1
|
Jang H, Calder L, Choi JW, Kwon BR, Pearce EN, Shin HM. Associations between exposure to sodium/iodide symporter inhibitors and markers of thyroid function: A systematic review and meta-analysis. CHEMOSPHERE 2025; 372:144098. [PMID: 39798720 DOI: 10.1016/j.chemosphere.2025.144098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are well-known sodium/iodide symporter (NIS) inhibitors that disturb iodide uptake at the thyroid, affecting thyroid function. However, the associations between NIS inhibitor exposure and thyroid function are not well summarized in humans. OBJECTIVE We aimed to summarize associations between NIS inhibitor exposure and thyroid function markers and to identify key information gaps for future studies. METHODS From four databases (Embase, Web of Science, PubMed, CINAHL plus) up to May 31, 2024, we systematically searched studies that examined associations between levels of the three NIS inhibitors and thyroid hormones, including free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), and total triiodothyronine (TT3) as well as thyroid-stimulating hormone (TSH). We also conducted a random-effects meta-analysis to estimate the pooled effect size of the associations between NIS inhibitor levels and thyroid function marker levels. RESULTS Of 2,588 identified studies, we selected 9 studies for full-text review and 4 studies for a meta-analysis. The association between perchlorate and TSH was primarily studied and only three studies considered iodine concentrations. As a result of a meta-analysis, TSH levels were positively associated with levels of combined NIS inhibitors [β: 0.105; 95% confidence interval (CI): 0.046, 0.160] and perchlorate [β = 0.133; 95% CI: 0.056, 0.211]. We found negative trends between NIS inhibitors and FT3 and TT4 and positive but nonsignificant trends between FT3 and perchlorate and between TT4 and thiocyanate. CONCLUSIONS Our study provided comprehensive evidence on the association between exposure to NIS inhibitors and thyroid function markers in humans, aligning with the mechanisms observed in in vivo studies.
Collapse
Affiliation(s)
- Hyuna Jang
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Luke Calder
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ba Reum Kwon
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 PMCID: PMC11816580 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
3
|
Zhang L, Peng Y, Song Y, Zhang Y, Qin Q, Ying M, Bi Y, Yin P. Associations of Urinary Perchlorate, Nitrate, and Thiocyanate with Female Infertility and Mediation of Obesity: Insights from NHANES 2013-2018. TOXICS 2024; 13:15. [PMID: 39853015 PMCID: PMC11769535 DOI: 10.3390/toxics13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.Z.); (Y.P.); (Y.S.); (Y.Z.); (Q.Q.); (M.Y.); (Y.B.)
| |
Collapse
|
4
|
Lachowicz JI, Alexander J, Aaseth JO. Cyanide and Cyanogenic Compounds-Toxicity, Molecular Targets, and Therapeutic Agents. Biomolecules 2024; 14:1420. [PMID: 39595596 PMCID: PMC11591714 DOI: 10.3390/biom14111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of antidotal actions, which, together with information on various exposure sources, are reviewed in the present article. A literature search in Scopus, Embase, Web of Science, PubMed, and Google Scholar for the period 2001-2024 revealed that the CN anion after exposure or degradation of CN compounds is distributed to vulnerable copper and iron-containing targets, especially in mitochondria, thus blocking the electron transport chain. Intake of cyanogenic compounds may exert subacute or chronic toxic effects, also because of the interaction with cobalt in vitamin B12. Antidotal agents exert their effects through the affinity of CN for cobalt- or iron-containing compounds. Research on CN interactions with metalloproteins may increase our insight into CN toxicity and efficient antidotal regimens.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | - Jan Alexander
- Norwegian Institute of Public Health (NIPH), N-0213 Oslo, Norway;
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| |
Collapse
|
5
|
Araújo F, Dória ML, Beliaev A, Kiss LE, Bonifácio MJ, Holenz J, Soares-da-Silva P, Loureiro AI. Metabolism and disposition of zamicastat in rats. Xenobiotica 2024; 54:796-807. [PMID: 39359020 DOI: 10.1080/00498254.2024.2411993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
The metabolism and disposition of zamicastat, a reversible dopamine β-hydroxylase (DβH) inhibitor, developed for treatment of Pulmonary Arterial Hypertension (PAH), were investigated in rats after oral and intravenous administration of [14C]-zamicastat.Zamicastat was rapidly absorbed and widely distributed to peripheral tissues, with total radioactivity almost completely recovered 168 h post-dose. Its main route of excretion was via faeces, whilst urine and expired air had minor roles.Maximum plasma concentration of zamicastat-related radioactivity occurred in the first hours, remaining quantifiable up to 144 h. The unchanged zamicastat plasma peak was 2 h post-dose and declined to low levels over 24 h.Zamicastat metabolism occurs largely during the first 8 h with only one metabolite identified in the latest time-point (96 h), the isothiocyanic acid/thiocyanic acid (tautomeric forms). Zamicastat metabolic pathway involved multiple reactions comprising desulphurisation, oxidative desulphurisation, N-debenzylation followed by further oxidation or N-acetylation, and the unexpected multistep metabolic pathway leading to isothiocyanic acid/thiocyanic acid.
