1
|
Kim D, Kim NW, Kim TG, Lee J, Jung JY, Hur S, Lee J, Lee K, Park SA. Surface Functionalization of 3D-Printed Scaffolds with Seed-Assisted Hydrothermally Grown ZnO Nanoarrays for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45389-45398. [PMID: 39150145 DOI: 10.1021/acsami.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.
Collapse
Affiliation(s)
- Dahong Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Woon Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Tae Gun Kim
- Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jihye Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Joo-Yun Jung
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Shin Hur
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaejong Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|
2
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
3
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
4
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
6
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Chen H. Critical Packing Density of Water-Mediated Nonstick Self-Assembled Monolayer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:439-445. [PMID: 34941271 DOI: 10.1021/acs.langmuir.1c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-mineral surface interactions are relevant in many biological and geological applications. We have previously studied nanoparticle coatings based on closely packed bicomponent polyol-fluoroalkane self-assembled monolayers (SAMs) that can have tunable stickiness on calcite surfaces by changing the compositions of fluoroalkanes in SAMs, where the coatings show nonstick properties if fluoroalkanes can effectively perturb hydration layers on calcite surfaces. However, when applying coatings on nanoparticles, it can be challenging to predict the maximum achievable coating density. Here, we study how would water-mediated SAM-calcite interactions change with different SAM coating densities. Molecular dynamics simulations show that compositionally repulsive, closely packed polyol-fluoroalkane SAMs become adhesive to calcite surfaces with decreasing coating densities. Our modeling shows that this results from the collapsing of fluoroalkanes into the voids of SAMs, where fluoroalkanes can no longer perturb hydration layers on calcite surfaces. Interestingly, we find that the nonstick-stick transition occurs when the volume fractions of the voids on SAMs are greater than the volume fractions of hydrophilic coating molecules.
Collapse
Affiliation(s)
- Hsieh Chen
- Aramco Americas: Aramco Research Center-Boston, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Kamel R, El-Wakil NA, Elkasabgy NA. Calcium-Enriched Nanofibrillated Cellulose/Poloxamer in-situ Forming Hydrogel Scaffolds as a Controlled Delivery System of Raloxifene HCl for Bone Engineering. Int J Nanomedicine 2021; 16:6807-6824. [PMID: 34675509 PMCID: PMC8502541 DOI: 10.2147/ijn.s323974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from an agricultural waste (sugar cane) was utilized to prepare injectable in-situ forming hydrogel scaffolds (IHS) for regenerative medicine. METHODS TONFC was prepared and characterized for its morphology and chemical structure using TEM and FT-IR, respectively. The cold method was applied to prepare hydrogels. Various concentrations of poloxamer 407 were added to the prepared TONFC (0.5%w/w). Different sources of calcium, Fujicalin® (DCP) or hydroxyapatite (TCP), were used to formulate the aimed calcium-enriched raloxifene hydrochloride-loaded IHS. Gelation temperature, drug content, injectability and in-vitro drug release were evaluated along with the morphological characters. Cytocompatibility studies and tissue regeneration properties were assessed on Saos-2 cells. RESULTS TEM photograph of TONFC showed fibrous nanostructure. The selected formulation "Ca-IHS4" composed of TONFC+15% P407+10% TCP showed the most prolonged release pattern for 12 days with the least burst effect (about 25% within 24 h). SEM micro-photographs of the in-situ formed scaffolds showed a highly porous 3D structure. Cytocompatibility studies of formulation "Ca-IHS4" revealed the biocompatibility as well as improved cell adhesion, alkaline phosphatase enzyme activity and calcium ion deposition. CONCLUSION The outcomes suggest that Ca-IHS4 presents a simple, safe-line and non-invasive strategy for bone regeneration.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Nahla A El-Wakil
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Controlling water-mediated interactions by designing self-assembled monolayer coatings. Sci Rep 2021; 11:8459. [PMID: 33875723 PMCID: PMC8055914 DOI: 10.1038/s41598-021-87708-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
Engineered nanoparticles have been broadly used in biological and geological systems. Hydrophilic molecules such as polyols have been used as coatings on nanoparticle surfaces due to their good biocompatibility and solubility in saline water. However, polyol coatings can cause huge retention of nanoparticles when encountering mineral surfaces. Here, molecular dynamics simulations enlightened that the strong adhesion of hydrophilic coatings to mineral surfaces stemming from the partitioning of the hydroxy groups on the hydrophilic molecules to the well-defined bound hydration layers on the mineral surfaces. To mitigate the nanoparticle adhesion, we investigated introducing small percentages of omniphobic fluoroalkanes to form a bicomponent system of hydrophilic and fluoroalkanes, which greatly perturbed the hydration layers on mineral surfaces and resulted in nonstick surface coatings. Our results provide important insight for the design of tunable “stickiness” nanoparticle coatings in different mineralogies, such as applications in subsurface environments or targeted delivery in mineralized tissues.
