1
|
Acharya B, Behera A, Moharana S, Prajapati BG, Behera S. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chem Res Toxicol 2025; 38:521-541. [PMID: 40105412 DOI: 10.1021/acs.chemrestox.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Amulyaratna Behera
- School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha 754022, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon, Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | | |
Collapse
|
2
|
Aschner M, Skalny AV, Martins AC, Tizabi Y, Zaitseva IP, Santamaria A, Lu R, Gluhcheva YY, Tinkov AA. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch Toxicol 2025; 99:1287-1314. [PMID: 39960653 DOI: 10.1007/s00204-025-03972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
Exposure to metal nanoparticles (NPs) is known to induce inflammatory responses in various tissues, thus limiting their therapeutic potential. NOD-like receptor protein 3 (NLRP3) inflammasome activation is an essential component of innate immunity playing a significant role in inflammation and development of inflammatory diseases. Therefore, the objective of the present review was to summarize data on the role of NLRP3 inflammasome in proinflammatory effects induced by metal NPs, and to discuss the underlying molecular mechanisms, including its dependence on the physical and chemical properties of metal NPs. Titanium, zinc, silver, aluminum, iron, cobalt, nickel, vanadium, and tungsten nanoparticles, as well as metal-based quantum dots have all been shown to induce NLRP3 inflammasome activation in vitro in macrophages and monocytes, dendritic cells, keratinocytes, hepatocytes, enterocytes, microglia, astrocytes, lung epithelial cells, endotheliocytes, as well as certain types of cancer cells. In vivo studies confirmed the role of NLRP3 pathway activation in development of colitis, pulmonary inflammation, liver damage, osteolysis, and neuroinflammation induced by various metal nanoparticles. Briefly, particle endocytosis with subsequent lysosomal damage, induction of ROS formation, K+ efflux, increased intracellular Ca2+ levels, and NF-κB pathway activation results in NLRP3 inflammasome complex assembly, caspase-1 activation, and cleavage of pro-IL-1β and pro-IL-18 to mature proinflammatory cytokines, while gasdermin D cleavage induces pyroptotic cell death. Moreover, small-sized and rod-shaped metal NPs exert a more profound stimulatory effect on NLRP3 inflammasome activation, but contrary findings have also been reported. Taken together, it is concluded that NLRP3 inflammasome may mediate both adverse proinflammatory effects of metal nanoparticles, as well as their beneficial effect when used as antitumor agents.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Irina P Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yordanka Y Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology With Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| |
Collapse
|
3
|
Rout B, Janjal PA, Shewale RS, Peddinti V, Agnihotri TG, Gomte SS, Jain A. Harnessing the power of inorganic nanoparticles for the management of TNBC. Int J Pharm 2025; 672:125333. [PMID: 39933607 DOI: 10.1016/j.ijpharm.2025.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer characterized by the absence of hormonal receptors with a poor prognosis and limited treatment options. Addressing this challenge has become an urgent priority, driving substantial scientific efforts in this area. In recent years, inorganic nanoparticles have emerged as promising agents for the therapeutic and diagnostic management of this malignancy. Their unique physicochemical properties such as exceptional stability, uniform size, ease of surface functionalization, and distinctive optical and magnetic characteristics have positioned them as highly attractive candidates for these applications. This review primarily focuses on the therapeutic and diagnostic applications of inorganic nanoparticles, summarizing key research findings that demonstrate their efficacy against TNBC. Additionally, it addresses the toxicological concerns associated with these nanoparticles and explores advanced strategies to mitigate their adverse effects, thereby improving their clinical utility. Finally, the review concludes with a concise discussion of the prospects of these nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Prashant Ambadas Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Rushikesh Sanjay Shewale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
4
|
Kim DY, Ryu JH, Kim JH, Lee EH, Baek JH, Woo KM. Targeting Age-Related Impaired Bone Healing: ZnO Nanoparticle-Infused Composite Fibers Modulate Excessive NETosis and Prolonged Inflammation in Aging. Int J Mol Sci 2024; 25:12851. [PMID: 39684562 DOI: 10.3390/ijms252312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects present significant challenges in clinical contexts, particularly among the elderly, and are often linked to altered innate immune responses; however, underlying mechanisms remain to be understood. This study investigates immune changes in early bone healing in aged mice, emphasizing the effects of zinc in modulating inflammatory processes. By exploring the role of zinc and NETosis in this process, we seek to develop novel therapeutic strategies that could improve bone repair in aging populations. Critical-sized calvarial bone defects were induced in young (8-week-old) and aged (18-month-old) mice, with RNA sequencing analysis. Zinc oxide nanoparticle-infused polycaprolactone (ZnPCL) scaffolds were then fabricated using electrospinning, and their effects on intracellular zinc levels, NETosis, M2 polarization, and bone formation were assessed through in vitro and in vivo experiments. In aged mice, bone healing was delayed, inflammation was prolonged, and NETosis was excessive. RNA sequencing identified alterations in zinc ion transport genes, alongside excessive NETosis. Aged mouse neutrophils exhibited low intracellular zinc levels. ZnPCL fibers effectively reduced NETosis and inflammation, promoted M2 macrophage polarization, and enhanced new bone formation, thereby improving bone healing in aged mice. This study demonstrates that ZnO nanoparticle-infused biomaterials, ZnPCL, effectively deliver zinc to neutrophils, reduce NETosis, promote M2 polarization, and enhance bone healing in aged mice.
Collapse
Affiliation(s)
- Do-Yeun Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
6
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
7
|
Putri OK, Rahayu LO, Kusumawati Y, Fadlan A, Subagyo R, Santoso M. Phytofabricated ZnO-NPs mediated by Hibiscus tiliaceus leaf extract and its potential as a diosgenin delivery vehicle. RSC Adv 2024; 14:23139-23146. [PMID: 39045401 PMCID: PMC11263970 DOI: 10.1039/d4ra03249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have provided promising potential in the biomedical field, including the ability to overcome various health problems. Diosgenin is used to treat multiple health disorders but has very low solubility in water. Using ZnO-NPs as a diosgenin delivery vehicle was expected to increase the solubility of diosgenin, which would affect its bioavailability. This study demonstrates phytofabrication and characterization of ZnO-NPs, loading of diosgenin onto the ZnO-NPs, characterization of the product (ZnO-NPs/diosgenin), and evaluations of diosgenin release. Phytofabrication of the ZnO-NPs was carried out with zinc precursors and Hibiscus tiliaceus leaf extract (HLE) obtained with various extraction solvents. To explore the potential of using the ZnO-NPs as a diosgenin delivery vehicle, diosgenin release from the ZnO-NPs/diosgenin was studied. Based on the X-ray fluorescence (XRF) and X-ray diffraction (XRD) results, ZnO-NPs with high purity have been successfully fabricated. Nano-sized particles were detected using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM), revealing the smallest particle size of 45.924 ± 27.910 nm obtained from the methanol extract with the zinc acetate precursor. The ZnO-NPs had hexagonal wurtzite and rod-like structures. Diosgenin was successfully added to the ZnO-NPs with loadings of 79.972% for ZnO-HLMEA-D500 (ZnO-NPs/diosgenin produced by doping with a 500 μg mL-1 of diosgenin solution) and 39.775% for ZnO-HLMEA-D1000 (ZnO-NPs/diosgenin produced by doping with a 1000 μg mL-1 of diosgenin solution). The solubilities of diosgenin from ZnO-HLMEA-D500 and ZnO-HLMEA-D1000 were higher than that of free diosgenin, confirming that ZnO-NPs have potential as delivery vehicles for diosgenin and conceivably other water-insoluble drugs.