Collapse
Affiliation(s)
- Francisca Araújo
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - Maria Luisa Dória
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - Alexandre Beliaev
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - László E Kiss
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - Maria João Bonifácio
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - Joerg Holenz
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, University of Porto, Porto, Portugal
- MedInUp - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Ana Isabel Loureiro
- Department of Research and Development, BIAL - Portela & Ca. S.A., São Mamede do Coronado, Portugal
| |
Collapse
|
6
|
Zhao H, Chen X, Ni J, Fang L, Chen Y, Ma Y, Cai G, Pan F. Associations of perchlorate, nitrate, and thiocyanate exposure with arthritis and inflammation indicators in young and middle-aged adults, NHANES 2005-2016. Front Immunol 2024; 15:1318737. [PMID: 38495893 PMCID: PMC10940346 DOI: 10.3389/fimmu.2024.1318737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Perchlorates, nitrates, and thiocyanates are prevalent environmental chemicals. Their potential association with arthritis remains unexplored. This study aimed to investigate the link between perchlorate, nitrate, and thiocyanate exposure and arthritis, as well as the potential role of inflammation in this context. Methods Utilizing the National Health and Nutrition Examination Survey (NHANES) data spanning from 2005 to 2016, the study enrolled 6597 participants aged 20-59 (young and middle-aged), of which 1045 had arthritis. Employing multivariate logistic regression modeling, multiple linear regression models, restricted cubic spline analysis, Bayesian kernel machine regression (BKMR) modeling, and mediation analysis, we assessed these relationships. Results There was a significant positive association between elevated urinary thiocyanate levels and arthritis risk [1.19 (1.11, 1.28)]. This association held true across subgroups of osteoarthritis (OA) [1.24 (1.10, 1.40)] and rheumatoid arthritis (RA) [1.33 (1.15, 1.55)]. Thiocyanate levels displayed a dose-dependent relationship with arthritis risk, showing a linear trend (nonlinear P > 0.05). Conversely, perchlorate and nitrate did not exhibit associations with arthritis risk. BKMR outcomes highlighted a positive correlation between a mixture of perchlorate, nitrate, and thiocyanate and arthritis risk, with thiocyanate being the predominant predictors. Moreover, BKMR and generalized linear model analyses unveiled no significant synergistic effect of urinary perchlorate, nitrate, and thiocyanate on arthritis risk. Furthermore, thiocyanate exposure has been linked to elevated levels of inflammatory indicators (white blood cell, neutrophils, lymphocytes, and systemic immune-inflammatory index (SII)). Conclusion Heightened thiocyanate exposure may be linked to elevated arthritis risk, either single or in combined effects. Additionally, thiocyanate exposure is associated with heightened inflammation levels.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Li J, Tu F, Wan Y, Qian X, Mahai G, Wang A, Ma J, Yang Z, Xia W, Xu S, Zheng T, Li Y. Associations of Trimester-Specific Exposure to Perchlorate, Thiocyanate, and Nitrate with Childhood Neurodevelopment: A Birth Cohort Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20480-20493. [PMID: 38015815 DOI: 10.1021/acs.est.3c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Studies about the impacts of maternal exposure to perchlorate, thiocyanate, and nitrate on offspring neurodevelopment are scarce. Based on a birth cohort in China, 1,028 mothers provided urine samples at three trimesters for determination of the three target analytes, and their offspring neurodevelopment was evaluated at 2 years old. Associations of maternal exposure to the three chemicals with offspring neurodevelopment were estimated using three statistical methods. Trimester-specific analyses using generalized estimating equation models showed that double increment of thiocyanate and nitrate during the first trimester was associated with 1.56 (95% CI: -2.82, -0.30) and 1.22 (-2.40, -0.03) point decreases in the offspring mental development index (MDI), respectively. Weighted quantile sum (WQS) regression analyses showed that the mixture exposure at the first and second trimesters was negatively associated with the offspring MDI (β = -2.39, 95% CI: -3.85, -0.93; β = -1.75, 95% CI: -3.04, -0.47, respectively) and thiocyanate contributed the most to the association (65.0 and 91.6%, respectively). Bayesian kernel machine regression analyses suggested an inverted U-shape relationship of maternal urinary thiocyanate with the offspring MDI. These findings suggested that prenatal exposure to the three chemicals (at current levels), especially thiocyanate and nitrate, may impair neurodevelopment. Early pregnancy seems to be the sensitive window.
Collapse
Affiliation(s)
- Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Fengqin Tu
- Wuhan Institute for Food and Cosmetic Control, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430040, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiaolong Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
8
|
Guan J, Wan Y, Li J, Zheng T, Xia W, Xu S, Li Y. Urinary perchlorate, thiocyanate, and nitrate and their associated risk factors among Chinese pregnant women. CHEMOSPHERE 2023; 345:140467. [PMID: 37852377 DOI: 10.1016/j.chemosphere.2023.140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are well-known inhibitors of iodide uptake and thyroid-disrupting chemicals. Widespread human exposure to them has been identified, whereas studies on their internal exposure levels among Chinese pregnant women are scarce and factors associated with them are not well recognized. The objective of this study is to determine their levels and identify the associated factors among pregnant women (n = 1120), based on a prospective birth cohort in Wuhan, central China, using repeated urine samples of three trimesters. Urinary perchlorate, thiocyanate, and nitrate were 100% detected in the samples, and specific gravity-adjusted median concentrations of them in all the samples were 12.6 ng/mL, 367 ng/mL, and 63.7 μg/mL, respectively. Their concentrations were weakly-to-moderately correlated with each other, with Spearman correlation coefficients ranging from 0.27 to 0.54. Poor reproducibility were observed for the three analytes over the three trimesters, with intraclass correlation coefficient of 0.07, 0.19, 0.04 for perchlorate, thiocyanate, and nitrate, respectively. The women who were overweight or used tap water as drinking water had significantly higher perchlorate concentrations, while those with excessive gestational weight gain had significantly higher thiocyanate concentrations (p < 0.05). The women with a college degree or above had lower nitrate concentrations (p < 0.05). Meanwhile, the median concentration of perchlorate in urine samples collected in spring, thiocyanate in those collected in winter, and nitrate in those collected in autumn, was significantly higher compared to their median concentrations in the samples collected in other three seasons (p < 0.05), respectively. Urinary perchlorate and nitrate concentrations of pregnant women in this study were higher than the concentrations of pregnant women in other countries, while thiocyanate concentrations were lower than that of most other countries. This study suggested potential covariates for future epidemiological analyses.
