1
|
Rai P, Mahajan A, Shukla S, Pokar N. Imaging and management of lymphedema in the era of precision oncology. Br J Radiol 2025; 98:619-629. [PMID: 39932868 PMCID: PMC12012379 DOI: 10.1093/bjr/tqaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Lymphedema is a common complication of cancer treatment, leading to significant morbidity. Early and accurate diagnosis through the combined expertise of radiology and nuclear medicine is crucial for preventing lymphedema progression and improving patient outcomes. Imaging techniques such as lymphoscintigraphy, duplex ultrasound, MRI, and CT as well as newer modalities including near-infra-red lymphangiography can diagnose and assess lymphedema severity. Bioimpedance spectroscopy provides a non-invasive tool for early detection by measuring extracellular fluid changes, aiding in identifying lymphedema at its earliest stages. Pre-treatment baseline measurements and prospective surveillance models are essential for tracking limb volume changes and mobility, enhancing early intervention outcomes. Recognizing the strengths and limitations of each imaging modality allows radiologists and nuclear medicine physicians to synergistically optimize lymphedema diagnosis and management. Effective management relies on multidisciplinary collaboration and includes conservative and surgical options tailored to disease severity. Advanced imaging modalities are pivotal for planning and monitoring interventional strategies. This review explores the development and management of secondary lymphedema in oncological patients, focusing chiefly on imaging and treatment strategies. It also briefly highlights the evolving role of artificial intelligence and machine learning in enhancing imaging precision and treatment outcomes.
Collapse
Affiliation(s)
- Pranjal Rai
- Department of Radiology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai 400012, India
| | - Abhishek Mahajan
- Faculty of Health and Life Sciences, University of Liverpool, L7 8TX Liverpool, United Kingdom
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, L7 8YA Liverpool, United Kingdom
| | - Shreya Shukla
- Department of Radiology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai 400012, India
- Department of Radiodiagnosis and Imaging, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi 221 005, India
| | - Niyati Pokar
- Department of Radiology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai 400012, India
| |
Collapse
|
2
|
Li M, Kuang C, Guo Z, Du M, Chen Z. Research progress on ultrasound in bacteria-mediated tumor treatment. Crit Rev Microbiol 2025:1-12. [PMID: 40243567 DOI: 10.1080/1040841x.2025.2489476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Bacteria-mediated tumor treatment (BMTT) has recently garnered significant attention as a promising avenue in tumor treatment. Despite the application of various strains in animal models and clinical trials, the effectiveness of BMTT has been hindered by its toxicity and inefficiency. In recent years, it has been explored that applying the biological effects of ultrasound could further improve the precision and effectiveness of BMTT. This review briefly introduces the challenges of BMTT and summarizes how the biological effects of ultrasound improve the efficacy and safety of BMTT in strategies involving genetic engineering, visualization and targeted delivery. The potential application and limitations of ultrasound in advancing BMTT controllable strategies are also discussed.
Collapse
Affiliation(s)
- Mingjie Li
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute for Future Sciences, University of South China, Changsha, China
| | - Chenke Kuang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhili Guo
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute for Future Sciences, University of South China, Changsha, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Institute for Future Sciences, University of South China, Changsha, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Institute for Future Sciences, University of South China, Changsha, China
- Department of Medical Imaging, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
3
|
Školoudík D, Hrbáč T, Kovář M, Beneš V, Fiedler J, Branca M, Rossel JB, Netuka D. Sonolysis during carotid endarterectomy: randomised controlled trial. BMJ 2025; 388:e082750. [PMID: 40107675 PMCID: PMC11921150 DOI: 10.1136/bmj-2024-082750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of sonolysis using a low intensity 2 MHz pulsed wave ultrasound beam during carotid endarterectomy. DESIGN Multicentre, phase 3, double blind, randomised controlled trial. SETTING 16 European centres. PARTICIPANTS 1004 patients (mean age 68 years; 312 (31%) female) were enrolled in the study between 20 August 2015 and 14 October 2020 until the interim analysis was performed. INTERVENTIONS Sonolysis (n=507) versus sham procedure (n=497). MAIN OUTCOME MEASURES The primary endpoint was the composite incidence of ischaemic stroke, transient ischaemic attack, and death within 30 days. The incidence of new ischaemic lesions on follow-up brain magnetic resonance imaging was the main substudy endpoint, and incidence of intracranial bleeding was the main safety endpoint. RESULTS The results favoured the sonolysis group for the primary endpoint (11 (2.2%) v 38 (7.6%); risk difference -5.5%, 95% confidence interval (CI) -8.3% to -2.8%; P<0.001), as well as in the substudy for magnetic resonance imaging detected new ischaemic lesions (20/236 (8.5%) v 39/224 (17.4%); risk difference -8.9%, -15% to -2.8%; P=0.004). Sensitivity analysis resulted in a risk ratio for sonolysis of 0.25 (95% CI 0.11 to 0.56) for ischaemic stroke and 0.23 (0.07 to 0.73) for transient ischaemic attack within 30 days. Sonolysis was found to be safe, and 94.4% of patients in the sonolysis group were free from serious adverse events 30 days after the procedure. CONCLUSION Sonolysis was safe for patients undergoing carotid endarterectomy and resulted in a significant reduction in the composite incidence of ischaemic stroke, transient ischaemic attack, and death within 30 days. TRIAL REGISTRATION Clinicaltrials.gov NCT02398734.