Collapse
Affiliation(s)
- Oktavina Kartika Putri
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
- Department of Pharmacy, Politeknik Kesehatan Putra Indonesia Malang Malang 65122 Indonesia
| | - Lina Oktavia Rahayu
- Department of Pharmacy, Politeknik Kesehatan Putra Indonesia Malang Malang 65122 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Arif Fadlan
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Riki Subagyo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| |
Collapse
|
8
|
Manoj A, Ranjan M, Singh S, Ragavendran C. Comparative Evaluation of Cytotoxicity of Zinc Oxide Nanoparticles Mixed With Herbal Extract as an Intracanal Medicament: A Zebrafish Model Study. Cureus 2024; 16:e64131. [PMID: 39119434 PMCID: PMC11309759 DOI: 10.7759/cureus.64131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Objective In this study, zebrafish embryos are used to study the cytotoxic effects of a novel intracanal medication (ICM) based on zinc oxide nanoparticles (ZnO NPs) loaded with polyherbal extracts (Azadirachta indica and Solanum xanthocarpum). Material and methods In the present study, a green and sustainable method was employed for the synthesis of ZnO NPs mixed with bark and seed extracts of Azadirachta indica and Solanum xanthocarpum to be used as a polyherbal ICM. Formulation of ZnO NPs was confirmed with color change in mixture produced upon dissolving zinc acetate dihydrate in distilled water followed by slow addition of sodium hydroxide solution and herbal extracts. The effects of these green synthesized ZnO NPs were evaluated through a zebrafish embryo toxicity test. Embryos were exposed to different concentrations (25, 50, and 100 µg/mL) of synthesized experimental doses of ZnO NP and compared with the control embryos. Toxicological endpoints, such as the zebrafish embryo's survival rate, hatching rate, and heart rate, were noted and described. Results A concentration-dependent increase in mortality rate and hatching delay followed by declined heart rate was observed in green synthesized ZnO NP-treated embryos. The maximum toxicity was observed with an increase in the concentration of 100 µg/mL of the experimental dose, and at a low concentration of 25 µg/mL, it does not effectively show any developmental alteration in zebrafish embryos. Conclusion A novel polyherbal ICM loaded with ZnO NPs exhibited a dose-dependent effect on the heart rate, hatching, and mortality rate of the embryos. At optimal concentrations, the medication demonstrated minimal developmental malformations and cytotoxic effects, indicating its safety for use. However, increasing concentrations of the medication resulted in severe developmental malformations.
Collapse
Affiliation(s)
- Atluri Manoj
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Manish Ranjan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sanyukta Singh
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Zhang D, Wang Z, Deng H, Yi S, Li T, Kang X, Li J, Li C, Wang T, Xiang B, Li G. Zinc oxide nanoparticles damage the prefrontal lobe in mouse: Behavioral impacts and key mechanisms. Toxicol Lett 2024; 397:129-140. [PMID: 38759938 DOI: 10.1016/j.toxlet.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
| | - Zhiyuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Hongmei Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Simeng Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Wang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Sau S, Dey A, Pal P, Das B, Maity KK, Dash SK, Tamili DK, Das B. Immunomodulatory and immune-toxicological role of nanoparticles: Potential therapeutic applications. Int Immunopharmacol 2024; 135:112251. [PMID: 38781608 DOI: 10.1016/j.intimp.2024.112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.
Collapse
Affiliation(s)
- Somnath Sau
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Nutrition and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Alo Dey
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Pritam Pal
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Bishal Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Physiology, Debra Thana Sahid Kshudiram Smriti Mahavidyalaya, Debra-721124, Paschim Medinipur, West Bengal, India
| | - Kankan Kumar Maity
- Department of Chemistry and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dipak Kumar Tamili
- Department of Zoology and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Balaram Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
12
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
13
|
Ramasubbu K, Rajeswari VD. Green Synthesising ZnO Nanoparticle Using Sesbania grandiflora and Their Evaluation of Anti-diabetic Anti-advanced Glycation End Products and Cytotoxic Effects. Appl Biochem Biotechnol 2024; 196:2652-2672. [PMID: 37432639 DOI: 10.1007/s12010-023-04631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Nanotechnology is an emerging area of science with diverse implementations, including medicine and drug delivery. Often for drug delivery, nanoparticles and nanocarriers were used. Diabetes mellitus is a metabolic disease with numerous complications, including advanced glycation end products (AGEs). AGEs advance neurodegeneration, obesity, renal dysfunction, retinopathy, and many more. Here, we have used zinc oxide nanoparticles synthesised with Sesbania grandiflora (hummingbird tree). ZnO nanoparticles and S. grandiflora are known for their biocompatibility and medicinal property, such as anti-cancer, anti-microbial, anti-diabetic, and anti-oxidant. So, we analysed the anti-diabetic, anti-oxidant, anti-AGEs, and cytotoxic effects of green synthesised and characterised ZnO nanoparticles with S. grandiflora (SGZ) and the leaf extract of S. grandiflora. Characterisation results indicated the synthesis of ZnO Nps at maximum concentration; the anti-oxidant assay showed 87.5% free radicle scavenging with DPPH. Additionally, anti-diabetic (72% α-amylase and 65% of α-glucosidase inhibition) and cell viability also exhibited promising results. In conclusion, SGZ can reduce the absorption of carbohydrates from the diet, elevate glucose uptake, and prevent protein glycation. So, it could be a potential tool for treating diabetes, hyperglycemia, and AGE-related diseases.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Vellore, Tamil Nadu, 632 014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
14
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
16
|
Behera S, Khan GA, Singh SS, Jena B, Sashank K, Patnaik S, Kumar R, Jeon BH, Chakrabortty S, Tripathy SK, Mishra A. Antibacterial Efficacy of ZnO/Bentonite (Clay) Nanocomposites against Multidrug-Resistant Escherichia coli. ACS OMEGA 2024; 9:2783-2794. [PMID: 38250361 PMCID: PMC10795042 DOI: 10.1021/acsomega.3c07950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The emergence of multidrug-resistant (MDR) bacteria has spurred the exploration of therapeutic nanomaterials such as ZnO nanoparticles. However, the inherent nonspecific toxicity of ZnO has posed a significant obstacle to their clinical utilization. In this research, we propose a novel approach to improve the selectivity of the toxicity of ZnO nanoparticles by impregnating them onto a less toxic clay mineral, Bentonite, resulting in ZB nanocomposites (ZB NCs). We hypothesize that these ZB NCs not only reduce toxicity toward both normal and carcinogenic cell lines but also retain the antibacterial properties of pure ZnO nanoparticles. To test this hypothesis, we synthesized ZB NCs by using a precipitation technique and confirmed their structural characteristics through X-ray diffraction and Raman spectroscopy. Electron microscopy revealed composite particles in the size range of 20-50 nm. The BET surface area of ZB NCs, within a relative pressure (P/P0) range of 0.407-0.985, was estimated to be 31.182 m2/g. Notably, 50 mg/mL ZB NCs demonstrated biocompatibility with HCT 116 and HEK 293 cell lines, supported by flow cytometry and fluorescence microscopy analysis. In vitro experiments further confirmed a remarkable five-log reduction in the population of MDR Escherichia coli in the presence of 50 mg/mL of ZB NCs. Antibacterial activity of the nanocomposites was also validated in the HEK293 and HCT 116 cell lines. These findings substantiate our hypothesis and underscore the effectiveness of ZB NCs against MDR E. coli while minimizing nonspecific toxicity toward healthy cells.