Collapse
Affiliation(s)
- Jing Guan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tongzhang Zheng
- School of Public Health, Brown University, Providence, RI, 02903, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
9
|
Decrane R, Stoker T, Murr A, Ford J, El-Masri H. Cross species extrapolation of the disruption of thyroid hormone synthesis by oxyfluorfen using in vitro data, physiologically based pharmacokinetic (PBPK), and thyroid hormone kinetics models. Curr Res Toxicol 2023; 5:100138. [PMID: 38074188 PMCID: PMC10697989 DOI: 10.1016/j.crtox.2023.100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 03/22/2024] Open
Abstract
The thyroid hormones play key roles in physiological processes such as regulation of the metabolic and cardiac systems as well as the development of the brain and surrounding sympathetic nervous system. Recent efforts to screen environmental chemicals for their ability to alter thyroid hormone synthesis, transport, metabolism and/or function have identified novel chemicals that target key processes in the thyroid pathway. One newly identified chemical, oxyfluorfen, is a diphenyl-ether herbicide used for control of annual broadleaf and grassy weeds in a variety of tree fruit, nut, vine, and field crops. Using in vitro high-throughput screening (HTS) assays, oxyfluorofen was identified to be a potent inhibitor of the thyroidal sodium-iodide symporter (NIS). To quantitatively assess this inhibition mechanism in vivo, we extrapolated in vitro NIS inhibition data to in vivo disruption of thyroid hormones synthesis in rats using physiologically based pharmacokinetic (PBPK) and thyroid hormone kinetics models. The overall computational model (chemical PBPK and THs kinetic sub-models) was calibrated against in vivo data for the levels of oxyfluorfen in thyroid tissue and serum and against serum levels of thyroid hormones triiodothyronine (T3) and thyroxine (T4) in rats. The rat thyroid model was then extrapolated to humans using human in vitro HTS data for NIS inhibition and the chemical specific hepatic clearance rate in humans. The overall species extrapolated PBPK-thyroid kinetics model can be used to predict dose-response (% drop in thyroid serum levels compared to homeostasis) relationships in humans. These relationships can be used to estimate points of departure for health risks related to a drop in serum levels of TH hormones based on HTS assays in vitro to in vivo extrapolation (IVIVE), toxicokinetics, and physiological principles.
Collapse
|
10
|
Li X, Ji Y, Zu T, Huang X, Wang J, Cao Y, Cui Z. Simultaneous determination of cyanide and thiocyanate in milk by GC-MS/MS using cetyltrimethylammonium bromide as both phase transfer catalyst and protein precipitant. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1025-1034. [PMID: 37410937 DOI: 10.1080/19440049.2023.2227742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
A method was developed for simultaneous determination of cyanide and thiocyanate in milk by gas chromatography-tandem quadrupole mass spectrometry (GC-MS/MS). Cyanide and thiocyanate were derivatized with pentafluorobenzyl bromide (PFBBr) as PFB-CN and PFB-SCN, respectively. Cetyltrimethylammonium bromide (CTAB) was employed both as a phase transfer catalyst and a protein precipitant in the sample pretreatment, which facilitates the separation of the organic and aqueous phases, and greatly simplifies the pretreatment procedures to achieve simultaneous and rapid determination of cyanide and thiocyanate. Under the optimized conditions, the limits of detection (LODs) of cyanide and thiocyanate in milk were 0.006 mg/kg and 0.015 mg/kg, and the spiked recoveries ranged from 90.1% to 98.2% and from 91.8% to 98.9% with relative standard deviations (RSDs) less than 18.9% and 15.2%, respectively. The proposed method was validated as a simple, fast and highly sensitive method for the determination of cyanide and thiocyanate in milk.
Collapse
Affiliation(s)
- Xing Li
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
- Imported Science and Technology (Beijing) Co., Ltd, Beijing, P.R. China
| | - Yongyan Ji
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
- Department of Environmental Science & Engineering, Fudan University, Shanghai, P.R. China
| | - Tiehong Zu
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Xuezhe Huang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Jing Wang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Yanzhong Cao
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Zongyan Cui
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| |
Collapse
|
11
|
Zhu K, Wan Y, Zhu B, Wang H, Liu Q, Xie X, Jiang Q, Feng Y, Xiao P, Xiang Z, Song R. Association of perchlorate, thiocyanate, and nitrate with dyslexic risk. CHEMOSPHERE 2023; 325:138349. [PMID: 36898444 DOI: 10.1016/j.chemosphere.2023.138349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Perchlorate, thiocyanate, and nitrate are sodium iodide symporter (NIS) inhibitors that disturb iodide uptake into the thyroid and have been implicated in child development. However, no data are available on the association between exposure to/related with them and dyslexia. Here, we examined the association of exposure to/related with the three NIS inhibitors with the risk of dyslexia in a case-control study. The three chemicals were detected in urine samples of 355 children with dyslexia and 390 children without dyslexia from three cities in China. The adjusted odds ratios for dyslexia were examined using logistic regression models. The detection frequencies of all the targeted compounds were 100%. After adjusting for multiple covariates, urinary thiocyanate was significantly associated with the risk of dyslexia (P-trend = 0.02). Compared with the lowest quartile, children within the highest quartile had a 2.66-fold risk of dyslexia (95% confidence interval: 1.32, 5.36]. Stratified analyses showed that the association between urinary thiocyanate level and the risk of dyslexia was more pronounced among boys, children with fixed reading time, and those without maternal depression or anxiety during pregnancy. Urinary perchlorate and nitrate levels were not associated with the risk of dyslexia. This study suggests the possible neurotoxicity of thiocyanate or its parent compounds in dyslexia. Further investigation is warranted to confirm our findings and clarify the potential mechanisms.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Laboratory Center for Public Health Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, China.