Collapse
Affiliation(s)
- David Školoudík
- Centre for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Hrbáč
- Centre for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martin Kovář
- Department of Neurology, Na Homolce Hospital, Prague, Czech Republic
| | - Vladimír Beneš
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Neurosurgery, Regional Hospital Liberec, Liberec, Czech Republic
| | - Jiří Fiedler
- Department of Neurosurgery, Medical Faculty, Masaryk University Brno, Brno, Czech Republic
- Department of Neurosurgery, České Budějovice Hospital, České Budějovice, Czech Republic
| | - Mattia Branca
- CTU Bern, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Jean-Benoit Rossel
- CTU Bern, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - David Netuka
- Department of Neurosurgery, Faculty Military Hospital Praha, Praha, Czech Republic
| |
Collapse
|
4
|
Feng J, Li Z. Progress in Noninvasive Low-Intensity Focused Ultrasound Neuromodulation. Stroke 2024; 55:2547-2557. [PMID: 39145391 DOI: 10.1161/strokeaha.124.046679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low-intensity focused ultrasound represents groundbreaking medical advancements, characterized by its noninvasive feature, safety, precision, and broad neuromodulatory capabilities. This technology operates through mechanisms, for example, acoustic radiation force, cavitation, and thermal effects. Notably, with the evolution of medical technology, ultrasound neuromodulation has been gradually applied in treating central nervous system diseases, especially stroke. Furthermore, burgeoning research areas such as sonogenetics and nanotechnology show promising potential. Despite the benefit of low-intensity focused ultrasound the precise biophysical mechanism of ultrasound neuromodulation still need further exploration. This review discusses the recent and ongoing developments of low-intensity focused ultrasound for neurological regulation, covering the underlying rationale to current utility and the challenges that impede its further development and broader adoption of this promising alternative to noninvasive therapy.
Collapse
Affiliation(s)
- Jinru Feng
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
| | - Zixiao Li
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases (Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- Chinese Institute for Brain Research, Beijing, China (Z.L.)
| |
Collapse
|
5
|
Rajankar N, Aalhate M, Mahajan S, Maji I, Gupta U, Nair R, Paul P, Singh PK. Unveiling multifaceted avenues of echogenic liposomes: Properties, preparation, and potential applications. J Drug Deliv Sci Technol 2024; 99:105931. [DOI: 10.1016/j.jddst.2024.105931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Yi Y, Song J, Zhou P, Shu Y, Liang P, Liang H, Liu Y, Yuan X, Shan X, Wu X. An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr Polym 2024; 334:122039. [PMID: 38553236 DOI: 10.1016/j.carbpol.2024.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Yin Yi
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Pengfei Zhou
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yu Shu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Panpan Liang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Huimin Liang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yanling Liu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiaoyan Yuan
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xujia Shan
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshibei Road, Yubei District, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
7
|
Luo Y, Rahmati M, Kazemi A, Liu W, Lee SW, Gyasi RM, López Sánchez GF, Koyanagi A, Smith L, Yon DK. Effects of therapeutic ultrasound in patients with knee osteoarthritis: A systematic review and meta-analysis. Heliyon 2024; 10:e30874. [PMID: 38803857 PMCID: PMC11128881 DOI: 10.1016/j.heliyon.2024.e30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Background Therapeutic ultrasound (US) is a treatment for knee osteoarthritis (KOA), but its efficacy and safety are unclear. The objective of this study is to quantify the effect of US on pain relief and function recovery in KOA, and to analyze the US treatment duration and parameters on treatment outcome. Methods We searched PubMed, MEDLINE, EMBASE, Google Scholar, Cochrane databases and ClinicalTrials.gov databases up to April 7, 2023. RCTs that compared the efficacy of therapeutic US with the control in KOA were included in the study, and the methodological quality of the trials was assessed using the Cochrane Risk of Bias tool. Results Twenty-one RCTs (1315 patients) were included. US had a positive effect on visual analog scale (VAS) (SMD = -0.64, 95 % CI [-0.88, -0.40], I2 = 71 %) and Western Ontario and McMaster Universities (WOMAC) total scale (SMD = -0.45, 95 % CI [-0.69, -0.20]; I2 = 67 %). Pulsed US with an intensity ≤2.5 W/cm2 reduced visual analog scale (VAS), and differed in sessions (24 sessions (SMD = -0.80, 95 % CI [-1.07, -0.53], I2 = 0 %) vs 10 sessions (SMD = -0.71, 95 % CI [-1.09, -0.33], I2 = 68 %)). For pulsed US, a duration of treatment of 4-8 weeks (SMD = -0.69, 95 % CI [-1.13, -0.25], I2 = 73 %) appeared to be superior to ≤4 weeks (SMD = -0.77, 95 % CI [-1.04, -0.49], I2 = 0 %) for reducing visual analog scale (VAS). No US treatment-related adverse events were reported. Conclusion Therapeutic US may be a safe and effective treatment for patients with KOA. The mode, intensity, frequency, and duration of US may affect the effectiveness of pain relief. Pulsed US with an intensity ≤2.5 W/cm2, 24 sessions, and a treatment duration of ≤4 weeks appears to have better pain relief.
Collapse
Affiliation(s)
- Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Masoud Rahmati
- CEReSS-Health Service Research and Quality of Life Center, Aix-Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abdolreza Kazemi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Wenbing Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University, Wenzhou, 325027, China
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University College of Medicine, Suwon, Republic of Korea
| | - Razak M. Gyasi
- African Population and Health Research Center, Nairobi, Kenya
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
| | - Guillermo F. López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ijaz M, Khurshid M, Gu J, Hasan I, Roy S, Ullah Z, Liang S, Cheng J, Zhang Y, Mi C, Guo B. Breaking barriers in cancer treatment: nanobiohybrids empowered by modified bacteria and vesicles. NANOSCALE 2024; 16:8759-8777. [PMID: 38619821 DOI: 10.1039/d3nr06666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cancer, the leading global cause of mortality, poses a formidable challenge for treatment. The effectiveness of cancer therapies, ranging from chemotherapy to immunotherapy, relies on the precise delivery of therapeutic agents to tumor tissues. Nanobiohybrids, resulting from the fusion of bacteria with nanomaterials, constitute a promising delivery system. Nanobiohybrids offer several advantages, including the ability to target tumors, genetic engineering capabilities, programmed product creation, and the potential for multimodal treatment. Recent advances in targeted tumor treatments have leveraged bacteria-based nanobiohybrids. Here, we outline the progress in cancer treatment using nanobiohybrids. Our focus is particularly on various therapeutic approaches within the context of nanobiohybrid systems, where bacteria are integrated with nanomaterials to combat cancer. It has been demonstrated that bacteria-based nanobiohybrids present a robust and effective method for tumor theranostics.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Simin Liang
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Cheng
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Chao Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Light Life Technology Co., Ltd, Shenzhen, 518107, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
9
|