Collapse
|
10
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Scialla S, Palazzo B, Sannino A, Verri T, Gervaso F, Barca A. Evidence of Modular Responsiveness of Osteoblast-Like Cells Exposed to Hydroxyapatite-Containing Magnetic Nanostructures. BIOLOGY 2020; 9:biology9110357. [PMID: 33113830 PMCID: PMC7692879 DOI: 10.3390/biology9110357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary Current research on nanocomposite materials with tailored physical–chemical properties is increasingly advancing in biomedical applications for bone regeneration. In this study, occurrence of differential responsiveness to dextran-grafted iron oxide (DM) nanoparticles and to their hybrid nano-hydroxyapatite (DM/n-HA) counterpart was investigated in human-derived, osteoblast-like cells. Sensitivity of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal dynamics. Remarkably, it was shown that effects triggered by the DM are no more retained when DM is embedded onto DM/n-HA nanocomposites. In parallel, analyses on the expression of genes involved in (a) intracellular signaling pathways triggered by ligands or cell interactions with elements of the extracellular matrix, (b) modulation of processes such as cell cycle arrest, apoptosis, senescence, DNA repair, metabolism changes, and (c) iron homeostasis and absorption through cell membranes, indicated that the DM/n-HA-treated cells retain tracts of physiological responsiveness unlike DM-treated cells. Overall, a shielding effect by the n-HA was assumed (masking the DM’s cytotoxicity), and a modular biomimicry of the DM/n-HA nanocomposites. On these bases, the biocompatibility of n-HA associated to DM’s magnetic responsiveness offer a combination of structural/functional features of these nano-tools for bone tissue engineering, for finely acting within physiological ranges. Abstract The development of nanocomposites with tailored physical–chemical properties, such as nanoparticles containing magnetic iron oxides for manipulating cellular events at distance, implies exciting prospects in biomedical applications for bone tissue regeneration. In this context, this study aims to emphasize the occurrence of differential responsiveness in osteoblast-like cells to different nanocomposites with diverse features: dextran-grafted iron oxide (DM) nanoparticles and their hybrid nano-hydroxyapatite (DM/n-HA) counterpart. Here, responsiveness of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal features. We observed that effects triggered by the DM are no more retained when DM is embedded onto the DM/n-HA nanocomposites. Also, analysis of mRNA level variations of the focal adhesion kinase (FAK), P53 and SLC11A2/DMT1 human genes showed that the DM/n-HA-treated cells retain tracts of physiological responsiveness compared to the DM-treated cells. Overall, a shielding effect by the n-HA component can be assumed, masking the DM’s cytotoxic potential, also hinting a modular biomimicry of the nanocomposites respect to the physiological responses of osteoblast-like cells. In this view, the biocompatibility of n-HA together with the magnetic responsiveness of DMs represent an optimized combination of structural with functional features of the DM/n-HA nano-tools for bone tissue engineering, for finely acting within physiological ranges.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy, 54 (Mostra d’Oltremare Pad.20), 80125 Naples, Italy
- Correspondence: (S.S.); (A.B.)
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- ENEA, Division for Sustainable Materials—Research Centre of Brindisi, 72100 Brindisi, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
- Correspondence: (S.S.); (A.B.)
| |
Collapse
|
12
|
Zhao X, Li L, Chen M, Xu Y, Zhang S, Chen W, Liang W. Nanotechnology Assisted Targeted Drug Delivery for Bone Disorders: Potentials and Clinical Perspectives. Curr Top Med Chem 2020; 20:2801-2819. [PMID: 33076808 DOI: 10.2174/1568026620666201019110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Nanotechnology and its allied modalities have brought revolution in tissue engineering and bone healing. The research on translating the findings of the basic and preclinical research into clinical practice is ongoing. Advances in the synthesis and design of nanomaterials along with advances in genomics and proteomics, and tissue engineering have opened a bright future for bone healing and orthopedic technology. Studies have shown promising outcomes in the design and fabrication of porous implant substrates that can be exploited as bone defect augmentation and drug-carrier devices. However, there are dozens of applications in orthopedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from tens 10s of nanometers to a few micrometers. Nanotechnology has made promising advances in the synthesis of scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. This study reviews the basic and translational sciences and clinical implications of the nanotechnology in tissue engineering and bone diseases. Recent advances in NPs assisted osteogenic agents, nanocomposites, and scaffolds for bone disorders are discussed.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Laifeng Li
- Department of Traumatic Orthopedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan 250132, Shandong Province, China
| | - Meikai Chen
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Songou Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Wangzhen Chen
