martinez-Valenzuela
- Instituto de Investigación en Ambiente y Salud, Universidad de Occidente, Boulevard Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico.
| | - Fernanda Balderrama Soto
- Instituto de Investigación en Ambiente y Salud, Universidad de Occidente, Boulevard Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico
| | - Stefan M Waliszewski
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver, Mexico
| | - Sandra Gómez Arroyo
- Centro de Ciencias de la Atmósfera, UNAM, Circuito Exterior Ciudad Universitaria, 04510, Coyoacán, Mexico
| | - Luis Daniel Ortega Martínez
- Instituto de Investigación en Ambiente y Salud, Universidad de Occidente, Boulevard Macario Gaxiola y Carretera Internacional, Los Mochis, Sinaloa, Mexico
| | - Eliakym Arambula Meraz
- Laboratorio de Genética y Biología Molecular, Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Universitarios s/n Ciudad Universitaria, 80010, Culiacán, Sinaloa, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver, Mexico
| |
Collapse
|
20
|
Zaballa I, Eidemüller M. Mechanistic study on lung cancer mortality after radon exposure in the Wismut cohort supports important role of clonal expansion in lung carcinogenesis. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:299-315. [PMID: 27334643 DOI: 10.1007/s00411-016-0659-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Lung cancer mortality after radon exposure in the Wismut cohort was analyzed using the two-stage clonal expansion (TSCE) model. A total of 2996 lung cancer deaths among the 58,695 male workers were observed during the follow-up period between 1946 and 2003. Adjustment to silica exposure was performed to find a more accurate estimation of the risk of radon exposure. An additional analysis with the descriptive excess relative risk (ERR) model was carried out for comparison. The TSCE model that best describes the data is nonlinear in the clonal expansion with radon exposure and has a saturation level at an exposure rate of [Formula: see text]. The excess relative risk decreases with age and shows an inverse exposure rate effect. In comparison with the ERR model, the TSCE model predicts a considerably larger risk for low exposures rates below [Formula: see text]. Comparison to other mechanistic studies of lung cancer after exposure to alpha particles using the TSCE model reveals an extraordinary consistency in the main features of the exposure response, given the diversity in the characteristics of the cohorts and the exposure across different studies. This suggests that a nonlinear response mechanism in the clonal expansion, with some level of saturation at large exposure rates, may be playing a crucial role in the development of lung cancer after alpha particle irradiation.
Collapse
Affiliation(s)
- I Zaballa
- Institute of Radiation Protection, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - M Eidemüller
- Institute of Radiation Protection, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| |
Collapse
|
21
|
Beronius A, Vandenberg LN. Using systematic reviews for hazard and risk assessment of endocrine disrupting chemicals. Rev Endocr Metab Disord 2015; 16:273-87. [PMID: 26847432 PMCID: PMC4803521 DOI: 10.1007/s11154-016-9334-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possibility that endocrine disrupting chemicals (EDCs) in our environment contribute to hormonally related effects and diseases observed in human and wildlife populations has caused concern among decision makers and researchers alike. EDCs challenge principles traditionally applied in chemical risk assessment and the identification and assessment of these compounds has been a much debated topic during the last decade. State of the science reports and risk assessments of potential EDCs have been criticized for not using systematic and transparent approaches in the evaluation of evidence. In the fields of medicine and health care, systematic review methodologies have been developed and used to enable objectivity and transparency in the evaluation of scientific evidence for decision making. Lately, such approaches have also been promoted for use in the environmental health sciences and risk assessment of chemicals. Systematic review approaches could provide a tool for improving the evaluation of evidence for decision making regarding EDCs, e.g. by enabling systematic and transparent use of academic research data in this process. In this review we discuss the advantages and challenges of applying systematic review methodology in the identification and assessment of EDCs.
Collapse
Affiliation(s)
- Anna Beronius
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst School of Public Health & Health Sciences, Amherst, MA, USA
| |
Collapse
|
22
|
Bunimovich-Mendrazitsky S, Pisarev V, Kashdan E. Modeling and simulation of a low-grade urinary bladder carcinoma. Comput Biol Med 2015; 58:118-29. [DOI: 10.1016/j.compbiomed.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
|
23
|
Mathieu-Huart A, De Lentdecker C, Rivière G, Sissoko F, Rousselle C. Valeurs sanitaires de référence (VR) de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES). ARCH MAL PROF ENVIRO 2014. [DOI: 10.1016/j.admp.2014.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Muncke J. Food Contact Materials: Practices, Agencies and Challenges. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Boobis A, Flari V, Gosling JP, Hart A, Craig P, Rushton L, Idahosa-Taylor E. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures. Food Chem Toxicol 2013; 57:106-18. [PMID: 23507349 DOI: 10.1016/j.fct.2013.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/06/2013] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
Abstract
The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship.