Selvaraj S, Chauhan A, Verma R, Dutta V, Rana G, Duglet R, Subbarayan R, Batoo KM. Role of degrading hydrogels in hepatocellular carcinoma drug delivery applications: A review. J Drug Deliv Sci Technol 2024; 95:105628. [DOI: 10.1016/j.jddst.2024.105628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Hsu YY, Hwang SW, Chen SJ, Alsberg E, Liu AP. Development of mechanosensitive synthetic cells for biomedical applications. SLAS Technol 2024; 29:100095. [PMID: 37385542 DOI: 10.1016/j.slast.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The ability of cells to sense and respond to their physical environment plays a fundamental role in a broad spectrum of biological processes. As one of the most essential molecular force sensors and transducers found in cell membranes, mechanosensitive (MS) ion channels can convert mechanical inputs into biochemical or electrical signals to mediate a variety of sensations. The bottom-up construction of cell-sized compartments displaying cell-like organization, behaviors, and complexity, also known as synthetic cells, has gained popularity as an experimental platform to characterize biological functions in isolation. By reconstituting MS channels in the synthetic lipid bilayers, we envision using mechanosensitive synthetic cells for several medical applications. Here, we describe three different concepts for using ultrasound, shear stress, and compressive stress as mechanical stimuli to activate drug release from mechanosensitive synthetic cells for disease treatments.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
13
|
Mohammadi R, Ghani S, Arezumand R, Farhadi S, Khazaee-Poul Y, Kazemi B, Yarian F, Noruzi S, Alibakhshi A, Jalili M, Aghamiri S. Physicochemical Stimulus-Responsive Systems Targeted with Antibody Derivatives. Curr Mol Med 2024; 24:1250-1268. [PMID: 37594115 DOI: 10.2174/1566524023666230818093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuliresponsive systems. Antibodies and antibody derivatives conjugated with diverse stimuliresponsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Advanced Technology, School of Medicine, North Khorasan University of Medical Sciences, North Khorasan, Iran
| | - Shohreh Farhadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Khazaee-Poul
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Jalili
- Preventive and Clinical Nutrition Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Antropenko A, Caruso F, Fernandez-Trillo P. Stimuli-Responsive Delivery of Antimicrobial Peptides Using Polyelectrolyte Complexes. Macromol Biosci 2023; 23:e2300123. [PMID: 37449448 DOI: 10.1002/mabi.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.
Collapse
Affiliation(s)
- Alexander Antropenko
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Cientı́ficas Avanzadas (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
15
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
16
|
Flatscher J, Pavez Loriè E, Mittermayr R, Meznik P, Slezak P, Redl H, Slezak C. Pulsed Electromagnetic Fields (PEMF)-Physiological Response and Its Potential in Trauma Treatment. Int J Mol Sci 2023; 24:11239. [PMID: 37510998 PMCID: PMC10379303 DOI: 10.3390/ijms241411239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Environmental biophysical interactions are recognized to play an essential part in the human biological processes associated with trauma recovery. Many studies over several decades have furthered our understanding of the effects that Pulsed Electromagnetic Fields (PEMF) have on the human body, as well as on cellular and biophysical systems. These investigations have been driven by the observed positive clinical effects of this non-invasive treatment on patients, mainly in orthopedics. Unfortunately, the diversity of the various study setups, with regard to physical parameters, molecular and cellular response, and clinical outcomes, has made it difficult to interpret and evaluate commonalities, which could, in turn, lead to finding an underlying mechanistic understanding of this treatment modality. In this review, we give a birds-eye view of the vast landscape of studies that have been published on PEMF, presenting the reader with a scaffolded summary of relevant literature starting from categorical literature reviews down to individual studies for future research studies and clinical use. We also highlight discrepancies within the many diverse study setups to find common reporting parameters that can lead to a better universal understanding of PEMF effects.
Collapse
Affiliation(s)
- Jonas Flatscher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Elizabeth Pavez Loriè
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | | | - Paul Meznik
- AUVA Trauma Center Vienna-Meidling, 1120 Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Cyrill Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Department of Physics, Utah Valley University, Orem, UT 84058, USA
| |
Collapse
|
17
|
Liu Z, Li J, Bian Y, Zhang X, Cai X, Zheng Y. Low-intensity pulsed ultrasound reduces lymphedema by regulating macrophage polarization and enhancing microcirculation. Front Bioeng Biotechnol 2023; 11:1173169. [PMID: 37214283 PMCID: PMC10198614 DOI: 10.3389/fbioe.2023.1173169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Conventional therapies reduce lymphedema but do not cure it because they cannot modulate the pathophysiology of secondary lymphedema. Lymphedema is characterized by inflammation. We hypothesized that low-intensity pulsed ultrasound (LIPUS) treatment could reduce lymphedema by enhancing anti-inflammatory macrophage polarization and microcirculation. Methods: The rat tail secondary lymphedema model was established through the surgical ligation of lymphatic vessels. The rats were randomly divided into the normal, lymphedema, and LIPUS treatment groups. The LIPUS treatment (3 min daily) was applied 3 days after establishing the model. The total treatment period was 28 days. Swelling, fibro adipose deposition, and inflammation of the rat tail were evaluated by HE staining and Masson's staining. The photoacoustic imaging system and laser Doppler flowmetry were used to monitor microcirculation changes in rat tails after LIPUS treatment. The cell inflammation model was activated with lipopolysaccharides. Flow cytometry and fluorescence staining were used to observe the dynamic process of macrophage polarization. Results: After 28 days of treatment, compared with the lymphedema group, the tail circumference and subcutaneous tissue thickness of rats in the LIPUS group were decreased by 30%, the proportion of collagen fibers and the lymphatic vessel cross-sectional area was decreased, and tail blood flow was increased significantly. Cellular experiments revealed a decrease in CD86+ macrophages (M1) after LIPUS treatment. Conclusion: The transition of M1 macrophage and the promotion of microcirculation could be responsible for the beneficial effect of LIPUS on lymphedema.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jia Li
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu Bian
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
18
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
19
|
Abstract
The conventional microbubble-based ultrasound biomedicine clinically plays a vital role in providing the dynamic detection of macro and microvasculature and disease theranostics. However, the intrinsic limitation of particle size severely decreases the treatment effectiveness due to their vascular transport characteristics, which promotes the development and application of multifunctional ultrasound-responsive nanomaterials. Herein, we put forward a research field of "ultrasound nanomedicine and materdicine", referring to the interdiscipline of ultrasound, nanobiotechnology and materials, which seeks to produce specific biological effects for addressing the challenges faced and dilemma of conventional ultrasound medicine. We comprehensively summarize the state-of-the-art scientific advances in the latest progress in constructing ultrasound-based platforms and ultrasound-activated sonosensitizers, ranging from the synthesis strategies, biological functions to ultrasound-triggered therapeutic applications. Ultimately, the unresolved challenges and clinical-translation potentials of ultrasound nanomedicine and materdicine are discussed and prospected in this evolving field.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China.