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, China
| |
Collapse
|
13
|
Habib M, Horne DA, Hussein K, Coughlin D, Waldorff EI, Zhang N, Ryaby JT, Lotz JC. Magnetic Nanoparticles Synergize with Pulsed Magnetic Fields to Stimulate Osteogenesis In Vitro. Tissue Eng Part A 2020; 27:402-412. [PMID: 32746770 DOI: 10.1089/ten.tea.2020.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delayed bone healing is a major challenge in orthopedic clinical practice, highlighting a need for technologies to overcome ineffective cell growth and osteogenic differentiation. The objective of this study was to investigate the synergistic effects of the PhysioStim (PEMF) signal with iron-ion doped tri-calcium phosphate bone substitute on human mesenchymal stem cell (hMSC) osteogenesis in vitro. Intrinsically magnetic nano-bone substitutes (MNBS) were developed with single particles on the order of 100 nm, saturation magnetization of 0.425 emu/g, and remanent magnetization of 0.013 emu/g. MNBS were added to hMSC culture and cell viability, alkaline phosphatase (ALP) activity, mineralization, and osteogenic gene expression in the presence and absence of PEMF were quantified for up to 10 days. MNBS attached to the surface of and were internalized by hMSCs when cultured together for 4 days and had no impact on cell viability with PEMF exposure for up to 7 days. Although total ALP activity was significantly increased with PEMF treatment alone, with a peak at day 5, PEMF combined with MNBS significantly increased ALP activity, with a peak at day 3, compared with all other groups (p < 0.01). The shift can be explained by significantly increased extracellular ALP activity beginning at day 2 (p < 0.01). PEMF combined with MNBS demonstrated continuously increasing mineralization overtime, with significantly greater Alizarin Red S concentration compared with all other groups at day 7 (p < 0.01). Increases in ALP activity and mineral content were in agreement with osteogenic gene expression that demonstrated peak ALP gene expression at day 1, and upregulated BMP-2, BGLAP, and SPP1 gene expression at day 7 (p < 0.05). The results of this study demonstrate the synergistic effects of PEMF and MNBS on osteogenesis and suggest that PEMF and MNBS may provide a method for accelerated bone healing.
Collapse
Affiliation(s)
- Mohamed Habib
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| | - Khaled Hussein
- Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Dezba Coughlin
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| |
Collapse
|
14
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
15
|
Talukdar Y, Rashkow JT, Patel S, Lalwani G, Bastidas J, Khan S, Sitharaman B. Nanofilm generated non-pharmacological anabolic bone stimulus. J Biomed Mater Res A 2019; 108:178-186. [PMID: 31581364 DOI: 10.1002/jbm.a.36807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/10/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Stimulus-responsive nanomaterials have mainly been employed to ablate or destroy tissues or to facilitate controlled release of drugs or biologics. Herein, we demonstrate the potential of stimulus-responsive nanomaterials to promote tissue regeneration via a non-pharmacological and noninvasive strategy. Thin nanofilms of an optically-absorbing organic dye or nanoparticle (single-walled graphene nanoribbons [SWOGNR]) were placed over (without touching the skin) a rodent femoral fracture site. A nanosecond pulsed near-infrared laser diode was employed to generate photoacoustic (PA) signals from the nanofilms. X-ray micro-computed tomography (microCT), histology, and mechanical testing results showed that daily PA stimulations of upto 45 min for 6 weeks (complete fracture healing) do not adversely affect bone regeneration and quality. Further, microCT and histological analysis showed 10 min daily stimulation for 2 weeks significantly increases bone quantity at the fracture sites of rats exposed to the nanoparticle-generated PA signals. In these rats, up to threefold increase in bone volume to callus volume ratio and twofold increase in bone mineral density within the callus were noted, compared to rats that were not exposed to the photoacoustic signals. The results taken together indicate that nanofilm-generated photoacoustic signals serve as an anabolic stimulus for bone regeneration. The results, in conjugation with the ability of these nanofilms to serve as PA contrast agents, present opportunities toward the development of integrated noninvasive imaging and noninvasive or invasive treatment strategies for bone loss due to disease or trauma.
Collapse
Affiliation(s)
- Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jason T Rashkow
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Sunny Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Juan Bastidas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Slah Khan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
16
|
Paun IA, Calin BS, Mustaciosu CC, Mihailescu M, Moldovan A, Crisan O, Leca A, Luculescu CR. 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. MATERIALS 2019; 12:ma12172834. [PMID: 31484381 PMCID: PMC6747966 DOI: 10.3390/ma12172834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies.
Collapse
Affiliation(s)
- Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania.
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania.