Collapse
Affiliation(s)
- Alan Boobis
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, Hammersmith Campus, Ducane Road, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Human biomonitoring studies aim to identify potential exposures to environmental, occupational, or lifestyle toxicants in human populations and are commonly used by public health decision makers to predict disease risk. The Comet assay measures changes in genomic stability and is one of the most reliable biomarkers to indicate early biological effects, and therefore accepted by various governmental regulatory agencies. The appeal of the Comet assay lies in its relative simplicity, rapidity, sensitivity, and economic efficiency. Furthermore, the assay is known for its broad versatility, as it can be applied to virtually any human cell and easily adapted in order to detect particular biomarkers of interest, such as DNA repair capacity or single- and double-strand breaks. In a standard experiment, isolated single cells are first embedded in agarose, and then lysed in high-salt solutions in order to remove all cellular contents except the DNA attached to a nuclear scaffold. Subsequent electrophoresis results in accumulation of undamaged DNA sequences at the proximity of the nuclear scaffold, while damaged sequences migrate towards the anode. When visualized with fluorochromes, these migrated DNA fragments resemble a comet tail and can be quantified for their intensity and shape according to internationally drafted guidelines.
Collapse
Affiliation(s)
- Diana Anderson
- Biomedical Sciences Division, School of Life Sciences, University of Bradford, Bradford, UK
| | | | | |
Collapse
|
27
|
Quantitative risk assessment methods for cancer and noncancer effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012. [PMID: 22974743 DOI: 10.1016/b978-0-12-415813-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Human health risk assessments have evolved from the more qualitative approaches to more quantitative approaches in the past decade. This has been facilitated by the improvement in computer hardware and software capability and novel computational approaches being slowly recognized by regulatory agencies. These events have helped reduce the reliance on experimental animals as well as better utilization of published animal toxicology data in deriving quantitative toxicity indices that may be useful for risk management purposes. This chapter briefly describes some of the approaches as described in the guidance documents from several of the regulatory agencies as it pertains to hazard identification and dose-response assessment of a chemical. These approaches are contrasted with more novel computational approaches that provide a better grasp of the uncertainty often associated with chemical risk assessments.
Collapse
|
28
|
Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Swenberg JA, Beland FA, Pardo-Manuel deVillena F, Rusyn I, Pogribny IP. Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci 2011; 122:448-56. [PMID: 21602187 PMCID: PMC3155089 DOI: 10.1093/toxsci/kfr133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/11/2011] [Indexed: 12/18/2022] Open
Abstract
1,3-Butadiene (BD) is a common environmental contaminant classified as "carcinogenic to humans." Formation of BD-induced DNA adducts plays a major role in its carcinogenicity. BD is also an epigenotoxic agent (i.e., it affects DNA and histone methylation in the liver). We used a panel of genetically diverse inbred mice (NOD/LtJ, CAST/EiJ, A/J, WSB/EiJ, PWK/PhJ, C57BL/6J, and 129S1/SvImJ) to assess whether BD-induced genotoxic and epigenotoxic events may be subject to interstrain differences. Mice (male, 7 weeks) were exposed via inhalation to 0 or 625 ppm BD for 6 h/day and 5 days/week for 2 weeks and liver BD-DNA adducts, epigenetic alterations, and liver toxicity were assessed. N-7-(2,3,4-trihydroxybut-1-yl)-guanine adducts were detected in all strains after exposure, yet BD-induced DNA damage in CAST/EiJ mice was two to three times lower. Epigenetic effects of BD were most prominent in C57BL/6J mice where loss of global DNA methylation and loss of trimethylation of histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20, accompanied by dysregulation of liver gene expression indicative of hepatotoxicity, were found. Interestingly, we observed an increase in histone methylation in the absence of changes in gene expression and DNA methylation in CAST/EiJ strain. We hypothesized that mitigated genotoxicity of BD in CAST/EiJ mice may be due to chromatin condensation. Indeed, we show that in response to BD exposure, chromatin condensation occurs in CAST/EiJ, whereas the opposite effect is observed in C57BL/6J mice. These findings demonstrate that interstrain susceptibility to genotoxicity by a well-known environmental carcinogen may be due to strain-specific epigenetic events in response to the exposure.
Collapse
Affiliation(s)
- Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Anne Scherhag
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
- Technical University of Kaiserslautern, Kaiserslautern, Rheinland-Pfalz 67663, Germany
| | | | | | - Wanda Bodnar
- Department of Environmental Sciences and Engineering
| | - James A. Swenberg
- Curriculum in Toxicology
- Department of Environmental Sciences and Engineering
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Ivan Rusyn
- Curriculum in Toxicology
- Department of Environmental Sciences and Engineering
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
29
|
Paini A, Scholz G, Marin-Kuan M, Schilter B, O'Brien J, van Bladeren PJ, Rietjens IMCM. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays. Mutagenesis 2011; 26:605-18. [PMID: 21642616 DOI: 10.1093/mutage/ger022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.