Collapse
Affiliation(s)
- Susanta
Kumar Behera
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
- IMGENEX
India Pvt. Ltd., Bhubaneswar 751024, India
| | - Gausal A. Khan
- Department
of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Al Hofuf, Al Ahsa 31982, KSA
| | - Swati Sucharita Singh
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
| | - Bhumika Jena
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
| | - Kali Sashank
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar 751024, India
| | - Srinivas Patnaik
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
| | - Ramesh Kumar
- Department
of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Byong-Hun Jeon
- Department
of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Sankha Chakrabortty
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar 751024, India
| | - Suraj K. Tripathy
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar 751024, India
| | - Amrita Mishra
- School
of Biotechnology, Kalinga Institute of Industrial
Technology, Bhubaneswar 751024, India
| |
Collapse
|
17
|
Falkiewicz K, Fryca I, Ciura K, Mikolajczyk A, Jagiello K, Puzyn T. A bibliometric analysis of the recent achievements in pulmonary safety of nanoparticles. Nanotoxicology 2023; 17:547-561. [PMID: 37968932 DOI: 10.1080/17435390.2023.2276411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies. A total of 2316 related articles retrieved from the three most cited databases (PubMed Scopus, Web of Science), selected based on the title and abstract requirements, were used as the source of the review. Based on the bibliometric analysis, the nano-meter metal oxides, and carbon-based nanotubes were identified as the most frequently studied nanomaterials, while quantum dots, which might induce possible harmful effects, were not considered so far. The majority of testing of pulmonary safety is based on in vitro studies with observed growth of the contribution of novel testing strategies, such as 3D lung model, air-liquid interface system, or omic analysis.
Collapse
Affiliation(s)
| | | | - Krzesimir Ciura
- QSAR Lab Ltd., Gdansk, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Mikolajczyk
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Karolina Jagiello
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Lekki-Porębski SA, Rakowski M, Grzelak A. Free zinc ions, as a major factor of ZnONP toxicity, disrupts free radical homeostasis in CCRF-CEM cells. Biochim Biophys Acta Gen Subj 2023; 1867:130447. [PMID: 37619691 DOI: 10.1016/j.bbagen.2023.130447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Nanotechnology has become a ubiquitous part of our everyday life. Besides the already-known nanoparticles (NPs), plenty of new nanomaterials are being synthesized every day. Here, we explain the mechanism of the zinc oxide nanoparticles (ZnONPs) cytotoxicity in a cellular model of acute lymphoblastic leukaemia (CCRF-CEM). To do so, we investigated both possible hypotheses about the ZnONPs mechanism of toxicity: a free zinc ions release and/or reactive oxygen species (ROS) generation. Presented here results show that: Our results support the hypothesis that the mechanism of ZnONPs cytotoxicity is based on the release of free zinc ions. Nevertheless, both previously quoted hypotheses incompletely described the mechanism of action of ZnONPs. In this paper, we show that the mechanism of cytotoxicity of ZnONPs is based on the induction of reductive stress in CCRF-CEM cells, which is caused by free zinc ions released from ZnONPs. Therefore, the increase of oxidative stress markers is most likely a secondary response of the cells towards the Zn2+. These results provide a crucial expansion of the zinc ion hypothesis and thus explain the biphasic cellular response of CCRF-CEM cells treated with ZnONPs.
Collapse
Affiliation(s)
- S A Lekki-Porębski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland.
| | - M Rakowski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - A Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
19
|
Ara C, Andleeb S, Ali S, Majeed B, Iqbal A, Arshad M, Chaudhary A, Asmatullah, Muzamil A. Protective potential of fresh orange juice against zinc oxide nanoparticles-induced trans-placental and trans-generational toxicity in mice. Food Sci Nutr 2023; 11:5114-5128. [PMID: 37703309 PMCID: PMC10494625 DOI: 10.1002/fsn3.3470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 09/15/2023] Open
Abstract
Due to the emerging applications of nanoparticles, human exposure to nanoparticles is unavoidable, particularly to zinc oxide nanoparticles (ZnO NPs), owing to their wide range of usage. The ongoing study aimed to evaluate trans-generational toxic potential of ZnO NPs through exposure to F0 mothers, in F1 pups and F1 mature offspring and the protective potential of fresh orange juice (OJ). Twenty-eight F0 mothers were randomly allocated into four groups (n = 7), control; untreated, dose group; exposed to ZnO NPs, dose+antidote group; coadministered ZnO NPs + OJ, antidote group; OJ, during the organogenetic period. Fifty percent of F0 mothers were subjected to cesarean sections on the 18th day of gestation and F1 pups were recovered, macro-photographed, and dissected for liver evisceration, while 50% of F0 mothers underwent standard delivery. After parturition, F1 offspring were examined, and the liver and blood samples were extracted. Observations showed that ZnO NPs exposure in F0 mothers in preparturition and postparturition resulted in decreased body weight, increased liver weight, and elevated levels of ALT and AST significantly p ≤ .05 as compared to the control and antidote groups. Histopathological analysis of maternal livers intoxicated with NPs showed the disruptive structure of central vein, hepatocytes, and Kupffer cells in F0 mothers, while F1 pups showed morphological deviations and distorted development of the liver tissue and congestion, in contrast to the control. F1 offspring of NPs exposed mothers, even at postnatal week 8 showed pyknotic nuclei and activated Kupffer cells in the liver sections against control. But in the case of the Dose+antidote group, alterations were less severe than in the dose group. It can be concluded that exposure to ZnO NPs instigates teratogenicity and hepatotoxicity in F1 pups, F0 mothers, and F1 offspring, respectively, while fresh orange juice acts as a remedial agent against the abovementioned toxicities.