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Cosmin Catalin Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Magurele-Ilfov, Romania
| | - Mona Mihailescu
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| | - Ovidiu Crisan
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Aurel Leca
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Catalin Romeo Luculescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| |
Collapse
|
17
|
Deng C, Xu C, Zhou Q, Cheng Y. Advances of nanotechnology in osteochondral regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1576. [PMID: 31329375 DOI: 10.1002/wnan.1576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In the past few decades, nanotechnology has proven to be one of the most powerful engineering strategies. The nanotechnologies for osteochondral tissue engineering aim to restore the anatomical structures and physiological functions of cartilage, subchondral bone, and osteochondral interface. As subchondral bone and articular cartilage have different anatomical structures and the physiological functions, complete healing of osteochondral defects remains a great challenge. Considering the limitation of articular cartilage to self-healing and the complexity of osteochondral tissue, osteochondral defects are in urgently need for new therapeutic strategies. This review article will concentrate on the most recent advancements of nanotechnologies, which facilitates chondrogenic and osteogenic differentiation for osteochondral regeneration. Moreover, this review will also discuss the current strategies and physiological challenges for the regeneration of osteochondral tissue. Specifically, we will summarize the latest developments of nanobased scaffolds for simultaneously regenerating subchondral bone and articular cartilage tissues. Additionally, perspectives of nanotechnology in osteochondral tissue engineering will be highlighted. This review article provides a comprehensive summary of the latest trends in cartilage and subchondral bone regeneration, paving the way for nanotechnologies in osteochondral tissue engineering. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Xu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Mabrouk M, Rajendran R, Soliman IE, Ashour MM, Beherei HH, Tohamy KM, Thomas S, Kalarikkal N, Arthanareeswaran G, Das DB. Nanoparticle- and Nanoporous-Membrane-Mediated Delivery of Therapeutics. Pharmaceutics 2019; 11:E294. [PMID: 31234394 PMCID: PMC6631283 DOI: 10.3390/pharmaceutics11060294] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmaceutical particulates and membranes possess promising prospects for delivering drugs and bioactive molecules with the potential to improve drug delivery strategies like sustained and controlled release. For example, inorganic-based nanoparticles such as silica-, titanium-, zirconia-, calcium-, and carbon-based nanomaterials with dimensions smaller than 100 nm have been extensively developed for biomedical applications. Furthermore, inorganic nanoparticles possess magnetic, optical, and electrical properties, which make them suitable for various therapeutic applications including targeting, diagnosis, and drug delivery. Their properties may also be tuned by controlling different parameters, e.g., particle size, shape, surface functionalization, and interactions among them. In a similar fashion, membranes have several functions which are useful in sensing, sorting, imaging, separating, and releasing bioactive or drug molecules. Engineered membranes have been developed for their usage in controlled drug delivery devices. The latest advancement in the technology is therefore made possible to regulate the physico-chemical properties of the membrane pores, which enables the control of drug delivery. The current review aims to highlight the role of both pharmaceutical particulates and membranes over the last fifteen years based on their preparation method, size, shape, surface functionalization, and drug delivery potential.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Rajakumari Rajendran
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Islam E Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | | | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | | | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK.
| |
Collapse
|
19
|
Bageshlooyafshar B, Vakilian S, Kehtari M, Eslami-Arshaghi T, Rafeie F, Ramezanifard R, Rahchamani R, Mohammadi-Sangcheshmeh A, Mostafaloo Y, Seyedjafari E. Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Res Vet Sci 2019; 124:444-451. [DOI: 10.1016/j.rvsc.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/09/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
|
20
|
Meimandi-Parizi A, Oryan A, Gholipour H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connect Tissue Res 2018; 59:332-344. [PMID: 29035127 DOI: 10.1080/03008207.2017.1387541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Different biomaterials have been used in orthopedic surgery. Evaluation of biomaterials for bone healing promotion has been a wide area of research of the orthopedic field. Sixty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 30 rats. The animals were randomly divided into six equal groups as empty defect, autograft, nanohydroxyapatite (nHA), Gelatin (Gel)-nHA, fibrin-platelet glue (FPG)-nHA, and Gel-FPG-nHA groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy, and biomechanical testing. All the treated defects demonstrated significantly superior new bone formation, remodeling, and bone tissue volume. Moreover, the defects treated with FPG-nHA showed significantly higher ultimate load, yield load, and stiffness. The Gel-FPG-nHA moderately improved bone regeneration that was not close to the autograft in some parameters, whereas FPG-nHA significantly improved bone healing closely comparable with the autograft group in most parameters. In conclusion, although all the nHA-containing scaffolds had some beneficial effects on bone regeneration, the FPG-nHA scaffold was more effective in improving the structural and functional properties of the newly formed bone and was more osteoinductive than the Gel and was comparable to the autograft. Therefore, the FPG can be regarded as a promising option to be used in conjunction with mineral scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Abdolhamid Meimandi-Parizi
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ahmad Oryan
- b Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Hojjat Gholipour
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
21
|
Borzenkov M, Chirico G, Collini M, Pallavicini P. Gold Nanoparticles for Tissue Engineering. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Calcium phosphate nanoplatforms for drug delivery and theranostic applications. DRUG DELIVERY NANOSYSTEMS FOR BIOMEDICAL APPLICATIONS 2018. [DOI: 10.1016/b978-0-323-50922-0.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Ehret C, Aid-Launais R, Sagardoy T, Siadous R, Bareille R, Rey S, Pechev S, Etienne L, Kalisky J, de Mones E, Letourneur D, Amedee Vilamitjana J. Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS One 2017; 12:e0184663. [PMID: 28910401 PMCID: PMC5598993 DOI: 10.1371/journal.pone.0184663] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation.