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Yue B, Ning S, Miao H, Fang C, Li J, Zhang L, Bao Y, Fan S, Zhao Y, Wu Y. Human exposure to a mixture of endocrine disruptors and serum levels of thyroid hormones: A cross-sectional study. J Environ Sci (China) 2023; 125:641-649. [PMID: 36375946 DOI: 10.1016/j.jes.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to endocrine disruptors (EDCs) could disrupt thyroid hormone homeostasis. However, human epidemiological studies reported inconsistent observations, and scarce information on the effect of a mixture of chemicals. The aim of the present study was to examine the associations of multiple chemicals with thyroid hormones among adults from China. We measured serum levels of thyroid hormones and urinary levels of 11 EDCs, including six phthalate metabolites, bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), perchlorate, and thiocyanate among 177 healthy adults without occupational exposure. Associations of multiple urinary analytes with serum thyroid hormones were examined by performing general linear regression analysis and bayesian kernal machine regression analysis. These EDCs were detected in almost all samples. After adjusting for various covariates, we observed only BPF significantly associated with total thyroxin (TT4) (β=-0.27, 95% confidence interval (CI) [-0.41, -0.14]), total triiodothyronine (TT3) (β=-0.02 95% CI [-0.03, -0.01]), free T4 (fT4) (β=-0.02, 95% CI [-0.03, -0.01]), and free T3 (fT3) (β=-0.04, 95% CI [-0.07, -0.01]), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and monoethyl phthalate (MEP) positively associated with TT4 (β=0.24, 95% CI [0.01, 0.48]) and fT4 (β=0.02, 95% CI [0.01, 0.04]), respectively. Moreover, we observed significant dose-response relationships between TT4 and the mixture of 11 EDCs, and BPF was the main contributor to the mixture effect, suggesting the priority of potential effect of BPF on disrupting thyroid function under a real scenario of human exposure to multiple EDCs. Our findings supported the hypothesis that human exposure to low levels of EDCs could alter thyroid hormones homeostasis among non-occupational healthy adults.
Collapse
Affiliation(s)
- Bing Yue
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Shangyong Ning
- Hematology Department, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Hongjian Miao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Congrong Fang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Yan Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
13
|
Han Y, Li D, Zou C, Li Y, Zhao F. Effects of perchlorate, nitrate, and thiocyanate exposures on serum total testosterone in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160566. [PMID: 36574544 DOI: 10.1016/j.scitotenv.2022.160566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are common thyroid disruptors in daily life and alter testosterone levels in animals. However, little is known about the effects of perchlorate, nitrate, and thiocyanate on serum total testosterone (TT) in the general population. The study was designed to assess the associations between urinary levels of perchlorate, nitrate, and thiocyanate and serum total testosterone (TT) in the general population. The present study utilized data from the 2011-2016 National Health and Nutritional Examination Survey (NHANES). A total of 6201 participants aged 6-79 with information on urinary perchlorate, nitrate, thiocyanate, and serum total testosterone were included. We conducted multiple linear regression models and Bayesian Kernel Machine Regression (BKMR) models to estimate the associations by sex-age groups. Children (ages 6-11) have higher levels of perchlorate and nitrate than the rest. After adjusting for covariates, urinary perchlorate was significantly negatively associated with serum TT in male adolescents (β = -0.1, 95 % confidence interval: -0.2, -0.01) and female children [-0.13, (-0.21, -0.05)]. Urinary nitrate was significantly negatively associated with serum TT in female children, while urinary thiocyanate was significantly positively associated with serum TT in female adults aged 20 to 49 [0.05 (0.02, 0.08)]. BKMR analysis indicated that no other interactions were found between urinary perchlorate, nitrate, and thiocyanate. Our findings suggested that urinary perchlorate, nitrate, and thiocyanate levels may relate to serum total testosterone levels in specific sex-age groups. We identified male adolescents and female children as are most sensitive subgroups where testosterone is susceptible to interference.
Collapse
Affiliation(s)
- Yingying Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenxi Zou
- Department of Respiratory and Critical Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
14
|
Shi M, Zhu X, Cheang I, Zhu Q, Guo Q, Liao S, Gao R, Li X. Associations of thiocyanate, nitrate, and perchlorate exposure with dyslipidemia: a cross-sectional, population-based analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17214-17225. [PMID: 36194328 DOI: 10.1007/s11356-022-23296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the associations of urinary thiocyanate, nitrate, and perchlorate concentrations with dyslipidemia, individually and in combination, which has not previously been studied. Data from the 2001-2002 and 2005-2016 National Health and Nutrition Examination Surveys (NHANES) were analyzed in this cross-sectional study. The dependent variables were continuous serum lipid variables (triglycerides [TG], total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non-HDL-C, and apolipoprotein B [Apo B]) and binary serum lipid variables, with the latter reflecting dyslipidemia (elevated TG, ≥ 150 mg/dL; elevated TC, ≥ 200 mg/dL; elevated LDL-C, ≥ 130 mg/dL; lowered HDL-C, < 40 mg/dL in men and < 5 0 mg/dL in women; elevated non-HDL-C, ≥ 160 mg/dL; and elevated Apo B, ≥ 130 mg/dL). Multivariate logistic, linear, and weighted quantile sum (WQS) regression analyses were used to explore the associations of thiocyanate, nitrate, and perchlorate with the continuous and binary serum lipid variables. The linearity of the associations with the binary serum lipid variables was assessed using restricted cubic spline (RCS) regression. A total of 15,563 adults were included in the analysis. The multivariate linear and logistic regression analyses showed that thiocyanate was positively associated with multiple continuous (TG, TC, LDL-C, non-HDL-C, and Apo B, but not HDL-C) and binary (elevated TG, TC, LDL-C, and non-HDL-C) serum lipid variables, whereas perchlorate was negatively associated with elevated LDL-C. Multivariate RCS logistic regression revealed a linear dose-response relationship between thiocyanate and elevated TG, TC, LDL-C, non-HDL-C, and Apo B, but a nonlinear relationship with lowered HDL-C (inflection point = 1.622 mg/L). WQS regression showed that a mixture of thiocyanate, nitrate, and perchlorate was positively associated with all binary serum lipid variables except for Apo B. Our findings indicate that urinary thiocyanate, nitrate, and perchlorate concentrations, individually and in combination, were associated with dyslipidemia.