Collapse
Affiliation(s)
- Chaman Ara
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Shagufta Andleeb
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of ZoologyGovernment College UniversityLahorePakistan
| | - Barirah Majeed
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asia Iqbal
- Department of Wildlife and EcologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Madeeha Arshad
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asma Chaudhary
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asmatullah
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Aliza Muzamil
- Institute of ZoologyUniversity of PunjabLahorePakistan
| |
Collapse
|
20
|
A/P Chowmasundaram Y, Tan TL, Nulit R, Jusoh M, Rashid SA. Recent developments, applications and challenges for carbon quantum dots as a photosynthesis enhancer in agriculture. RSC Adv 2023; 13:25093-25117. [PMID: 37622012 PMCID: PMC10445218 DOI: 10.1039/d3ra01217d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Since the world's population is expanding, mankind may be faced with a huge dilemma in the future, which is food scarcity. The situation can be mitigated by employing sustainable cutting-edge agricultural methods to maintain the food supply chain. In recent years, carbon quantum dots (CQD), a member of the well-known carbon-based nanomaterials family, have given rise to a new generation of technologies that have the potential to revolutionise horticulture and agriculture research. CQD has drawn much attention from the research community in agriculture owing to their remarkable properties such as good photoluminescence behaviour, high biocompatibility, photo-induced electron transfer, low cost, and low toxicity. These unique properties have led CQD to become a promising material to increase plant growth and yield in the agriculture field. This review paper highlights the recent advances of CQD application in plant growth and photosynthesis rate at different concentrations, with a focus on CQD uptake and translocation, as well as electron transfer mechanism. The toxicity and biocompatibility studies of CQD, as well as industrial scale applications of CQD for agriculture are discussed. Finally, the current challenges of the present and future perspectives in this agriculture research are presented.
Collapse
Affiliation(s)
- Yamuna A/P Chowmasundaram
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Tong Ling Tan
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Rosimah Nulit
- Department of Biology, Faculty Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Mashitah Jusoh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia 43400 Selangor Malaysia
| | - Suraya Abdul Rashid
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
21
|
Valdiglesias V, Alba-González A, Fernández-Bertólez N, Touzani A, Ramos-Pan L, Reis AT, Moreda-Piñeiro J, Yáñez J, Laffon B, Folgueira M. Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos. Int J Mol Sci 2023; 24:12297. [PMID: 37569675 PMCID: PMC10418813 DOI: 10.3390/ijms241512297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects. Despite being among the most studied NPs from a toxicological point of view, much remains unknown about their ecotoxicological effects or how they may affect specific cell types, such as cells of the central nervous system. The main objective of this work was to investigate the effects of ZnO NPs on human glial cells and zebrafish embryo development and to explore the role of the released Zn2+ ions in these effects. The effects on cell viability on human A172 glial cells were assessed with an MTT assay and morphological analysis. The potential acute and developmental toxicity was assessed employing zebrafish (Danio rerio) embryos. To determine the role of Zn2+ ions in the in vitro and in vivo observed effects, we measured their release from ZnO NPs with flame atomic absorption spectrometry. Then, cells and zebrafish embryos were treated with a water-soluble salt (zinc sulfate) at concentrations that equal the number of Zn2+ ions released by the tested concentrations of ZnO NPs. Exposure to ZnO NPs induced morphological alterations and a significant decrease in cell viability depending on the concentration and duration of treatment, even after removing the overestimation due to NP interference. Although there were no signs of acute toxicity in zebrafish embryos, a decrease in hatching was detected after exposure to the highest ZnO NP concentrations tested. The ability of ZnO NPs to release Zn2+ ions into the medium in a concentration-dependent manner was confirmed. Zn2+ ions did not seem entirely responsible for the effects observed in the glial cells, but they were likely responsible for the decrease in zebrafish hatching rate. The results obtained in this work contribute to the knowledge of the toxicological potential of ZnO NPs.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Jorge Moreda-Piñeiro
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario Medio Ambiente (IUMA), Departamento de Química, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
| | - Julián Yáñez
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| |
Collapse
|
22
|
Li Z, Yin X, Lyu C, Wang T, Wang W, Zhang J, Wang J, Wang Z, Han C, Zhang R, Guo D, Xu R. Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2023; 164:114988. [PMID: 37307677 DOI: 10.1016/j.biopha.2023.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Teng Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wenhao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jiachen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Zhenzhen Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Chen Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China; Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
23
|
Kurban M. Sulfur doping concentration effect on the electronic and structural properties of ZnO nanoparticles: Insights from DFTB calculations. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
24
|
Luiz MT, di Filippo LD, Dutra JAP, Viegas JSR, Silvestre ALP, Anselmi C, Duarte JL, Calixto GMF, Chorilli M. New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15030762. [PMID: 36986624 PMCID: PMC10054708 DOI: 10.3390/pharmaceutics15030762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Leonardo Delello di Filippo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | | | | | - Caroline Anselmi
- School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-6998
| |
Collapse
|
25
|
Smirnova E, Moniruzzaman M, Chin S, Sureshbabu A, Karthikeyan A, Do K, Min T. A Review of the Role of Curcumin in Metal Induced Toxicity. Antioxidants (Basel) 2023; 12:antiox12020243. [PMID: 36829803 PMCID: PMC9952547 DOI: 10.3390/antiox12020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.
Collapse
Affiliation(s)
- Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| |
Collapse
|
26
|
Wang M, Feng Y, Cao Z, Yu N, Wang J, Wang X, Kang D, Su M, Hu J, Du H. Multiple generation exposure to ZnO nanoparticles induces loss of genomic integrity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114383. [PMID: 36508841 DOI: 10.1016/j.ecoenv.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are commonly used in industrial and household applications, prompting the assessment of their associated health risks. Previous studies indicated that ZnO NPs can induce somatic cell mutations, while the aging process appears to increase the mutagenicity of ZnO NPs. However, little is known about the influence of ZnO NPs on genome stability of germ cells, and non-exposed progeny. Here we show that 20 nm ZnO NPs exposure disrupts germ cell development, and elevates the overall mutation frequency of germ cells in Caenorhabditis elegans (C. elegans). We observed that pristine ZnO NPs elicit germ cell apoptosis to a greater extent than the 60-day aged ZnO NPs. By treating parental worms with ZnO NPs for seven successive generations, whole-genome sequencing data revealed that, although the frequency of point mutations is kept unchanged, large deletions are significantly increased in F8 worms. Furthermore, we found that the mutagenicity of ZnO NPs might be partially attributed to the release of Zn2+ ions. Together, our results demonstrate the genotoxic effects of ZnO NPs on germ cells, and the possible underlying mechanism. These findings suggest that germ cell mutagenicity is worthy of consideration for the health risk assessment of engineered NPs.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China.
| | - Yu Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Zhenxiao Cao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaowei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Dixiang Kang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Hua Du
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China.