Collapse
Affiliation(s)
- C. Ehret
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Aid-Launais
- Inserm U1148, LVTS, X. Bichat Hospital, University Paris Diderot F-75018 Paris, Institut Galilée, University Paris 13, Villetaneuse, France
| | - T. Sagardoy
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Siadous
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Bareille
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - S. Rey
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - S. Pechev
- ICMCB, Bordeaux University, Bordeaux, France
| | - L. Etienne
- ICMCB, Bordeaux University, Bordeaux, France
| | - J. Kalisky
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - E. de Mones
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
- CHU Bordeaux, Oral and Maxillo-Facial Department, Bordeaux, France
| | - D. Letourneur
- Inserm U1148, LVTS, X. Bichat Hospital, University Paris Diderot F-75018 Paris, Institut Galilée, University Paris 13, Villetaneuse, France
| | - J. Amedee Vilamitjana
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
- * E-mail:
| |
Collapse
|
24
|
Ibrahim A, Bulstrode NW, Whitaker IS, Eastwood DM, Dunaway D, Ferretti P. Nanotechnology for Stimulating Osteoprogenitor Differentiation. Open Orthop J 2016; 10:849-861. [PMID: 28217210 PMCID: PMC5299582 DOI: 10.2174/1874325001610010849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. Methods: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. Results: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. Conclusion: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this.
Collapse
Affiliation(s)
- A Ibrahim
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK; Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - N W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - I S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - D M Eastwood
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - D Dunaway
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - P Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| |
Collapse
|
25
|
Brannigan K, Griffin M. An Update into the Application of Nanotechnology in Bone Healing. Open Orthop J 2016; 10:808-823. [PMID: 28217207 PMCID: PMC5299556 DOI: 10.2174/1874325001610010808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bone differs from other organs in that it can regenerate and remodel without scar formation. There are instances of trauma, congenital bone disorder, bone disease and bone cancer where this is not possible. Without bone grafts and implants, deformity and disability would result. Human bone grafts are limited in their management of large or non-union fractures. In response, synthetic bone grafts and implants are available to the Orthopaedic Surgeon. Unfortunately these also have their limitations and associated complications. Nanotechnology involves the research, design and manufacture of materials with a grain size less than 100nm. Nano-phase materials follow the laws of quantum physics, not classical mechanics, resulting in novel behavioural differences compared to conventional counterparts. METHODS Past, present and future nanotechnology in bone healing literature is reviewed and discussed. The article highlights concepts which are likely to be instrumental to the future of nanotechnology in bone healing. RESULTS Nanotechnology in bone healing is an emerging field within Orthopaedic Surgery. There is a requirement for bone healing technologies which are biochemically and structurally similar to bone. Nanotechnology is a potential solution as the arrangement of bone includes nanoscopic collagen fibres and hydroxyapatite. This review centers on the novel field of nanotechnology in bone healing with discussion focusing on advances in bone grafts, implants, diagnostics and drug delivery. CONCLUSION The concept of nanotechnology was first introduced in 1959. Current nanoproducts for bone healing include nano-HA-paste-ostim and nano-beta-tricalcium phosphate-Vitoss. Nanophase technologies are considered to be superior bone healing solutions. Limited safety data and issues regarding cost and mass scale production require further research into this exciting field.
Collapse
Affiliation(s)
- K Brannigan
- Whiston Hospital, Warrington Road, Prescot, L35 5DR, Whiston, UK
| | - M Griffin
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
26
|
|
27
|
Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:1253-63. [PMID: 25791811 PMCID: PMC4476906 DOI: 10.1016/j.nano.2015.02.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 02/21/2015] [Indexed: 02/04/2023]
Abstract
Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. FROM THE CLINICAL EDITOR Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field.
Collapse
Affiliation(s)
- Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Abdullah H Feroze
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter H Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
29
|
Li S, Zhai S, Liu Y, Zhou H, Wu J, Jiao Q, Zhang B, Zhu H, Yan B. Experimental modulation and computational model of nano-hydrophobicity. Biomaterials 2015; 52:312-7. [PMID: 25818437 DOI: 10.1016/j.biomaterials.2015.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 02/08/2023]
Abstract
We demonstrate that nano-hydrophobicity, which governs the biological aggressiveness of nanoparticles, is determined by the outermost regions of surface ligands. We have also successfully modulated nano-hydrophobicity using systematic surface ligand modifications and built the first computational model of nano-hydrophobicity.