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
20
|
Zhou J, Xiang H, Huang J, Zhong Y, Zhu X, Xu J, Lu Q, Gao B, Zhang H, Yang R, Luo Y, Yan F. Role of Surface Charge of Nanoscale Ultrasound Contrast Agents in Complement Activation and Phagocytosis. Int J Nanomedicine 2022; 17:5933-5946. [PMID: 36506344 PMCID: PMC9733633 DOI: 10.2147/ijn.s364381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To prepare nanoscale ultrasound contrast agents (Nano-UCAs) and examine the role of their surface charge in complement activation and phagocytosis. MATERIALS AND METHODS We analyzed serum proteins present in the corona formed on Nano-UCAs and evaluated two important protein markers of complement activation (C3 and SC5b-9). The effect of surface charge on phagocytosis was further assessed using THP-1 macrophages. RESULTS When Nano-UCAs were incubated with human serum, they were opsonized by various blood proteins, especially C3. Highly charged Nano-UCAs, whether positive or negative, were favorably opsonized by complement proteins and phagocytized by macrophages. CONCLUSION Charged Nano-UCAs show a higher tendency to activated complement system, and are efficiently engulfed by macrophages. The present results provide meaningful insights into the role of the surface charge of nanoparticles in the activation of the innate immune system, which is important not only for the design of targeted Nano-UCAs, but also for the effectiveness and safety of other theranostic agents.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Hongjin Xiang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jianbo Huang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yi Zhong
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xiaoxia Zhu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jinshun Xu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Qiang Lu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Binyang Gao
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Huan Zhang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Rui Yang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yan Luo
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Feng Yan
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
- Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
21
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
22
|
Huang W, Ning C, Zhang R, Xu J, Chen B, Li Z, Cui Y, Shao W. Evaluation of the dual-frequency transducer for controlling thermal ablation morphology using frequency shift keying signal. Int J Hyperthermia 2022; 39:1344-1357. [PMID: 36223887 DOI: 10.1080/02656736.2022.2130999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE The catheter-based ultrasound (CBUS) can reach the target tissue directly and achieve rapid treatment. The frequency shift keying (FSK) signal is proposed to regulate and evaluate tumor ablation by a miniaturized dual-frequency transducer. METHODS A dual-frequency transducer prototype (3 × 7 × 0.4 mm) was designed and fabricated for the CBUS applicator (OD: 3.8 mm) based on the fundamental frequency of 5.21 MHz and the third harmonic frequency of 16.88 MHz. Then, the acoustic fields and temperature field distributions using the FSK signals (with 0, 25, 50, 75, and 100% third harmonic frequency duty ratios) were simulated by finite element analysis. Finally, tissue ablation and temperature monitoring were performed in phantom and ex vivo tissue, respectively. RESULTS At the same input electrical power (20 W), the output acoustic power of the fundamental frequency of the transducer was 10.03 W (electroacoustic efficiencies: 50.1%), and that of the third harmonic frequency was 6.19 W (30.6%). As the third harmonic frequency duty ratios increased, the shape of thermal lesions varied from strip to droplet in simulated and phantom experimental results. The same trend was observed in ex vivo tests. CONCLUSION Dual-frequency transducers excited by the FSK signal can control the morphology of lesions. SIGNIFICANCE The acoustic power deposition of CBUS was optimized to achieve precise ablation.
Collapse
Affiliation(s)
- Wenchang Huang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chuanlong Ning
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu, China
| | - Rui Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jie Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Beiyi Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhangjian Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yaoyao Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Weiwei Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Regmi S, Liu DD, Shen M, Kevadiya BD, Ganguly A, Primavera R, Chetty S, Yarani R, Thakor AS. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Front Mol Neurosci 2022; 15:1011225. [PMID: 36277497 PMCID: PMC9584646 DOI: 10.3389/fnmol.2022.1011225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient’s ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects. MSCs not only secret neuroprotective and anti-inflammatory factors to promote the survival of neurons, but they also transfer functional mitochondria and miRNAs to boost their bioenergetic profile as well as improve microglial clearance of accumulated protein aggregates. This review focuses on different clinical and preclinical studies using MSC as a therapy for treating AD, their outcomes, limitations and the strategies to potentiate their clinical translation.