| |
Collapse
|
27
|
Kong J, Zhang J, Shen M, Zhang S, Shen P, Ren C. Preparation of manganese(II) oxide doped zinc oxide nanocomposites with improved antibacterial activity via ROS. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
30
|
Sehsah R, Wu W, Ichihara S, Hashimoto N, Zong C, Yamazaki K, Sato H, Itoh K, Yamamoto M, Elsayed AA, El-Bestar S, Kamel E, Ichihara G. Protective role of Nrf2 in zinc oxide nanoparticles-induced lung inflammation in female mice and sexual dimorphism in susceptibility. Toxicol Lett 2022; 370:24-34. [PMID: 36100149 DOI: 10.1016/j.toxlet.2022.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnO-NPs) are currently employed in various products such as rubber, paint, and cosmetics. Our group reported recently that Nrf2 protein provides protection against pulmonary inflammation induced by ZnO-NPs in male mice. The current study investigated the effect of Nrf2 deletion on the lung inflammatory response in female mice exposed to ZnO-NPs. METHODS An equal number of female Nrf2-/- mice and female Nrf2+/+ mice (24 each) were allocated into three equal groups, and each was exposed to ZnO-NPs at either 0, 10 or 30 µg ZnO-NPs/mouse through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were examined 14 days later to determine the number of inflammatory cells, the protein level, and for scoring inflammation histopathologically. The mRNA levels of Nrf2-dependent antioxidant enzymes and proinflammatory cytokine in lung tissue were also measured. RESULTS Exposure to ZnO-NPs increased all types of BALF cells and lung inflammation scores in both of female Nrf2-null (Nrf2-/-) and wild-type (Nrf2+/+) mice, and Nrf2 deletion enhanced ZnO-NPs-induced increase in the number of eosinophils in BALF. Exposure to ZnO-NPs dose-dependently increased the level of oxidized glutathione (GSSG), and mRNA levels of proinflammatory cytokines/chemokines; KC, MIP-2, IL-6, IL-1β and MCP-1 only in wild-type mice. Nrf2 deletion decreased total glutathione levels and basal mRNA levels of SOD1 and NQO1, and increased the basal mRNA level of above proinflammatory cytokines/chemokines. Nrf2 deletion enhanced ZnO-NPs-induced downregulation of GcLc, GR and TGF-β and upregulation of HO-1 and TNF-α. Taken together with our previous results in male mice, our results showed a lower susceptibility of females to lung tissue inflammation, relative to males, irrespective of Nrf2 deletion, and that enhancement of ZnO-NPs-induced upregulation of HO-1 and TNF-α and downregulation of GcLc, GR and TGF-β by deletion of Nrf2 is specific to female mice. CONCLUSION We conclude that Nrf2 provides protection in female mice against increase in BALF eosinophils, probably through down-regulation of proinflammatory cytokines/chemokines and upregulation of oxidative stress-related genes. The study also suggests lower susceptibility to lung tissue inflammation in female mice relative to their male counterparts and the synergistic effects of Nrf2 and exposure to ZnO-NPs on mRNA expression of GcLc, GR, HO-1, TGF-β or TNF-α in female mice.
Collapse
Affiliation(s)
- Radwa Sehsah
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Cai Zong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Kyoka Yamazaki
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Harue Sato
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Ahmed Ali Elsayed
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Soheir El-Bestar
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Emily Kamel
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan; Center for Health Management, Tokyo University of Science, Shinjuku, Tokyo.
| |
Collapse
|
31
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
32
|
Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine MC. 3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201275. [PMID: 35818683 PMCID: PMC9443467 DOI: 10.1002/advs.202201275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Photodetectors that are intimately interfaced with human skin and measure real-time optical irradiance are appealing in the medical profiling of photosensitive diseases. Developing compliant devices for this purpose requires the fabrication of photodetectors with ultraviolet (UV)-enhanced broadband photoresponse and high mechanical flexibility, to ensure precise irradiance measurements across the spectral band critical to dermatological health when directly applied onto curved skin surfaces. Here, a fully 3D printed flexible UV-visible photodetector array is reported that incorporates a hybrid organic-inorganic material system and is integrated with a custom-built portable console to continuously monitor broadband irradiance in-situ. The active materials are formulated by doping polymeric photoactive materials with zinc oxide nanoparticles in order to improve the UV photoresponse and trigger a photomultiplication (PM) effect. The ability of a stand-alone skin-interfaced light intensity monitoring system to detect natural irradiance within the wavelength range of 310-650 nm for nearly 24 h is demonstrated.
Collapse
Affiliation(s)
- Xia Ouyang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Sino‐German College of Intelligent ManufacturingShenzhen Technology UniversityShenzhen518118P. R. China
| | - Ruitao Su
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel Wai Hou Ng
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Guebum Han
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - David R. Pearson
- Department of DermatologyUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
33
|
Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9:931759. [PMID: 35911959 PMCID: PMC9334523 DOI: 10.3389/fmolb.2022.931759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has been developed rapidly in recent decades and widely applied in ocular disease therapy. Nano-drug delivery systems overcome the bottlenecks of current ophthalmic drug delivery and are characterized with strong biocompatibility, stability, efficiency, sustainability, controllability, and few side effects. Nanoparticles have been identified as a promising and generally safe ophthalmic drug-delivery system based on the toxicity assessment in animals. Previous studies have found that common nanoparticles can be toxic to the cornea, conjunctiva, and retina under certain conditions. Because of the species differences between humans and animals, advanced in vitro cell culture techniques, such as human organoids, can mimic the human organism to a certain extent, bringing nanoparticle toxicity assessment to a new stage. This review summarizes the advanced application of nanoparticles in ocular drug delivery and the potential toxicity, as well as some of the current challenges and future opportunities in nanotoxicological evaluation.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuanxing Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| |
Collapse
|
34
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
35
|
Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022; 8:gels8060329. [PMID: 35735673 PMCID: PMC9222824 DOI: 10.3390/gels8060329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
The dressings containing nanoparticles of metals and metal oxides are promising types of materials for wound repair. In such dressings, biocompatible and nontoxic hydrophilic polymers are used as a matrix. In the present review, we take a look at the anti-microbial effect of the nanoparticle-modified wound dressings against various microorganisms and evaluate their healing action. A detailed analysis of 31 sources published in 2021 and 2022 was performed. Furthermore, a trend for development of modern antibacterial wound-healing nanomaterials was shown as exemplified in publications starting from 2018. The review may be helpful for researchers working in the areas of biotechnology, medicine, epidemiology, material science and other fields aimed at the improvement of the quality of life.