Collapse
Affiliation(s)
- Shuhuan Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jinmei Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qing Jiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Hao Zhu
- Department of Chemistry, Rutgers University, Camden, NJ, United States; The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| |
Collapse
|
30
|
Makhdom AM, Nayef L, Tabrizian M, Hamdy RC. The potential roles of nanobiomaterials in distraction osteogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1-18. [PMID: 24965757 DOI: 10.1016/j.nano.2014.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/25/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
31
|
Li K, Sun H, Sui H, Zhang Y, Liang H, Wu X, Zhao Q. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra15232h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel MSN/CTS composite nanofibrous scaffold shows improved mechanical properties and enhances the attachment, proliferation and biomineralization of osteoblasts.
Collapse
Affiliation(s)
- Kai Li
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Hailang Sun
- Department of Orthopaedics
- Huai'an First people's hospital
- Nanjing Medical University
- Huai'an 223300
- P. R. China
| | - Haitao Sui
- Department of Orthopaedics
- Dongying people's hospital
- Dongying
- P. R. China
| | - Yongxing Zhang
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - He Liang
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Xiaofeng Wu
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Qinghua Zhao
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| |
Collapse
|
32
|
Heo DN, Ko WK, Moon HJ, Kim HJ, Lee SJ, Lee JB, Bae MS, Yi JK, Hwang YS, Bang JB, Kim EC, Do SH, Kwon IK. Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS NANO 2014; 8:12049-62. [PMID: 25420230 DOI: 10.1021/nn504329u] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gold nanoparticles (GNPs) have been previously reported to inhibit osteoclast (OC) formation. However, previous research only confirmed the osteoclastogenesis inhibitory effect under in vitro conditions. The aim of this study was to develop a therapeutic agent for osteoporosis based on the utilization of GNPs and confirm their effect both in vitro and in vivo. We prepared β-cyclodextrin (CD) conjugated GNPs (CGNPs), which can form inclusion complexes with curcumin (CUR-CGNPs), and used these to investigate their inhibitory effects on receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). The CUR-CGNPs significantly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells in BMMs without inducing cytotoxicity. The mRNA expressions of genetic markers of OC differentiation including c-Fos, nuclear factor of activated T cells 1 (NFATc1), TRAP, and osteoclast associated receptor (OSCAR) were significantly decreased in the presence of CUR-CGNPs. In addition, the CUR-CGNPs inhibited OC differentiation of BMMs through suppression of the RANKL-induced signaling pathway. Additionally, CUR-CGNPs caused a decrease in RANKL-induced actin ring formation, which is an essential morphological characteristic of OC formation allowing them to carry out bone resorption activity. Furthermore, the in vivo results of an ovariectomy (OVX)-induced osteoporosis model showed that CUR-CGNPs significantly improved bone density and prevented bone loss. Therefore, CUR-CGNPs may prove to be useful as therapeutic agents for preventing and treating osteoporosis.
Collapse
Affiliation(s)
- Dong Nyoung Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, ‡Department of Conservative Dentistry, School of Dentistry, §Department of Dental Education, School of Dentistry, and ⊥Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University , Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Padmanabhan J, Kyriakides TR. Nanomaterials, inflammation, and tissue engineering. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:355-70. [PMID: 25421333 DOI: 10.1002/wnan.1320] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/12/2014] [Accepted: 10/11/2014] [Indexed: 01/30/2023]
Abstract
Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers, and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long-term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT, USA
| | | |
Collapse
|
34
|
Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, Paik KJ, Longaker MT, Wan DC. Biomaterials for craniofacial bone engineering. J Dent Res 2014; 93:1187-95. [PMID: 25139365 DOI: 10.1177/0022034514547271] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell-based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development.
Collapse
Affiliation(s)
- R Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - A McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - D Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - G G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - K Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - E R Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - K J Paik
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - M T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - D C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
35
|
Heathman TR, Webb WR, Han J, Dan Z, Chen GQ, Forsyth NR, El Haj AJ, Zhang ZR, Sun X. Controlled Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx) Nanoparticles for Targeted and Sustained Drug Delivery. J Pharm Sci 2014; 103:2498-508. [DOI: 10.1002/jps.24035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/25/2014] [Accepted: 05/07/2014] [Indexed: 01/18/2023]
|
36
|
Hsu EW, Alvarez P, Shutte L, Donovan A, Liu S, Shivats AR, Hollinger JO. Bone regeneration. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:449-477. [DOI: 10.1017/cbo9780511997839.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Levi-Polyachenko N, Rosenbalm T, Kuthirummal N, Shelton J, Hardin W, Teruel M, Hobley E, Wang R, Day C, Narayanan V, David L, Wagner WD. Development and characterization of elastic nanocomposites for craniofacial contraction osteogenesis. J Biomed Mater Res B Appl Biomater 2014; 103:407-16. [PMID: 24898435 DOI: 10.1002/jbm.b.33220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Abstract
Development of resorbable elastic composites as an alternative means to apply contractive forces for manipulating craniofacial bones is described herein. Composites made from the biodegradable elastomer, poly (1,8-octanediol co-citric acid) (POC), and hydroxyapatite (nHA) with a 200 nm diameter (0-20% loadings) were created to develop a material capable of applying continuous contractive forces. The composites were evaluated for variation in their mechanical properties, rate of degradation, and interaction of the hydroxyapatite nanoparticles with the polymer chains. First, an ex vivo porcine model of cleft palate was used to determine the rate of cleft closure with applied force. The closure rate was found to be 0.505 mm N(-1) . From this approximation, the ideal maximum load was calculated to be 19.82 N, and the elastic modulus calculated to be 1.98 MPa. The addition of nHA strengthens POC, but also reduces the degradation time by 45%, for 3% nHA loading, compared to POC without nHA. X-ray diffraction data indicates that the addition of nHA to amorphous POC results in the formation of a semicrystalline phase of the POC adjacent to the nHA crystals. Based on the data, we conclude that amongst the 0-20% nHA loadings, a 3% loading of nHA in POC may be an ideal material (1.21 MPa elastic modulus and 13.17 N maximum load) to induce contraction forces capable of facilitating osteogenesis and craniofacial bone repair.