Collapse
Affiliation(s)
- Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
15
|
Xue B, Lei R, Tian X, Zheng J, Li Y, Wang B, Luo B. Perchlorate, nitrate, and thiocyanate and depression: the potential mediating role of sleep. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16488-16498. [PMID: 36190642 DOI: 10.1007/s11356-022-23138-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are common thyroid disruptors, but it is not clear whether they are related to depression. In this study, we aimed to investigate the association between perchlorate, nitrate, and thiocyanate and depression, and to explore the potential role of sleep in this process. We used data from the National Health and Nutrition Examination Survey (NHANES). From 2005 to 2016, 6 cycles cross-sectional data were combined. Urinary perchlorate, nitrate, and thiocyanate came from laboratory test; depression was diagnosed by the Nine-item Patient Health Questionnaire (PHQ-9). Weighted generalized liner models, restricted cubic splines, and mediation analysis were used in this study. Totally, 16,715 participants were involved in this study, of which 8295 (49.63%) were male and 8420 (50.37%) were female, with an average age of 46.19 ± 0.32 years. We found that urinary thiocyanate concentration was positively associated with depression (Odds ratios [ORs]: 1.49; 95% confidence intervals [95% CIs]: 1.16, 1.91), but not perchlorate (ORs: 0.71; 95% CIs: 0.52, 0.97) or nitrate (ORs: 0.89, 95% CIs: 0.66, 1.19). Sleep may play a potential mediating role between thiocyanate and depression (9.55%). In conclusion, higher concentrations of thiocyanate exposure may be associated with a higher risk of depression, and the sleep duration may be an important mediating factor.
Collapse
Affiliation(s)
- Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yanlin Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
16
|
Di Ciaula A, Bonfrate L, Noviello M, Portincasa P. Thyroid Function: A Target for Endocrine Disruptors, Air Pollution and Radiofrequencies. Endocr Metab Immune Disord Drug Targets 2023; 23:1032-1040. [PMID: 34503436 DOI: 10.2174/1871530321666210909115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Thyroid diseases, including congenital hypothyroidism, thyroiditis, and childhood thyrotoxicosis, are progressively increasing. The incidence of thyroid cancer in children and adolescents has also increased in recent decades, mirroring the trends observed in adults. These epidemiologic trends develop in parallel with the rising costs associated with diagnosis and treatment of thyroid diseases. Both genetic and environmental factors are involved in these diseases, and a number of widely diffused toxic chemicals of anthropogenic origin can impair thyroid function and make thyroid cancer worse. Synthetic substances persistently contaminate environmental matrices (i.e., air, soil, water) and the food chain and bio-accumulate in humans, starting from in utero life. Environmental toxins such as air pollutants, endocrine disruptors, and high-frequency electromagnetic fields can act on common targets through common pathways, combined mechanisms, and with trans-generational effects, all of which contribute to thyroid damage. Both experimental and epidemiologic observations show that mechanisms of damage include: modulation of synthesis; transportation and metabolism of thyroid hormones; direct interference with hormone receptors: modulation of gene expression; and autoimmunity. We should not underestimate the available evidence linking environmental pollutants with thyroid disease, cancer included, since toxic substances increasingly diffuse and thyroid hormones play a key role in maintaining systemic metabolic homeostasis during body development. Thus, primary prevention measures are urgently needed in particular to protect children, the most exposed and vulnerable subjects.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
- International Society of Doctors for Environment (ISDE), Arezzo, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Noviello
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
17
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
18
|
Serrano-Nascimento C, Nunes MT. Perchlorate, nitrate, and thiocyanate: Environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health. Front Endocrinol (Lausanne) 2022; 13:995503. [PMID: 36339434 PMCID: PMC9633673 DOI: 10.3389/fendo.2022.995503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid disruptors are found in food, atmosphere, soil, and water. These contaminants interfere with the thyroid function through the impairment of thyroid hormone synthesis, plasma transport, peripheral metabolism, transport into the target cells, and thyroid hormone action. It is well known that iodide uptake mediated by the sodium-iodide symporter (NIS) is the first limiting step involved in thyroid hormones production. Therefore, it has been described that several thyroid disruptors interfere with the thyroid function through the regulation of NIS expression and/or activity. Perchlorate, nitrate, and thiocyanate competitively inhibit the NIS-mediated iodide uptake. These contaminants are mainly found in food, water and in the smoke of cigarettes. Although the impact of the human exposure to these anions is highly controversial, some studies indicated their deleterious effects in the thyroid function, especially in individuals living in iodine deficient areas. Considering the critical role of thyroid function and the production of thyroid hormones for growth, metabolism, and development, this review summarizes the impact of the exposure to these NIS-inhibitors on thyroid function and their consequences for human health.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Wang G, Lv Z, Wang C, Chen D, Zhang X, Zhang L, Fan F, Fu Y, Wang T. A portable and miniaturized lab-on-fiber sensor based on a responsive Fabry-Perot resonance cavity for the detection of thiocyanate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3766-3772. [PMID: 36106840 DOI: 10.1039/d2ay01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thiocyanate (SCN-) detection is highly significant because of the toxicity of SCN-. Herein, a portable and miniaturized lab-on-fiber (LOF) sensor is reported for the detection of SCN- through integrating a Fabry-Perot (F-P) optical resonance cavity based on anionic-responsive metal-insulator-metal (MIM) onto an optical fiber tip. The responsive MIM optical resonance cavity is constructed with an intermediate cationic polymer brush layer (poly[2-(methacryloyloxy)ethyl] trimethylammonium chloride, PMETAC) and two silver layers via a facile in situ "layer-by-layer" construction method. When the fabricated LOF sensor was immersed in SCN- solutions, an obvious reflection dip shift can be observed, which is feasible for the quantitative detection of SCN-. What's more, the fabricated LOF sensor exhibits outstanding selectivity and anti-interference against other interfering anions. Furthermore, the fabricated LOF sensor also displays other excellent advantages endowed by the polymer brush film, such as a fast response rate and outstanding reproducibility. Therefore, it is believed that the fabricated miniaturized LOF sensor would show great potential as a portable sensor in future applications, such as environmental monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Guangrong Wang
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Zhixin Lv
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Chengyang Wang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Dan Chen
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Xuemin Zhang
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Liying Zhang
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Fuqiang Fan
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| | - Tieqiang Wang
- College of Science, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
20
|
Schulz A, Surkau J. Main group cyanides: from hydrogen cyanide to cyanido-complexes. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Homoleptic cyanide compounds exist of almost all main group elements. While the alkali metals and alkaline earth metals form cyanide salts, the cyanides of the lighter main group elements occur mainly as covalent compounds. This review gives an overview of the status quo of main group element cyanides and cyanido complexes. Information about syntheses are included as well as applications, special substance properties, bond lengths, spectroscopic characteristics and computations. Cyanide chemistry is presented mainly from the field of inorganic chemistry, but aspects of chemical biology and astrophysics are also discussed in relation to cyano compounds.