Collapse
|
36
|
Aga K, Efa MT, Beyene TT. Effects of Sulfur Doping and Temperature on the Energy Bandgap of ZnO Nanoparticles and Their Antibacterial Activities. ACS OMEGA 2022; 7:10796-10803. [PMID: 35382288 PMCID: PMC8973117 DOI: 10.1021/acsomega.2c00647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 05/26/2023]
Abstract
Metal oxide nanoparticles (MO-NPs) are presently an area of intense scientific research, attributable to their wide variety of potential applications in biomedical, optical, and electronic fields. MO-NPs such as zinc oxide nanoparticles (ZnO-NPs) and others have a very high surface-area-to-volume ratio and are excellent catalysts. MO-NPs could also cause unexpected effects in living cells because their sizes are similar to important biological molecules, or parts of them, or because they could pass through barriers that block the passage of larger particles. However, undoped MO-NPs like ZnO-NPs are chemically pure, have a higher optical bandgap energy, exhibit electron-hole recombination, lack visible light absorption, and have poor antibacterial activities. To overcome these drawbacks and further outspread the use of ZnO-NPs in nanomedicine, doping seems to represent a promising solution. In this paper, the effects of temperature and sulfur doping concentration on the bandgap energy of ZnO nanoparticles are investigated. Characterizations of the synthesized ZnO-NPs using zinc acetate dihydrate as a precursor by a sol-gel method were done by using X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. A comparative study was carried out to investigate the antibacterial activity of ZnO nanoparticles prepared at different temperatures and different concentrations of sulfur-doped ZnO nanoparticles against Staphylococcus aureus bacteria. Experimental results showed that the bandgap energy decreased from 3.34 to 3.27 eV and from 3.06 to 2.98 eV with increasing temperature and doping concentration. The antibacterial activity of doped ZnO nanoparticles was also tested and was found to be much better than that of bare ZnO nanoparticles.
Collapse
Affiliation(s)
- Kenassa
Wakgari Aga
- Department
of Chemical Engineering, College of Technology, Mettu University, Mettu 251, Ethiopia
| | - Mulugeta Tesema Efa
- Department
of Chemistry, College of Natural Sciences, Dambi Dollo University, Dambi Dollo, Jimma 251, Ethiopia
| | - Tamene Tadesse Beyene
- Department
of Chemistry, College of Natural Sciences, Jimma University, P.O.
Box 378, Jimma 251, Ethiopia
| |
Collapse
|
37
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
38
|
Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence.
Collapse
|
39
|
Meng J, Yang J, Pan T, Qu X, Cui S. ZnO nanoparticles promote the malignant transformation of colorectal epithelial cells in APC min/+ mice. ENVIRONMENT INTERNATIONAL 2022; 158:106923. [PMID: 34634619 DOI: 10.1016/j.envint.2021.106923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
As the use of zinc oxide nanoparticles (ZnO NPs) in everyday products grows, so does concern about health risks. However, no findings on the gastrointestinal toxicity of ZnO NPs have been published. We investigated the possible malignant transformation of ZnO NPs in the mice's colonic tissues using the APCmin/+ mouse model with a premalignant lesion in intestinal epithelial cells. Higher doses and long-term oral exposure to ZnO NPs were found to mildly promote colonic inflammation in WT mice, while they moderately or strongly exacerbated the severity of chronic inflammation and tumorigenesis in APCmin/+ mice with intestinal adenomatous polyposis. The ZnO NPs-induced inflammation and tumorigenesis in colonic epithelial cells was linked to the activation of CXCR2/NF-κB/STAT3/ERK and AKT pathways. Analysis of the ZnO NPs-exacerbated intestinal adenomatous polyposis in APCmin/+ mice revealed that ZnO NPs could activate the APC-driven Wnt/β-catenin signaling pathway, exacerbating intestinal tumorigenesis. In fact, ZnO NPs have been shown to increase intestinal inflammation and tumorigenesis in APCmin/+ mice by releasing free Zn2+. In WT mice, a low dose of ZnO NPs (26 mg/kg/day) did not cause intestinal inflammation. In conclusion, higher doses and prolonged exposure to ZnO NPs promote the malignant transformation of precancerous epithelial cells.
Collapse
Affiliation(s)
- Jian Meng
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Institute of Eco-Chongming, East China Normal University, Shanghai 202162, China
| | - Juan Yang
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ting Pan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
40
|
Khayal EES, Ibrahim HM, Shalaby AM, Alabiad MA, El-Sheikh AA. Combined lead and zinc oxide-nanoparticles induced thyroid toxicity through 8-OHdG oxidative stress-mediated inflammation, apoptosis, and Nrf2 activation in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2589-2604. [PMID: 34553816 DOI: 10.1002/tox.23373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
A human is exposed to a chemical mixture rather than a single chemical, particularly with the wide spread of nanomaterials. Therefore, the present study evaluated the combined exposure of lead acetate (Pb) and zinc oxide-nanoparticles (ZnO-NPs) compared to each metal alone on the thyroid gland of adult rats. A total of 30 adult male albino rats were divided into four groups, group I (control), group II received Pb (10 mg/kg), group III received ZnO-NPs (85 mg/kg) and group IV co-administrated the two metals in the same previous doses. The materials were gavaged for 8 weeks. The toxicity was assessed through several biochemical parameters. Our results revealed significant body weight reduction relative to increased thyroid weights, decreased both of serum-free triiodothyronine (FT3), tetra-iodothyronine (FT4), increased thyroid-stimulating hormone (TSH), increased serum and thyroid levels of Pb and zinc, significant elevation in tumor necrosis factor-α (TNF-α), reduction in interleukin 4 (IL4), upregulation of Bax, and downregulation of Bcl-2 genes. Additionally, there was significant overexpression of nuclear factor erythroid 2-related factor 2(Nrf2), 8-Hydroxydeoxyguanosine(8-OHdG), the elevation of tissues malondialdehyde (MDA), reduction of tissues total antioxidant capacity (TAC), and disruptive thyroid structural alterations in all metals groups with marked changes in the combined metals group. In conclusion, the combined exposure of Pb and ZnO-NPs induced pronounced toxic thyroid injury, pointing to additive effects in rats than the individual metal effects through different significant changes of disruptive thyroid structural alterations related to the loading of thyroid tissues with Pb and zinc metals producing oxidative stress that mediated inflammation and apoptosis.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Rasool S, Faheem M, Hanif U, Bahadur S, Taj S, Liaqat F, Pereira L, Liaqat I, Shaheen S, Shuaib M, Gulzar S. Toxicological effects of the chemical and green ZnO NPs on Cyprinus carpio L. observed under light and scanning electron microscopy. Microsc Res Tech 2021; 85:848-860. [PMID: 34655129 DOI: 10.1002/jemt.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022]
Abstract
Nanoparticles in aquatic bodies cause serious harm to the aquatic organisms when accumulated in high amounts. However, green nanoparticles synthesized using plants can be less toxic as compared to chemical nanoparticles. Hence, we designed our study to investigate the toxicological effects of chemical and green zinc oxide nanoparticles (ZnO NPs) on the biological activity of juvenile Cyprinus carpio. The green ZnO NPs were synthesized from Solieria robusta, and chemical ZnO NPs were synthesized using zinc chloride solution and ammonium hydroxide. Characterization was done by using light microscopy, scanning electron microscope (SEM), Fourier transmission infrared radiation, and X-ray diffraction (XRD) techniques. The highest absorbance of nanoparticles was observed at 360 which confirmed the synthesis of ZnO. The SEM analysis showed that green nanoparticles were hexagonal while the chemical nanoparticles were spherical to cubic in shape. Definite peaks were observed in XRD of green and chemical NPs at 2θ angles 45.84° and 32.18°, respectively. Oxidative stress was determined by chemical analysis of catalase, glutathione S-transferase (GST), glutathione (GSH), and lipid peroxidation (LPO) activities. The toxicological effects of chemical ZnO NPs on the catalase, LPO, GST, and GSH activities were more than green ZnO NPs. The histopathological investigation proved that the effect of chemical nanoparticles was worse than green ZnO NPs. More tissue damage was found in chemical nanoparticles than green synthesized nanoparticles. It was concluded that chemical nanoparticles can be replaced by green nanoparticles, as green nanoparticles are eco-friendly with less toxicological effects. This replacement can limit the toxic effect of nanoparticles when they get accumulated in high amounts in water bodies.