Collapse
|
24
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
25
|
Zhu X, Xu N, Zhang L, Wang D, Zhang P. Novel design of multifunctional nanozymes based on tumor microenvironment for diagnosis and therapy. Eur J Med Chem 2022; 238:114456. [DOI: 10.1016/j.ejmech.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
|
26
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Braunstein L, Brüningk SC, Rivens I, Civale J, Haar GT. Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1095-1109. [PMID: 35337687 DOI: 10.1016/j.ultrasmedbio.2022.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The thermal and mechanical effects induced in tissue by ultrasound can be exploited for therapeutic applications. Tissue-mimicking materials (TMMs), reflecting different soft tissue properties, are required for experimental evaluation of therapeutic potential. In the study described here, poly(vinyl alcohol) (PVA) hydrogels were characterized. Hydrogels prepared using different concentrations (5%-20% w/w) and molecular weights of PVA ± cellulose scatterers (2.5%-10% w/w) were characterized acoustically (sound speed, attenuation) as a function of temperature (25°C-45°C), thermally (thermal conductivity, specific heat capacity) and in terms of their cavitation thresholds. Results were compared with measurements in fresh sheep tissue (kidney, liver, spleen). Sound speed depended most strongly on PVA concentration, and attenuation, on cellulose content. For the range of formulations investigated, the PVA gel acoustic properties (sound speed: 1532 ± 17 to 1590 ± 9 m/s, attenuation coefficient: 0.08 ± 0.01 to 0.37 ± 0.02 dB/cm) fell within those measured in fresh tissue. Cavitation thresholds for 10% PVA hydrogels (50% occurrence: 4.1-5.4 MPa, 75% occurrence: 5.4-8.2 MPa) decreased with increasing cellulose content. In summary, PVA cellulose composite hydrogels may be suitable mimics of acoustic, cavitation and thermal properties of soft tissue for a number of therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Lisa Braunstein
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Sarah C Brüningk
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Machine Learning & Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - John Civale
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gail Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
28
|
Shivane V, Pathak H, Tamoli S, Kohli KR, Ghungralekar R, Deshmukh P, Hartalkar A, Mahadik S, Indalkar P, Mehta B. Effect of Airborne Low Intensity Multi frequency ultrasound (ALIMFUS) on glycemic control, lipid profile and markers of inflammation in patients with uncontrolled type 2 diabetes: A multicentre proof of concept, randomized double blind Placebo controlled study. Diabetes Metab Syndr 2022; 16:102483. [PMID: 35483209 DOI: 10.1016/j.dsx.2022.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Airborne Low Intensity Multi frequency Ultrasound (ALIMFUS) uses thermal and non thermal principal of ultrasound to facilitate transportation of drugs into the cells and it's metabolism. This is randomized, multi-center, Double Blind, Interventional, Placebo Controlled Study to evaluate efficacy and safety of ALIMFUS as an Add-on therapy to Oral Hypoglycemic Agent (OHA) in Type 2 DM. METHODS Total 103/186 subjects completed the study and received 10 min either ALIMFUS therapy on alternate day for 90 days or placebo. Baseline and end of the study Lab parameters like HbA1c, blood sugars, Lipid Profile, Serum Hs-CRP, Serum Interleukin-6, Serum TNF-α, Serum homocysteine, Serum Vitamin D, Serum Leptin, Serum Adiponectin and Quality of Life score were assessed. RESULTS At the end of study ALIMFUS group achieved greater (0.77 ± 1.13 vs 0.48 ± 0.79) but non-significant reduction in HbA1c. More subjects in ALIMFUS group (30.76% vs 27.45%) achieved HbA1c < 7%. Significant reduction in fasting and postprandial glucose noted in both groups whose baseline HbA1c was ≥8%. Significant reduction in lipid profile noted in ALIMFUS group compared to placebo. Insulin, adiponectin, CRP and homocysteine and quality of life were significantly better in ALMFUS group compared to baseline; but non-significant compared to placebo. No adverse events were associated with ALIMFUS. CONCLUSIONS Thus, ALIMFUS could be novel technology in diabetes management for patient unable to achieve glycemic targets on combination therapy. However further exploratory long term studies are required to demonstrate its effective role as add-on therapy in diabetes management.
Collapse
Affiliation(s)
| | - Harish Pathak
- Seth G S Medical College & KEM Hospital, Mumbai, India.
| | - Sanjay Tamoli
- Target Institute of Medical Education and Research, Mumbai, India.
| | | | | | - Pranita Deshmukh
- Research Methodology & Statistics, Sumatibhai Shah Hospital, Hadapsar, Pune, India.
| | | | - Swapnali Mahadik
- Target Institute of Medical Education and Research, Mumbai, India.
| | | | | |
Collapse
|
29
|
A Comparative Study between Conventional and Advanced Extraction Techniques: Pharmaceutical and Cosmetic Properties of Plant Extracts. Molecules 2022; 27:molecules27072074. [PMID: 35408473 PMCID: PMC9000874 DOI: 10.3390/molecules27072074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to compare the influence of extraction methods on the pharmaceutical and cosmetic properties of medicinal and aromatic plants (MAPs). For this purpose, the dried plant materials were extracted using advanced (microwave (MAE), ultrasonic (UAE), and homogenizer (HAE) assisted extractions) and conventional techniques (maceration, percolation, decoction, infusion, and Soxhlet). The tyrosinase, elastase, α-amylase, butyryl, and acetylcholinesterase inhibition were tested by using L-3,4 dihydroxy-phenylalanine, N-Succinyl-Ala-Ala-p-nitroanilide, butyryl, and acetylcholine as respective substrates. Antioxidant activities were studied by ABTS, DPPH, and FRAP. In terms of extraction yield, advanced extraction techniques showed the highest values (MAE > UAE > HAE). Chemical profiles were dependent on the phenolic compounds tested, whereas the antioxidant activities were always higher, mainly in infusion and decoction as a conventional technique. In relation to the pharmaceutical and cosmetic properties, the highest inhibitory activities against α-amylase and acetylcholinesterase were observed for Soxhlet and macerated extracts, whereas the highest activity against tyrosinase was obtained with MAE > maceration > Soxhlet. Elastase and butyrylcholinesterase inhibitory activities were in the order of Soxhlet > maceration > percolation, with no activities recorded for the other tested methods. In conclusion, advanced methods afford an extract with high yield, while conventional methods might be an adequate approach for minimal changes in the biological properties of the extract.
Collapse
|
30
|
Lu S, Zhao P, Deng Y, Liu Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14030480. [PMID: 35335857 PMCID: PMC8954263 DOI: 10.3390/pharmaceutics14030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasound with low frequency (20–100 kHz) assisted drug delivery has been widely investigated as a non-invasive method to enhance the permeability and retention effect of drugs. The functional micro/nanobubble loaded with drugs could provide an unprecedented opportunity for targeted delivery. Then, ultrasound with higher intensity would locally burst bubbles and release agents, thus avoiding side effects associated with systemic administration. Furthermore, ultrasound-mediated destruction of micro/nanobubbles can effectively increase the permeability of vascular membranes and cell membranes, thereby not only increasing the distribution concentration of drugs in the interstitial space of target tissues but also promoting the penetration of drugs through cell membranes into the cytoplasm. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theragnostic tool. In this review, we first discuss the structure and generation of micro/nanobubbles. Second, ultrasound parameters and mechanisms of therapeutic delivery are discussed. Third, potential biomedical applications of micro/nanobubble-assisted ultrasound are summarized. Finally, we discuss the challenges and future directions of ultrasound combined with micro/nanobubbles.