Collapse
Affiliation(s)
- Alicia Paini
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Piersma AH, Hernandez LG, van Benthem J, Muller JJA, van Leeuwen FR, Vermeire TG, van Raaij MTM. Reproductive toxicants have a threshold of adversity. Crit Rev Toxicol 2011; 41:545-54. [DOI: 10.3109/10408444.2011.554794] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Lee MS, Su L, Mark EJ, Wain JC, Christiani DC. Genetic modifiers of carcinogen DNA adducts in target lung and peripheral blood mononuclear cells. Carcinogenesis 2010; 31:2091-6. [PMID: 20935060 DOI: 10.1093/carcin/bgq208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Measurement of carcinogen DNA adducts in blood has been used as a surrogate for the target lung tissue. We aimed to examine whether genetic polymorphisms in several metabolic pathway genes modify the relation between DNA adducts in target lung and blood. One hundred and thirty-five early-stage lung cancer patients from the Massachusetts General Hospital were studied. DNA adducts were measured by the (32)P-postlabeling assay in lung and blood mononuclear cells (MNCs) in a subset of 53 who had paired blood samples. Single-nucleotide polymorphisms (SNPs) were assessed in genes involved in phase II (GSTs, NAT2, EPHX and NQO1), DNA repair (ERCC1, ERCC2 and XRCC1) and DNA methylation (MTHFR C677T and A1298C) pathways. There was a significant correlation between DNA adduct levels in lung and blood within the different genotypes, with one exception. Significant modifications in adducts were found by variants in genes for phase II metabolism [NAT2 (1.51 for rapid versus 0.76 for slow, P = 0.022)], DNA repair [ERCC1 C118T (P = 0.014), ERCC2 (P = 0.003) and XRCC1 (P = 0.025)] and MTHFR [C677T (P = 0.005) and A1298C (P = 0.005)]. The relation between DNA adducts in blood MNCs and target lung tissue was significantly modified by the single-nucleotide polymorphisms in the three main pathways. Despite the relatively small sample size, our results suggest that genetic factors may need to be considered when assessing the association of DNA adducts using surrogate tissue in studies of lung cancer. Further studies are needed to better understand their role and the mechanisms.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
A strategy to study genotoxicity: application to aquatic toxins, limits and solutions. Anal Bioanal Chem 2010; 397:1715-22. [DOI: 10.1007/s00216-010-3699-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
|
33
|
Matsumoto K, Huang J, Viswakarma N, Bai L, Jia Y, Zhu YT, Yang G, Borensztajn J, Rao MS, Zhu YJ, Reddy JK. Transcription coactivator PBP/MED1-deficient hepatocytes are not susceptible to diethylnitrosamine-induced hepatocarcinogenesis in the mouse. Carcinogenesis 2009; 31:318-25. [PMID: 20007298 PMCID: PMC2812575 DOI: 10.1093/carcin/bgp306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nuclear receptor coactivator [peroxisome proliferator-activated receptor-binding protein (PBP)/mediator subunit 1 (MED1)] is a critical component of the mediator transcription complex. Disruption of this gene in the mouse results in embryonic lethality. Using the PBP/MED1 liver conditional null (PBP/MED1ΔLiv) mice, we reported that PBP/MED1 is essential for liver regeneration and the peroxisome proliferator-activated receptor α ligand Wy-14,643-induced receptor-mediated hepatocarcinogenesis. We now examined the role of PBP/MED1 in genotoxic chemical carcinogen diethylnitrosamine (DEN)-induced and phenobarbital-promoted hepatocarcinogenesis. The carcinogenic process was initiated by a single intraperitoneal injection of DEN at 14 days of age and initiated cells were promoted with phenobarbital (PB) (0.05%) in drinking water. PBP/MED1ΔLiv mice, killed at 1, 4 and 12 weeks, revealed a striking proliferative response of few residual PBP/MED1-positive hepatocytes that escaped Cre-mediated deletion of PBP/MED1 gene. No proliferative expansion of PBP/MED1 null hepatocytes was noted in the PBP/MED1ΔLiv mouse livers. Multiple hepatocellular carcinomas (HCCs) developed in the DEN-initiated PBP/MED1fl/fl and PBP/MED1ΔLiv mice, 1 year after the PB promotion. Of interest is that all HCC developing in PBP/MED1ΔLiv mice were PBP/MED1 positive. None of the tumors was PBP/MED1 negative implying that hepatocytes deficient in PBP/MED1 are not susceptible to neoplastic conversion. HCC that developed in PBP/MED1ΔLiv mouse livers were transplantable in athymic nude mice and these maintained PBP/MED1fl/fl genotype. PBP/MED1fl/fl HCC cell line derived from these tumors expressed PBP/MED1 and deletion of PBP/MED1fl/fl allele by adeno-Cre injection into tumors caused necrosis of tumor cells. These results indicate that PBP/MED1 is essential for the development of HCC in the mouse.
Collapse
Affiliation(s)
- Kojiro Matsumoto
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|