Collapse
Affiliation(s)
- Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, Lee CH, Kim EC, Jung BY, Kwon IK. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B 2014; 2:1584-1593. [DOI: 10.1039/c3tb21246g] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A hybrid hydrogel composed of gelatin and gold nanoparticles (GNPs) was designed to evaluate the effect of new bone formation and proves itself to be useful as an implant material for treating defected bone tissues.
Collapse
Affiliation(s)
- Dong Nyoung Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Wan-Kyu Ko
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Min Soo Bae
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Jung Bok Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Deok-Won Lee
- Department of Oral and Maxillofacial Surgery
- Kyung Hee University Dental Hospital at Gang-dong
- Seoul 134-727, Republic of Korea
| | - Wook Byun
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Chang Hoon Lee
- Department of Oriental Gynecology
- College of Oriental Medicine
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC)
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| | - Bock-Young Jung
- Department of Advanced General Dentistry
- College of Dentistry
- Yonsei University
- Seoul 120-752, Republic of Korea
| | - Il Keun Kwon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology
- School of Dentistry
- Kyung Hee University
- Seoul 130-701, Republic of Korea
| |
Collapse
|
39
|
Hu Q, Li Y, Miao G, Zhao N, Chen X. Size control and biological properties of monodispersed mesoporous bioactive glass sub-micron spheres. RSC Adv 2014. [DOI: 10.1039/c4ra01276c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monodispersed mesoporous bioactive glass sub-micron spheres with a controllable size and good biocompatibility were fabricated by an improved sol–gel method.
Collapse
Affiliation(s)
- Qing Hu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006, China
| | - Yuli Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006, China
| | - Guohou Miao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006, China
| | - Naru Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006, China
| | - Xiaofeng Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006, China
| |
Collapse
|
40
|
Marei MK, Nagy NB, Saad MS, Zaky SH, Elbackly RM, Eweida AM, Alkhodary MA. Strategy for a Biomimetic Paradigm in Dental and Craniofacial Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 2012; 101:387-97. [DOI: 10.1002/jbm.b.32823] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 11/05/2022]
|
42
|
Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012; 64:1292-309. [PMID: 22342771 PMCID: PMC3358582 DOI: 10.1016/j.addr.2012.01.016] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with pre-programmed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering.
Collapse
Affiliation(s)
- Tiffany N. Vo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| |
Collapse
|
43
|
Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 2012; 31:607-31. [PMID: 22951919 DOI: 10.1016/j.biotechadv.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/27/2022]
Abstract
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.
Collapse
|
44
|
Panseri S, Cunha C, D'Alessandro T, Sandri M, Giavaresi G, Marcacci M, Hung CT, Tampieri A. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnology 2012; 10:32. [PMID: 22828388 PMCID: PMC3458931 DOI: 10.1186/1477-3155-10-32] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. RESULTS MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity.In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. CONCLUSIONS The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery.
Collapse
Affiliation(s)
- Silvia Panseri
- Laboratory of Biomechanics and Technology Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nguyen LT, Liao S, Chan CK, Ramakrishna S. Electrospun Poly(L-Lactic Acid) Nanofibres Loaded with Dexamethasone to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1771-91. [DOI: 10.1163/092050611x597807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Luong T.H. Nguyen
- a NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Healthcare and Energy Materials Laboratory , Block E3, #05-11, 2 Engineering Drive 3, Singapore
| | - Susan Liao
- b School of Materials Science and Engineering, Nanyang Technological University , Singapore
| | - Casey K. Chan
- c Division of Bioengineering, National University of Singapore , Singapore
- d Department of Orthopedic Surgery , National University Health System , Singapore
| | - Seeram Ramakrishna
- e Department of Mechanical Engineering , National University of Singapore , Singapore
- f King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
46
|
Machado R, Bessa PC, Reis RL, Rodriguez-Cabello JC, Casal M. Elastin-based nanoparticles for delivery of bone morphogenetic proteins. Methods Mol Biol 2012; 906:353-363. [PMID: 22791448 DOI: 10.1007/978-1-61779-953-2_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biocompatibility, stability, and efficiency remain among the major goals in the development of new drug delivery systems. Herein we describe a facile method for encapsulation of Bone Morphogenetic Protein-2 (BMP-2) at high concentrations and in mild conditions by exploiting the thermo-responsiveness of an elastin-like polymer. Chemically synthesized poly(VPAVG) demonstrates excellent biocompatibility, stability at room temperature, and allows the use of mild conditions and harmless solvents, such as water, for its production. Here, we describe how to use a recombinantly produced poly(VPAVG) polymer to entrap BMP-2 with a high encapsulation efficiency and the methods for in vitro bioactivity assays.