Collapse
|
31
|
Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, Chen Z. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract Neurological diseases associated with dysfunctions of neural circuits, including Alzheimer’s disease (AD), depression and epilepsy, have been increasingly prevalent. To tackle these issues, artificial stimulation or regulation of specific neural circuits and
nuclei are employed to alleviate or cure certain neurological diseases. In particular, ultrasound neuromodulation has been an emerging interdisciplinary approach, which integrates medicine and engineering methodologies in the treatment. With the development of medicine and engineering, ultrasound
neuromodulation has gradually been applied in the treatment of central nervous system diseases. In this review, we aimed to summarize the mechanism of ultrasound neuromodulation and the advances of focused ultrasound (FUS) in neuromodulation in recent years, with a special emphasis on its
application in central nervous system disease treatment. FUS showed great feasibility in the treatment of epilepsy, tremor, AD, depression, and brain trauma. We also suggested future directions of ultrasound neuromodulation in clinical settings, with a focus on its fusion with genetic engineering
or nanotechnology.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Gao
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhiyi Chen
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
32
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
33
|
Bergman E, Goldbart R, Traitel T, Amar‐Lewis E, Zorea J, Yegodayev K, Alon I, Rankovic S, Krieger Y, Rousso I, Elkabets M, Kost J. Cell stiffness predicts cancer cell sensitivity to ultrasound as a selective superficial cancer therapy. Bioeng Transl Med 2021; 6:e10226. [PMID: 34589601 PMCID: PMC8459597 DOI: 10.1002/btm2.10226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/26/2023] Open
Abstract
We hypothesize that the biomechanical properties of cells can predict their viability, with Young's modulus representing the former and cell sensitivity to ultrasound representing the latter. Using atomic force microscopy, we show that the Young's modulus stiffness measure is significantly lower for superficial cancer cells (squamous cell carcinomas and melanoma) compared with noncancerous keratinocyte cells. In vitro findings reveal a significant difference between cancerous and noncancerous cell viability at the four ultrasound energy levels evaluated, with different cell lines exhibiting different sensitivities to the same ultrasound intensity. Young's modulus correlates with cell viability (R 2 = 0.93), indicating that this single biomechanical property can predict cell sensitivity to ultrasound treatment. In mice, repeated ultrasound treatment inhibits tumor growth without damaging healthy skin tissue. Histopathological tumor analysis indicates ultrasound-induced focal necrosis at the treatment site. Our findings provide a strong rationale for developing ultrasound as a noninvasive selective treatment for superficial cancers.
Collapse
Affiliation(s)
- Eden Bergman
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Riki Goldbart
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Tamar Traitel
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Eliz Amar‐Lewis
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Irit Alon
- Institute of PathologyBarzilai University Medical CenterAshkelonIsrael
- Department of Pathology, School of Health SciencesBen‐Gurion University of the NegevBeer‐ShebaIsrael
| | - Sanela Rankovic
- Department of Physiology and Cell BiologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yuval Krieger
- Department of Plastic Surgery and Burn Unit, Faculty of Health SciencesSoroka University Medical Center, Ben‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Itay Rousso
- Department of Physiology and Cell BiologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Kost
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
34
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
35
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
36
|
Li Y, Chen Z, Ge S. Sonoporation: Underlying Mechanisms and Applications in Cellular Regulation. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrasound combined with microbubble-mediated sonoporation has been applied to enhance drug or gene intracellular delivery. Sonoporation leads to the formation of openings in the cell membrane, triggered by ultrasound-mediated oscillations and destruction of microbubbles. Multiple mechanisms
are involved in the occurrence of sonoporation, including ultrasonic parameters, microbubbles size, and the distance of microbubbles to cells. Recent advances are beginning to extend applications through the assistance of contrast agents, which allow ultrasound to connect directly to cellular
functions such as gene expression, cellular apoptosis, differentiation, and even epigenetic reprogramming. In this review, we summarize the current state of the art concerning microbubble‐cell interactions and sonoporation effects leading to cellular functions.
Collapse
Affiliation(s)
- Yue Li
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiyi Chen
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuping Ge
- Department of Pediatrics, St Christopher’s Hospital for Children, Tower Health and Drexel University, Philadelphia, PA (S.G.)
| |
Collapse
|
37
|
Levingstone T, Ali B, Kearney C, Dunne N. Hydroxyapatite sonosensitization of ultrasound-triggered, thermally responsive hydrogels: An on-demand delivery system for bone repair applications. J Biomed Mater Res B Appl Biomater 2021; 109:1622-1633. [PMID: 33600064 DOI: 10.1002/jbm.b.34820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
While bones have the innate capability to physiologically regenerate, in certain cases regeneration is suboptimal, too slow, or does not occur. Biomaterials-based growth factor delivery systems have shown potential for the treatment of challenging bone defects, however, achieving controlled growth factor release remains a challenge. The objective of this study was to develop a thermally responsive hydrogel for bone regeneration capable of ultrasound-triggered on-demand delivery of therapeutic agents. Furthermore, it was hypothesized that incorporation of hydroxyapatite (HA) into the hydrogel could increase sonosensitization, augmenting ultrasound sensitivity to enable controlled therapeutic release to the target tissue. Alginate thermally responsive P(Alg-g-NIPAAm) hydrogels were fabricated and varying quantities of HA (1, 3, 5, and 7% wt./vol.) incorporated. All hydrogels were highly injectable (maximum injection force below 6.5 N) and rheological characterization demonstrated their ability to gel at body temperature. The study demonstrated the ultrasound-triggered release of sodium fluorescein (NaF), bovine serum albumin (BSA), and bone morphogenetic protein 2 (BMP-2) from the hydrogels. Release rates of BSA and BMP-2 were significantly enhanced in the HA containing hydrogels, confirming for the first time the role of HA as a son sensitizer. Together these results demonstrate the potential of these ultrasound-triggered thermally responsive hydrogels for on-demand delivery of therapeutic agents for bone regeneration.