Collapse
Affiliation(s)
- Saba Rasool
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Mehwish Faheem
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou, China
| | - Sehrish Taj
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Department of Aquaculture, Ocean College of Hainan University, Haikou, China.,Department of Aquaculture, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
| | - Fareeha Liaqat
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Leonel Pereira
- Department of Botany, Institute of Marine Research (IMAR), FCTUC, University of Coimbra, Coimbra, Portugal
| | - Iram Liaqat
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shabnam Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Shuaib
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Sadia Gulzar
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
42
|
Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2623. [PMID: 34685072 PMCID: PMC8541163 DOI: 10.3390/nano11102623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Colin Moore
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Walter Rocchia
- Computational Modelling of Nanoscale and Biophysical Systems—CONCEPT Lab, Istituto Italiano Di Tecnologia, 16163 Genova, Italy;
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Gemma Janer
- LEITAT Technological Center, 08005 Barcelona, Spain;
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Stefania Sabella
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| |
Collapse
|
43
|
Deore MS, S K, Naqvi S, Kumar A, Flora SJS. Alpha-Lipoic Acid Protects Co-Exposure to Lead and Zinc Oxide Nanoparticles Induced Neuro, Immuno and Male Reproductive Toxicity in Rats. Front Pharmacol 2021; 12:626238. [PMID: 34305580 PMCID: PMC8296815 DOI: 10.3389/fphar.2021.626238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the neuro-, immuno-, and male reproductive toxicity of zinc oxide nanoparticles (ZnO NPs) alone and in combination with lead acetate. We also studied the therapeutic role of α-lipoic acid postexposure. Lead (10 mg/kg, body weight), ZnO NPs (100 mg/kg, bwt) alone, and their combination were administered orally in Wistar rats for 28 days, followed by the administration of α-lipoic acid (15 mg/kg, bwt) for the next 15 days. Our results demonstrated protective effects of α-lipoic acid on lead and ZnO NP-induced biochemical alterations in neurological, immunological, and male reproductive organs in rats. The altered levels of blood δ-aminolevulinic acid dehydratase (ALAD), immunoglobulins (IgA, IgG, IgM, and IgE), interleukins (IL-1β, IL-4, and IL-6), caspase-3, and tumor necrosis factor (TNF-α) were attenuated by lipoic acid treatment. Lead and ZnO NP-induced oxidative stress was decreased by lipoic acid treatment, while a moderate recovery in the normal histoarchitecture of the brain section (cortex and hippocampus) and testes further confirmed the neuro- and male reproductive toxicity of lead and ZnO NPs. We also observed a significant decrease in the blood metal content in the animals treated with lipoic acid compared to the lead-administered group, indicating the moderate chelating property of lipoic acid. It may thus be concluded that lipoic acid might be a promising protective agent against lead and ZnO NP-induced alterations in the neurological, immunological, and reproductive parameters.
Collapse
Affiliation(s)
| | | | | | | | - S. J. S. Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, India
| |
Collapse
|
44
|
Csakvari AC, Moisa C, Radu DG, Olariu LM, Lupitu AI, Panda AO, Pop G, Chambre D, Socoliuc V, Copolovici L, Copolovici DM. Green Synthesis, Characterization, and Antibacterial Properties of Silver Nanoparticles Obtained by Using Diverse Varieties of Cannabis sativa Leaf Extracts. Molecules 2021; 26:4041. [PMID: 34279380 PMCID: PMC8271394 DOI: 10.3390/molecules26134041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L-1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV-VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Adriana Cecilia Csakvari
- Biomedical Sciences Doctoral School, University of Oradea, 1 University St., 410087 Oradea, Romania
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Dana G Radu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Leonard M Olariu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Andreea I Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Anca Ofelia Panda
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael 1st of Romania from Timisoara, 119 Calea Aradului St., 300645 Timisoara, Romania
| | - Georgeta Pop
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael 1st of Romania from Timisoara, 119 Calea Aradului St., 300645 Timisoara, Romania
| | - Dorina Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Vlad Socoliuc
- Center for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, 2 Elena Dragoi St., 310330 Arad, Romania
| |
Collapse
|
45
|
Liu Z, Zhang W, Cheng X, Wang H, Bian L, Wang J, Han Z, Wang Y, Lian X, Liu B, Ren Z, Zhang B, Jiang Z, Lin Z, Gao Y. Overexpressed XRCC2 as an independent risk factor for poor prognosis in glioma patients. Mol Med 2021; 27:52. [PMID: 34051735 PMCID: PMC8164800 DOI: 10.1186/s10020-021-00316-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background XRCC2, a homologous recombination-related gene, has been reported to be associated with a variety of cancers. However, its role in glioma has not been reported. This study aimed to find out the role of XRCC2 in glioma and reveal in which glioma-specific biological processes is XRCC2 involved based on thousands of glioma samples, thereby, providing a new perspective in the treatment and prognostic evaluation of glioma.