Collapse
Affiliation(s)
- Axel Schulz
- Chemie , Universität Rostock , Albert-Einstein-Straße 3a, 18059 Rostock , Mecklenburg-Vorpommern , Germany
| | - Jonas Surkau
- Chemie , Universität Rostock , Albert-Einstein-Straße 3a, 18059 Rostock , Mecklenburg-Vorpommern , Germany
| |
Collapse
|
21
|
Calderón R, Jara C, Albornoz F, Palma P, Arancibia-Miranda N, Karthikraj R, Manquian-Cerda K, Mejias P. Exploring the destiny and distribution of thiocyanate in the water-soil-plant system and the potential impacts on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155502. [PMID: 35490807 DOI: 10.1016/j.scitotenv.2022.155502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disruptors like thiocyanate are some of the principal causes of chronic disorders worldwide. Prenatal and postnatal exposure to thiocyanate can interfere with normal neurological development in both fetuses and newborns. Currently, little information regarding thiocyanate levels and potential sources of exposure is available. In this study, we evaluated thiocyanate uptake and accumulation in chard and spinach grown under greenhouse conditions. Both chard and spinach are commonly used to produce baby foods. Three thiocyanate concentrations were compared: Control, T1 (30 ng mL-1), and T2 (70 ng mL-1). Thiocyanate accumulation depended on the concentration and exposure time. Chard was found to accumulate more thiocyanate than spinach, with leaf accumulation > stem accumulation (p < 0.0194) and maximum concentrations of 76 ng g-1 (control), 112 ng g-1, (T1), and 134 ng g-1 (T2). The estimated daily intake (EDI) of thiocyanate for chard and spinach (fresh) exceeded the subchronic reference dose of 200 ng-1 kg-1 day-1 and the chronic reference dose of 600 ng-1 kg-1 day-1. In addition, the EDI of thiocyanate for spinach in baby food exceeded twice the chronic reference dose in the vulnerable newborn-1 year age group. However, all EDIs were lower than the lowest observed adverse effect level (LOAEL) of 1.9 × 105 ng kg-1 day-1. Further studies are needed that increase our knowledge of thiocyanate levels and potential environmental sources to reduce opportunities for exposure, especially in vulnerable groups.
Collapse
Affiliation(s)
- R Calderón
- Center for Research in Natural Resources and Sustainability, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - C Jara
- Department of Chemistry, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago de Chile, Chile
| | - F Albornoz
- Department of Plant Sciences, Faculty of Agronomy and Forest Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - P Palma
- Public, Environmental and Labor Health Laboratory, Regional Ministerial Service, Ministry of Health, Metropolitan Region, Santiago, Chile
| | - N Arancibia-Miranda
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 16 9170124, Chile
| | - R Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States
| | - K Manquian-Cerda
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 16 9170124, Chile
| | - P Mejias
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
22
|
Melough MM, Maffini MV, Otten JJ, Sathyanarayana S. Diet quality and exposure to endocrine-disrupting chemicals among US adults. ENVIRONMENTAL RESEARCH 2022; 211:113049. [PMID: 35240113 DOI: 10.1016/j.envres.2022.113049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Human exposure to endocrine-disrupting chemicals (EDCs) may increase risk for chronic disease. Diet is a significant source of EDC exposure, yet healthy diets recommended for chronic disease prevention have not been thoroughly examined for associations with EDC exposure. Using data from the National Health and Nutrition Examination Survey 2013-2016, we examined associations of dietary patterns with exposure to non-persistent EDCs potentially consumed through diet. EDCs were measured in spot urine samples. Diet was assessed using 24-h recalls. Multivariable linear regression was used to examine associations of three healthy diet scores [Healthy Eating Index (HEI), relative Mediterranean Diet (rMED), and Dietary Approaches to Stop Hypertension] and fast-food consumption with EDCs. In fully adjusted models, no diet was associated with exposure to the bisphenols, phthalates, or polycyclic aromatic hydrocarbons examined. A 1-point increase in rMED (of 18 possible points) was associated with 2.7% (95% CI: 1.7%, 3.8%) greater urinary nitrate. A 10-point increase in HEI (of 100 possible points) was associated with 5.3% (95% CI: 2.8%, 7.9%) greater nitrate and 6.8% (95% CI: 4.5%, 9.2%) greater perchlorate. Because perchlorate and nitrate can disrupt thyroid hormone production, we conducted an exploratory analysis to examine whether these chemicals mediate an association between diet and thyroid hormones. A 10-point increase in HEI was associated with 0.6% reduced serum total thyroxine (95% CI: 1.7%, 0.5%) among all adults, with 57.5% of the effect explained by perchlorate. Nitrate mediated an association of rMED with modestly reduced total triiodothyronine among females. Most EDCs examined had no association with the diets evaluated, indicating that recommended healthy diets were not protective against EDC exposures. As observed with two thyroid antagonists, some recommended diets may increase EDC exposures and related adverse health outcomes. Additional work should identify effective food production and processing practices to reduce dietary exposures to potentially harmful EDCs.