Collapse
Affiliation(s)
- Raul Machado
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal.
| | | | | | | | | |
Collapse
|
47
|
Lei B, Chen X, Han X, Zhou J. Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31384g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Nguyen LTH, Liao S, Ramakrishna S, Chan CK. The role of nanofibrous structure in osteogenic differentiation of human mesenchymal stem cells with serial passage. Nanomedicine (Lond) 2011; 6:961-74. [DOI: 10.2217/nnm.11.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using scaffolds with autologous stem cells is a golden strategy for the treatment of bone defects. In this strategy, human mesenchymal stem cells (hMSCs) have often been isolated and expanded in vitro on a plastic surface to obtain a sufficient cell number before seeding on a suitable scaffold. Materials & Methods: Investigating the influence of serial passages (from passage two to passage eight) on the abilities of proliferation and osteogenic differentiation of hMSCs on 24-well tissue culture polystyrene plates and poly L-lactic acid electrospun nanofibrous scaffolds was performed to determine how prolonged culture affected these cellular abilities and how the nanofibrous scaffolds supported the osteogenic differentiation potential of hMSCs. Results & Conclusion: Serial passage caused adverse changes in hMSCs characteristics, which were indicated by the decline in both proliferation and osteogenic differentiation abilities. Interestingly, the poly L-lactic acid nanofibrous scaffolds showed a significant support in recovering the osteogenic abilities of hMSCs, which had been severely affected by prolonged culture.
Collapse
Affiliation(s)
| | - Susan Liao
- Nanyang Technological University, 637551 Singapore
| | - Seeram Ramakrishna
- National University of Singapore, 117576 Singapore
- Institute of Materials Research & Engineering, 117602 Singapore
| | - Casey K Chan
- National University of Singapore, 117576 Singapore
| |
Collapse
|
49
|
Zhang ZG, Li ZH, Mao XZ, Wang WC. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 2011; 63:437-43. [PMID: 21748262 DOI: 10.1007/s10616-011-9367-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/10/2011] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology has emerged to be one of the most powerful engineering approaches in the past half a century. Nanotechnology brought nanomaterials for biomedical use with diverse applications. In the present manuscript we summarize the recent progress in adopting nanobiomaterials for bone healing and repair approaches. We first discuss the use of nanophase surface modification in manipulating metals and ceramics for bone implantation, and then the use of polymers as nanofiber scaffolds in bone repair. Finally we briefly present the potential use of the nanoparticle delivery system as adjunct system in promoting bone regeneration following fracture.
Collapse
Affiliation(s)
- Zhao-Gui Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Middle Ren-Min Road No. 139, Changsha, Hunan, 410011, China
| | | | | | | |
Collapse
|
50
|
Choi J, Kim K, Kim T, Liu G, Bar-Shir A, Hyeon T, McMahon MT, Bulte JWM, Fisher JP, Gilad AA. Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds. J Control Release 2011; 156:239-45. [PMID: 21763735 DOI: 10.1016/j.jconrel.2011.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 06/07/2011] [Accepted: 06/24/2011] [Indexed: 12/30/2022]
Abstract
The potential of poly(propylene fumarate) (PPF) scaffolds as drug carriers was investigated and the kinetics of the drug release quantified using magnetic resonance imaging (MRI) and optical imaging. Three different MR contrast agents were used for coating PPF scaffolds. Initially, iron oxide (IONP) or manganese oxide nanoparticles (MONP) carrying the anti-cancer drug doxorubicin were absorbed or mixed with the scaffold and their release into solution at physiological conditions was measured with MRI and optical imaging. A slow (hours to days) and functional release of the drug molecules into the surrounding solution was observed. In order to examine the release properties of proteins and polypeptides, protamine sulfate, a chemical exchange saturation transfer (CEST) MR contrast agent, was attached to the scaffold. Protamine sulfate showed a steady release rate for the first 24h. Due to its biocompatibility, versatile drug-loading capability and constant release rate, the porous PPF scaffold has potential in various biomedical applications, including MR-guided implantation of drug-dispensing materials, development of drug carrying vehicles, and drug delivery for tumor treatment.
Collapse
Affiliation(s)
- Jonghoon Choi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|