Methods The expression characteristics of XRCC2 in thousands of glioma samples from CGGA and TCGA databases were comprehensively analyzed. Wilcox or Kruskal test was used to analyze the expression pattern of XRCC2 in gliomas with different clinical and molecular features. The effect of XRCC2 on the prognosis of glioma patients was explored by Kaplan–Meier and Cox regression. Gene set enrichment analysis (GSEA) revealed the possible cellular mechanisms involved in XRCC2 in glioma. Connectivity map (CMap) was used to screen small molecule drugs targeting XRCC2 and the expression levels of XRCC2 were verified in glioma cells and tissues by RT-qPCR and immunohistochemical staining. Results We found the overexpression of XRCC2 in glioma. Moreover, the overexpressed XRCC2 was associated with a variety of clinical features related to prognosis. Cox and meta-analyses showed that XRCC2 is an independent risk factor for the poor prognosis of glioma. Furthermore, the results of GSEA indicated that overexpressed XRCC2 could promote malignant progression through involved signaling pathways, such as in the cell cycle. Finally, doxazosin, quinostatin, canavanine, and chrysin were identified to exert anti-glioma effects by targeting XRCC2. Conclusions This study analyzed the expression pattern of XRCC2 in gliomas and its relationship with prognosis using multiple datasets. This is the first study to show that XRCC2, a novel oncogene, is significantly overexpressed in glioma and can lead to poor prognosis in glioma patients. XRCC2 could serve as a new biomarker for glioma diagnosis, treatment, and prognosis evaluation, thus bringing new insight into the management of glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00316-0.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China.,Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wang Zhang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xingbo Cheng
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hongbo Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Lu Bian
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jialin Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yanbiao Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoyu Lian
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Binfeng Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhishuai Ren
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Bo Zhang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| | - Yanzheng Gao
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China. .,Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
46
|
Estrela FN, Guimarães ATB, Araújo APDC, Silva FG, Luz TMD, Silva AM, Pereira PS, Malafaia G. Toxicity of polystyrene nanoplastics and zinc oxide to mice. CHEMOSPHERE 2021; 271:129476. [PMID: 33434826 DOI: 10.1016/j.chemosphere.2020.129476] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 05/04/2023]
Abstract
The toxicity of zinc oxide (ZnO NPs) and polystyrene nanoplastics (PS NaPs) has been tested in different animal models; however, knowledge about their impact on mice remains incipient. The aim of the current study is to evaluate the effects of these nanomaterials on Swiss mice after their individual exposure to a binary combination of them. The goal was to investigate whether short exposure (three days) to an environmentally relevant dose (14.6 ng/kg, i.p.) of these pollutants would have neurotoxic, biochemical and genotoxic effects on the modelss. Data in the current study have shown that the individual exposure of these animals has led to cognitive impairment based on the object recognition test, although the exposure experiment did not cause locomotor and anxiogenic or anxiolitic-like behavioral changes in them. This outcome was associated with increased nitric oxide levels, thiobarbituric acid reactive species, reduction in acetylcholinesterase activity and with the accumulation of nanomaterials in their brains. Results recorded for the assessed parameters did not differ between the control group and the groups exposed to the binary combination of pollutants. However, both the individual and the combined exposures caused erythrocyte DNA damages associated with hypercholesterolemic and hypertriglyceridemic conditions due to the presence of nanomaterials. Based on the results, the toxicological potential of ZnO NPs and PS NaPs in the models was confirmed and it encouraged further in-depth investigations about factors explaining the lack of additive or synergistic effect caused by the combined exposure to the assessed pollutants.
Collapse
Affiliation(s)
- Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Abner Marcelino Silva
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Paulo Sergio Pereira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil.
| |
Collapse
|
47
|
Chang SY, Huang KY, Chao TL, Kao HC, Pang YH, Lu L, Chiu CL, Huang HC, Cheng TJR, Fang JM, Yang PC. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci Rep 2021; 11:8692. [PMID: 33888738 PMCID: PMC8062499 DOI: 10.1038/s41598-021-87254-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.
Collapse
Affiliation(s)
- Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Chung-Shan South Rd., No. 7, Taipei, 10002, Taiwan
| | - Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Lin Lu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Chun-Lun Chiu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Hsin-Chang Huang
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Ting-Jen Rachel Cheng
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10607, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
48
|
Park EJ, Kim SN, Yoon C, Cho JW, Lee GH, Kim DW, Park J, Choi I, Lee SH, Song J, Lim HJ, Kang MS, Lee HS. Repeated intratracheal instillation of zinc oxide nanoparticles induced pulmonary damage and a systemic inflammatory response in cynomolgus monkeys. Nanotoxicology 2021; 15:621-635. [PMID: 33870832 DOI: 10.1080/17435390.2021.1905899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, some researchers have demonstrated that inhaled zinc oxide nanoparticles (ZnONPs) induce an acute systemic inflammatory response in workers. Considering nonhuman primates are preferably considered an animal model for translational research due to their proven similarity with humans in terms of genetics and physiology, we intratracheally instilled ZnONPs to cynomolgus monkey for 14 days and identified the toxic mechanism and bioaccumulation. ZnONPs were rapidly ionized or aggregated in a simulated pulmonary fluid, and they attracted neutrophils to the lungs and increased the pulmonary level of inflammatory mediators. Additionally, thickened alveolar walls, fibrin clots, and hemorrhages were observed in the lungs of the monkeys instilled with the higher dose accompanied by cell debris in the alveolar ducts and alveoli. Dark-field microscopy images revealed translocation of ZnONPs into other tissues accompanied by an increase in the relative weight of livers to body weight. In addition, when instilled at the higher dose, the albumin/globulin ratio notably decreased compared to the control, whereas the C-reactive protein (CRP) level was significantly elevated. ZnONPs also clearly induced apoptotic cell death in a 24 h exposure to alveolar macrophages. Taken together, part of inhaled ZnONPs may be ionized in the lung, resulting in acute toxic effects, including cell death and tissue damage, and the rest may move to other tissues in the form of particles, causing a systemic inflammatory response. Based on the proven evidence among workers, we also suggest that the CRP level can be recommended as a biomarker for ZnONPs-induced adverse health effects.
Collapse
Affiliation(s)
- Eun-Jung Park
- East-West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Human Health and Environmental Toxins Research Center, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea
| | - Soo Nam Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Bio-Health Convergence Institute GLP Lab, Korea Testing Certification Institute, Cheongju, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Seoul, South Korea
| | - Jae-Woo Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Seung Hyeun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeongah Song
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hyun-Ji Lim
- Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate school, Kyung Hee University, Seoul, South Korea.,Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hong-Soo Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| |
Collapse
|
49
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
50
|
Dai D, He L, Chen Y, Zhang C. Astrocyte responses to nanomaterials: Functional changes, pathological changes and potential applications. Acta Biomater 2021; 122:66-81. [PMID: 33326883 DOI: 10.1016/j.actbio.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Astrocytes are responsible for regulating and optimizing the functional environment of neurons in the brain and can reduce the adverse impacts of external factors by protecting neurons. However, excessive astrocyte activation upon stimulation may alter their initial protective effect and actually lead to aggravation of injury. Similar to the dual effects of astrocytes in the response to injury within the central nervous system (CNS), nanomaterials (NMs) can have either toxic or beneficial effects on astrocytes, serving to promote injury or inhibit tumors. As the important physiological functions of astrocytes have been gradually revealed, the effects of NMs on astrocytes and the underlying mechanisms have become a new frontier in nanomedicine and neuroscience. This review summarizes the in vitro and in vivo findings regarding the effects of various NMs on astrocytes, focusing on functional alterations and pathological processes in astrocytes, as well as the possible underlying mechanisms. We also emphasize the importance of co-culture models in studying the interaction between NMs and cells of the CNS. Finally, we discuss NMs that have shown promise for application in astrocyte-related diseases and propose some challenges and suggestions for further investigations, with the aim of providing guidance for the widespread application of NMs in the CNS.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|