Collapse
Affiliation(s)
- Tanya Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Badriah Ali
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Zhang H, Tang WL, Kheirolomoom A, Fite BZ, Wu B, Lau K, Baikoghli M, Raie MN, Tumbale SK, Foiret J, Ingham ES, Mahakian LM, Tam SM, Cheng RH, Borowsky AD, Ferrara KW. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J Control Release 2021; 330:1080-1094. [PMID: 33189786 PMCID: PMC7906914 DOI: 10.1016/j.jconrel.2020.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/01/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Resiquimod (R848) is a toll-like receptor 7 and 8 (TLR7/8) agonist with potent antitumor and immunostimulatory activity. However, systemic delivery of R848 is poorly tolerated because of its poor solubility in water and systemic immune activation. In order to address these limitations, we developed an intravenously-injectable formulation with R848 using thermosensitive liposomes (TSLs) as a delivery vehicle. R848 was remotely loaded into TSLs composed of DPPC: DSPC: DSPE-PEG2K (85:10:5, mol%) with 100 mM FeSO4 as the trapping agent inside. The final R848 to lipid ratio of the optimized R848-loaded TSLs (R848-TSLs) was 0.09 (w/w), 10-fold higher than the previously-reported values. R848-TSLs released 80% of R848 within 5 min at 42 °C. These TSLs were then combined with αPD-1, an immune checkpoint inhibitor, and ultrasound-mediated hyperthermia in a neu deletion (NDL) mouse mammary carcinoma model (Her2+, ER/PR negative). Combined with αPD-1, local injection of R848-TSLs showed superior efficacy with complete NDL tumor regression in both treated and abscopal sites achieved in 8 of 11 tumor bearing mice over 100 days. Immunohistochemistry confirmed enhanced CD8+ T cell infiltration and accumulation by R848-TSLs. Systemic delivery of R848-TSLs, combined with local hyperthermia and αPD-1, inhibited tumor growth and extended median survival from 28 days (non-treatment control) to 94 days. Upon re-challenge with reinjection of tumor cells, none of the previously cured mice developed tumors, as compared with 100% of age-matched control mice. The dose of R848 (10 μg for intra-tumoral injection or 6 mg/kg for intravenous injection delivered up to 4 times) was well-tolerated without weight loss or organ hypertrophy. In summary, we developed R848-TSLs that can be administered locally or systematically, resulting in tumor regression and enhanced survival when combined with αPD-1 in mouse models of breast cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Wei-Lun Tang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Azadeh Kheirolomoom
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Brett Z Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Bo Wu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Kenneth Lau
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Marina Nura Raie
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Spencer K Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Sarah M Tam
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Katherine W Ferrara
- Molecular Imaging Program, Department of Radiology, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
39
|
Peng D, Tong W, Collins DJ, Ibbotson MR, Prawer S, Stamp M. Mechanisms and Applications of Neuromodulation Using Surface Acoustic Waves-A Mini-Review. Front Neurosci 2021; 15:629056. [PMID: 33584193 PMCID: PMC7873291 DOI: 10.3389/fnins.2021.629056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
The study of neurons is fundamental for basic neuroscience research and treatment of neurological disorders. In recent years ultrasound has been increasingly recognized as a viable method to stimulate neurons. However, traditional ultrasound transducers are limited in the scope of their application by self-heating effects, limited frequency range and cavitation effects during neuromodulation. In contrast, surface acoustic wave (SAW) devices, which are producing wavemodes with increasing application in biomedical devices, generate less self-heating, are smaller and create less cavitation. SAW devices thus have the potential to address some of the drawbacks of traditional ultrasound transducers and could be implemented as miniaturized wearable or implantable devices. In this mini review, we discuss the potential mechanisms of SAW-based neuromodulation, including mechanical displacement, electromagnetic fields, thermal effects, and acoustic streaming. We also review the application of SAW actuation for neuronal stimulation, including growth and neuromodulation. Finally, we propose future directions for SAW-based neuromodulation.
Collapse
Affiliation(s)
- Danli Peng
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Collins
- Biomedical Engineering Department, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Stamp
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
41
|
Padya BS, Pandey A, Pisay M, Koteshwara KB, Chandrashekhar Hariharapura R, Bhat KU, Biswas S, Mutalik S. Stimuli-responsive and cellular targeted nanoplatforms for multimodal therapy of skin cancer. Eur J Pharmacol 2020; 890:173633. [PMID: 33049302 DOI: 10.1016/j.ejphar.2020.173633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Interdisciplinary applications of nanopharmaceutical sciences have tremendous potential for enhancing pharmacokinetics, efficacy and safety of cancer therapy. The limitations of conventional therapeutic platforms used for skin cancer therapy have been largely overcome by the use of nanoplatforms. This review discusses various nanotechnological approaches experimented for the treatment of skin cancer. The review describes various polymeric, lipidic and inorganic nanoplatforms for efficient therapy of skin cancer. The stimuli-responsive nanoplatforms such as pH-responsive as well as temperature-responsive platforms have also been reviewed. Different strategies for potentiating the nanoparticles application for cancer therapy such as surface engineering, conjugation with drugs, stimulus-responsive and multimodal effect have also been discussed and compared with the available conventional treatments. Although, nanopharmaceuticals face challenges such as toxicity, cost and scale-up, efforts put-in to improve these drawbacks with continuous research would deliver exciting and promising results in coming days.
Collapse
Affiliation(s)
- Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kuruveri Udaya Bhat
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Mangalore, Karnataka, 575025, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
42
|
Helfield BL, Yoo K, Liu J, Williams R, Sheeran PS, Goertz DE, Burns PN. Investigating the Accumulation of Submicron Phase-Change Droplets in Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2861-2870. [PMID: 32732167 DOI: 10.1016/j.ultrasmedbio.2020.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Submicron phase-change droplets are an emerging class of ultrasound contrast agent. Compared with microbubbles, their relatively small size and increased stability offer the potential to passively extravasate and accumulate in solid tumors through the enhanced permeability and retention effect. Under exposure to sufficiently powerful ultrasound, these droplets can convert into in situ gas microbubbles and thus be used as an extravascular-specific contrast agent. However, in vivo imaging methods to detect extravasated droplets have yet to be established. Here, we develop an ultrasound imaging pulse sequence within diagnostic safety limits to selectively detect droplet extravasation in tumors. Tumor-bearing mice were injected with submicron perfluorobutane droplets and interrogated with our imaging-vaporization-imaging sequence. By use of a pulse subtraction method, median droplet extravasation signal relative to the total signal within the tumor was estimated to be Etumor=37±5% compared with the kidney Ekidney=-2±8% (p < 0.001). This work contributes toward the advancement of volatile phase-shift droplets as a next-generation ultrasound agent for imaging and therapy.