Collapse
Affiliation(s)
- Melissa M Melough
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | | | - Jennifer J Otten
- Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sheela Sathyanarayana
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Center for Public Health Nutrition, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
23
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
24
|
Gao JJ, Wang B, Li ZJ, Xu J, Fu XY, Han HJ, Wang LJ, Zhang WH, Deng YD, Wang Y, Gong ZH, Tian YS, Peng RH, Yao QH. Metabolic engineering of Oryza sativa for complete biodegradation of thiocyanate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153283. [PMID: 35066037 DOI: 10.1016/j.scitotenv.2022.153283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
Industrial thiocyanate (SCN-) waste streams from gold mining and coal coking have caused serious environmental pollution worldwide. Phytoremediation is an efficient technology in treating hazardous wastes from the environment. However, the phytoremediation efficiency of thiocyanate is very low due to the fact that plants lack thiocyanate degradation enzymes. In this study, the thiocyanate hydrolase module was assembled correctly in rice seedlings and showed thiocyanate hydrolase activity. Rice seedlings engineered to express thiocyanate degrading activity were able to completely remove thiocyanate from coking wastewater. Our findings suggest that transforming the thiocyanate hydrolase module into plants is an efficient strategy for rapid phytoremediation of thiocyanate in the environment. Moreover, the rice seedlings expressing apoplastic or cytoplasmic targeted thiocyanate hydrolase module were constructed to compare the phytoremediation efficiency of secretory/intracellular recombinant thiocyanate hydrolase. The most obvious finding from this study is that the apoplastic expression system is more efficient than the cytoplasm expression system in the phytoremediation of thiocyanate. At last, this research also shows that the secreted thiocyanate hydrolase from engineered rice plants does not influence rhizosphere bacterial community composition.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong-Juan Han
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Juan Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wen-Hui Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yong-Dong Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ze-Hao Gong
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
25
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
26
|
Zhu F, Jiao J, Zhuang P, Huang M, Zhang Y. Association of exposures to perchlorate, nitrate, and thiocyanate with allergic symptoms: A population-based nationwide cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117068. [PMID: 33892368 DOI: 10.1016/j.envpol.2021.117068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Allergic diseases have been one of the leading causes of chronic disorders in the United States. Animal studies have suggested that exposures to perchlorate, nitrate, and thiocyanate could induce allergic inflammation. However, the associations have not been examined among general populations. Here, we investigated data of 7030 participants aged ≥6 years from the National Health and Nutritional Examination Survey (NHANES) 2005-2006. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography combined with electrospray tandem mass spectrometry. Information on allergic symptoms (hay fever, allergy, rash, sneeze, wheeze, eczema, and current asthma) was collected by questionnaire. Allergic sensitization was defined by a concentration ≥150 kU/L for total immunoglobulin E (IgE) levels. The associations were estimated using multivariate-adjusted logistic regression models. A positive association was observed for urinary nitrate and eczema (p < 0.001 for the trend). Compared with quartile 1 (lowest quartile), the odds ratios of eczema with 95% confidence intervals [ORs (95% CIs)] from quartiles 2 to 4 were 1.72 (95% CI, 1.41, 2.09), 1.94 (1.53, 2.47) and 2.10 (1.49, 2.97) for urinary nitrate. In addition, urinary thiocyanate was positively related to sneeze (ORQ4 vs. Q1: 1.25, 95% CI: 1.01, 1.55; p = 0.015 for the trend). However, urinary perchlorate was not correlated with any allergic-related outcome. Additionally, the associations were different among subgroups in a four-level polytomous model. Thus, our results suggested that exposures to nitrate and thiocyanate may be associated with allergic symptoms. Further investigations are warranted to concentrate on the practical strategies to monitor exposure levels and the latent mechanisms of the relationship between exposure and allergy.
Collapse
Affiliation(s)
- Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
28
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
29
|
Polat Yemiş G, Delaquis P. Natural Compounds With Antibacterial Activity Against Cronobacter spp. in Powdered Infant Formula: A Review. Front Nutr 2020; 7:595964. [PMID: 33330595 PMCID: PMC7731913 DOI: 10.3389/fnut.2020.595964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q0) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Sakarya University, Serdivan, Turkey
| | - Pascal Delaquis
- Summerland Research and Development Research Centre, Agriculture and AgriFood Canada, Summerland, BC, Canada
| |
Collapse
|
30
|
Is There Such a Thing as "Anti-Nutrients"? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020; 12:nu12102929. [PMID: 32987890 PMCID: PMC7600777 DOI: 10.3390/nu12102929] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Collapse
|
31
|
Lv J, Chen D, Du Y, Wang T, Zhang X, Li Y, Zhang L, Wang Y, Jordan R, Fu Y. Visual Detection of Thiocyanate Based on Fabry-Perot Etalons with a Responsive Polymer Brush as the Transducer. ACS Sens 2020; 5:303-307. [PMID: 32039587 DOI: 10.1021/acssensors.9b02270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The detection of thiocyanate (SCN-) is particularly important in industrial effluents and biological fluids because of the toxic nature of SCN-. Herein, a metal-insulator-metal (MIM) resonator for visual detection of SCN- is presented based on a poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) brush. The MIM resonator exhibits obvious color change as the concentration of SCN- changes, which can be easily distinguished by the naked eyes. In addition, the as-prepared MIM resonator also shows the advantages of good anti-interference, excellent reusability, and fast response rate. Combining the above advantages, the proposed MIM resonator may provide a broad perspective for a wide variety of visible-light applications.
Collapse
Affiliation(s)
- Jinqiu Lv
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dan Chen
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunhao Du
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunong Li
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yan Wang
- Ningbo Zhong An Qi Safety Technology Co., Ltd, Ningbo 315000, China
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
32
|
Hines DE, Conolly RB, Jarabek AM. A Quantitative Source-to-Outcome Case Study To Demonstrate the Integration of Human Health and Ecological End Points Using the Aggregate Exposure Pathway and Adverse Outcome Pathway Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11002-11012. [PMID: 31436975 DOI: 10.1021/acs.est.9b04639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to environmental contaminants can lead to adverse outcomes in both human and nonhuman receptors. The Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks can mechanistically inform cumulative risk assessment for human health and ecological end points by linking together environmental transport and transformation, external exposure, toxicokinetics, and toxicodynamics. This work presents a case study of a hypothetical contaminated site to demonstrate a quantitative approach for implementing the AEP framework and linking this framework to AOPs. We construct an AEP transport and transformation model and then quantify external exposure pathways for humans, fishes, and small herbivorous mammals at the hypothetical site. A Monte Carlo approach was used to address parameter variability. Source apportionment was quantified for each species, and published pharmacokinetic models were used to estimate internal target site exposure from external exposures. Published dose-response data for a multispecies AOP network were used to interpret AEP results in the context of species-specific effects. This work demonstrates (1) the construction, analysis, and application of a quantitative AEP model, (2) the utility of AEPs for organizing mechanistic exposure data and highlighting data gaps, and (3) the advantages provided by a source-to-outcome construct for leveraging exposure data and to aid transparency regarding assumptions.
Collapse
Affiliation(s)
- David E Hines
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Rory B Conolly
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Annie M Jarabek
- U.S. Environmental Protection Agency , Office of Research and Development, National Center for Environmental Assessment , Research Triangle Park, Durham , North Carolina 27709 , United States
| |
Collapse
|
33
|
Zhang L, Fang C, Liu L, Liu X, Fan S, Li J, Zhao Y, Ni S, Liu S, Wu Y. A case-control study of urinary levels of iodine, perchlorate and thiocyanate and risk of papillary thyroid cancer. ENVIRONMENT INTERNATIONAL 2018; 120:388-393. [PMID: 30125856 DOI: 10.1016/j.envint.2018.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The incidence of thyroid cancer has recently increased worldwide. With the exception of radiation exposure, the effects of potential risk factors on thyroid cancer incidence remain controversial. OBJECTIVES The association between exposure to iodine, perchlorate, and thiocyanate and papillary thyroid cancer (PTC) incidence was evaluated and risk factors were predicted. METHODS A pair-matching case-control study was performed including 116 age- and sex-matched PTC cases and 116 non-PTC controls. Iodine, perchlorate, and thiocyanate concentrations in urine specimens were determined by inductively coupled plasma mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. The association between iodine, perchlorate, and thiocyanate urinary concentrations and PTC was evaluated using univariable conditional regression logistic analysis followed by multivariable conditional logistic regression analyses with backward stepwise selection to predict risk factors for PTC. RESULTS After adjusting for confounders and creatinine standardization, urinary concentrations of iodine [odds ratio (OR) = 11.01, 95% confidence interval (CI): 1.97-30.52] and perchlorate (OR = 2.27, 95% CI: 1.03-5.03) were associated with the risk of PTC, whereas urinary thiocyanate concentration showed a negative association (OR = 0.24, 95% CI: 0.09-0.65). CONCLUSIONS Increased exposure to iodine and perchlorate may affect PTC development, whereas high thiocyanate exposure may have a beneficial effect.
Collapse
Affiliation(s)
- Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Congrong Fang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liping Liu
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Xin Liu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Sai Fan
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yunfeng Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, Beijing, China.
| |
Collapse
|
34
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
35
|
Paśko P, Okoń K, Krośniak M, Prochownik E, Żmudzki P, Kryczyk-Kozioł J, Zagrodzki P. Interaction between iodine and glucosinolates in rutabaga sprouts and selected biomarkers of thyroid function in male rats. J Trace Elem Med Biol 2018; 46:110-116. [PMID: 29413100 DOI: 10.1016/j.jtemb.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/30/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Rutabaga sprouts belong to the Brassicaceae family and may exert a negative influence on thyroid function, because they are a rich in glucosinolates. These sprouts are also valuable source of iodine (6.5 ± 0.6 μg/100 g of fresh weight). Sprouts were tested in a long-term experiment with young male rats as an element of their diet, combined with two models of hypothyroidism, the first - deficit of iodine and the second - sulfadimethoxine ingestion as a pharmacological agent caused inhibition of thyroid peroxidase. Evaluations were performed for the serum TSH and thyroid hormones together with analyzes of thyroid histopathology, cytosolic glutathione peroxidase (GPX1), thioredoxin reductase in the thyroid, plasma GPX3 and CAT, erythrocyte GPX1. Rutabaga sprouts' intake by healthy rats did not cause any harmful effect on their health, including thyroid function. For animals with hypothyroidism, rutabaga sprouts enhanced the adverse effect of iodine deficiency or ingestion of sulfadimethoxine on the organism. According to the results obtained for young male rats thyroid function, the interpretation of data for human exposure to rutabaga sprouts has to be avoided. Furthermore, unless new scientific data confirms a lack of the negative effect of brassica sprouts on thyroid function in human, they should not be excluded from the group of goitrogenic products.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland.
| | - Krzysztof Okoń
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland.
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland.
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland.
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, Kraków, Poland.
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland.
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
36
|
Hines DE, Edwards SW, Conolly RB, Jarabek AM. A Case Study Application of the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) Frameworks to Facilitate the Integration of Human Health and Ecological End Points for Cumulative Risk Assessment (CRA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:839-849. [PMID: 29236470 PMCID: PMC6003653 DOI: 10.1021/acs.est.7b04940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability and physiological differences among organisms. Adverse outcome pathways (AOPs) describe biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with measurable intermediate steps termed key events (KEs), thereby providing a framework for integrating data across species. In this work, we used a case study focused on the perchlorate anion (ClO4-) to highlight the value of the AOP framework for cross-species data integration. Computational models and dose-response data were used to evaluate the effects of ClO4- in 12 species and revealed a dose-response concordance across KEs and taxa. The aggregate exposure pathway (AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We discuss how the combined AEP-AOP construct helps to maximize the use of existing data and advances CRA by (1) organizing toxicity and exposure data, (2) providing a mechanistic framework of KEs for integrating data across human health and ecological end points, (3) facilitating cross-species dose-response evaluation, and (4) highlighting data gaps and technical limitations.
Collapse
Affiliation(s)
- David E. Hines
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Stephen W. Edwards
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Rory B. Conolly
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Annie M. Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National, Center for Environmental Assessment
| |
Collapse
|