Collapse
Affiliation(s)
- Brandon L Helfield
- Department of Physics, Concordia University, Montreal, Canada; Department of Biology, Concordia University, Montreal, Canada.
| | - Kimoon Yoo
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Jingjing Liu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ross Williams
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Paul S Sheeran
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David E Goertz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Peter N Burns
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Liang Y, Yang H, Li Q, Zhao P, Li H, Zhang Y, Cai W, Ma X, Duan Y. Novel biomimetic dual-mode nanodroplets as ultrasound contrast agents with potential ability of precise detection and photothermal ablation of tumors. Cancer Chemother Pharmacol 2020; 86:405-418. [PMID: 32797251 DOI: 10.1007/s00280-020-04124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Molecule-targeted ultrasound imaging has attracted extensive attention for precise diagnosis and targeted therapy of tumors. The aim of this research is to prepare novel biomimetic dual-mode nanoscale ultrasound contrast agents (UCAs), which can not only evade the immune clearance of reticuloendothelial system, but also have the potential ability of precise detection and photothermal ablation of tumors. METHODS In this study, for the first time, the novel biomimetic UCAs were prepared by encapsulating liquid perfluorohexanes with red blood cell membranes carrying IR-780 iodide and named IR780-RBCM@NDs. The characteristics of that were verified through the particle size analyzer, scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. The stability of IR780-RBCM@NDs at 37 °C was explored. The abilities of immune escape, dual-mode imaging and photothermal effect for IR780-RBCM@NDs were verified via in vitro experiments. RESULTS The novel prepared nanodroplets have good characteristics such as mean diameter, zeta potential, and relatively stability. Importantly, the integrin-associated protein expressed on the surface of RBCMs was detected on IR780-RBCM@NDs. Then, compared with control groups, IR780-RBCM@NDs performed excellent immune escape function away from macrophages in vitro. Furthermore, the IR-780 iodide was observed on the new nanodroplets and that was able to perform the dual-mode imaging with near-infrared fluorescence imaging and contrast-enhanced ultrasound imaging after the phase change. Finally, the effective photothermal ablation ability of IR780-RBCM@NDs was verified in tumor cells. CONCLUSION The newly prepared biomimetic IR780-RBCM@NDs provided novel ideas for evading immune clearance, performing precise diagnosis and photothermal ablation of tumor cells.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Xi'an Medical College, Xi'an, China.
| | - Qiaoying Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Han Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yuxin Zhang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenbin Cai
- Special Diagnosis Department, General Hospital of Tibet Military Command, Lhasa, China
| | - Xiaoju Ma
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
44
|
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2017-2029. [PMID: 32402676 DOI: 10.1016/j.ultrasmedbio.2020.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phoei Ying Tang
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Fan Y, Lin L, Yin F, Zhu Y, Shen M, Wang H, Du L, Mignani S, Majoral JP, Shi X. Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. NANO TODAY 2020; 33:100899. [DOI: 10.1016/j.nantod.2020.100899] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Zhu L, Wu Y, Yoon CW, Wang Y. Mechanogenetics for cellular engineering and cancer immunotherapy. Curr Opin Biotechnol 2020; 66:88-94. [PMID: 32717634 DOI: 10.1016/j.copbio.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Recent synthetic biology advancements have shown that cells can be engineered to respond to external stimuli such as chemical compounds and light, which significantly improves the specificity and controllability of CAR T therapy. However, the lack of both spatiotemporal and depth control is still the main issue in the clinic of CAR T treatment. At the same time, mechanogenetics, capable of penetrating deep tissues with high spatiotemporal precision, is rapidly evolving and advancing to reveal its potential for cancer immunotherapy. In the past few years, researchers have demonstrated the precise and remote control of engineered cells with mechanical perturbation originated from ultrasound, which may become a new solution to circumvent the limitations of CAR T therapy in the future. This review will discuss mechanobiology and the state-of art designs of controllable CAR T cells. A specific focus of this review will be on the mechanical control of CAR T therapy.
Collapse
Affiliation(s)
- Linshan Zhu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
47
|
Chen Y, Du M, Yu J, Rao L, Chen X, Chen Z. Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract Cancer is a common cause of mortality in the world. For cancer treatment modalities such as chemotherapy, photothermal therapy and immunotherapy, the concentration of therapeutic agents in tumor tissue is the key factor which determines therapeutic efficiency. In
view of this, developing targeted drug delivery systems are of great significance in selectively delivering drugs to tumor regions. Various types of nanomaterials have been widely used as drug carriers. However, the low tumor-targeting ability of nanomaterials limits their clinical application.
It is difficult for nanomaterials to penetrate the tumor tissue through passive diffusion due to the elevated tumoral interstitial fluid pressure. As a biological carrier, bacteria can specifically colonize and proliferate inside tumors and inhibit tumor growth, making it an ideal candidate
as delivery vehicles. In addition, synthetic biology techniques have been applied to enable bacteria to controllably express various functional proteins and achieve targeted delivery of therapeutic agents. Nanobiohybrids constructed by the combination of bacteria and nanomaterials have an
abundance of advantages, including tumor targeting ability, genetic modifiability, programmed product synthesis, and multimodal therapy. Nowadays, many different types of bacteria-based nanobiohybrids have been used in multiple targeted tumor therapies. In this review, firstly we summarized
the development of nanomaterial-mediated cancer therapy. The mechanism and advantages of the bacteria in tumor therapy are described. Especially, we will focus on introducing different therapeutic strategies of nanobiohybrid systems which combine bacteria with nanomaterials in cancer therapy.
It is demonstrated that the bacteria-based nanobiohybrids have the potential to provide a targeted and effective approach for cancer treatment.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
48
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
49
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
50
|
Escudero A, Carregal-Romero S, Miguel-Coello AB, Ruíz-Cabello J. Engineered polymeric nanovehicles for drug delivery. FRONTIERS OF NANOSCIENCE 2020:201-232. [DOI: 10.1016/b978-0-08-102828-5.00008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|