1
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
2
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
3
|
Paunovic M, Milosevic M, Mitrovic-Ajtic O, Velickovic N, Micic B, Nedic O, Todorovic V, Vucic V, Petrovic S. Polyphenol-rich black currant and cornelian cherry juices ameliorate metabolic syndrome induced by a high-fat high-fructose diet in Wistar rats. Heliyon 2024; 10:e27709. [PMID: 38590904 PMCID: PMC10999883 DOI: 10.1016/j.heliyon.2024.e27709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
Diets high in fat and sugar lead to metabolic syndrome (MetS) and related chronic diseases. We investigated the effects of commercially available, cold-pressed polyphenol-rich black currant (BC) and cornelian cherry (CC) juices on the prevention of MetS in Wistar rats induced by a 10-weeks high-fat high-fructose (HFF) diet. Juice consumption, either BC or CC, with a HFF diet resulted in lower serum triglycerides compared to only the HFF consumption. Both juices also mitigated the effects of HFF on the liver, pancreas, and adipose tissue, by preserving liver and pancreas histomorphology and reducing visceral fat and adipocyte size. Furthermore, supplementation with both juices reduced glucagon and up-regulated insulin expression in the pancreas of the rats on the HFF diet, whereas the BC also showed improved glucose regulation. BC juice also reduced the expression of IL-6 and hepatic inflammation compared to the group only on HFF diet. Both juices, especially BC, could be a convenient solution for the prevention of MetS in humans.
Collapse
Affiliation(s)
- Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Olivera Mitrovic-Ajtic
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Natasa Velickovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Bojana Micic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080, Belgrade, Serbia
| | - Vanja Todorovic
- Department of Bromatology, University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
4
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
5
|
Li Q, Chen F, Luo Z, Wang M, Han X, Zhu J, Li JE, Liu J, Li K, Gong P. Determination of nine bioactive phenolic components usually found in apple juice by simultaneous UPLC-MS/MS. Food Sci Nutr 2023; 11:4093-4099. [PMID: 37457181 PMCID: PMC10345717 DOI: 10.1002/fsn3.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
The functional food ingredients of apple juice can significantly change during processing, transportation, and storage, thus affecting the quality of the product. A simple and derivation-free analytical method based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and optimized for the simultaneous determination of functional food ingredients in apple juice bought in the market. Cleanup steps and chromatographic conditions were optimized to remove interference and decrease the matrix effect. The nine target analytes were separated on an Acquity UPLC system equipped with a BEH C18 column and detected by electrospray ionization source (ESI) operating in positive subsection acquisition mode under multiple reaction monitoring (MRM) conditions. The results showed that p-hydroxybenzoic acid, protocatechuate, caffeic acid, chlorogenic acid, epicatechin, phloridzin, hyperoside, procyanidin B2, and rutin could be sufficiently separated for content determination within 6 min. In the concentration range of 20 μg/L-50 mg/L, nine standard samples exhibited a good linear fit with correlation coefficients above .985.
Collapse
Affiliation(s)
- Qiu‐lin Li
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Fu‐xin Chen
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Zi‐teng Luo
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Meng‐rang Wang
- School of Food Science and EngineeringShaanxi University of Science and TechnologyXi'anChina
| | - Xiang Han
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Jun‐feng Zhu
- School of Food Science and EngineeringShaanxi University of Science and TechnologyXi'anChina
| | - Juan E. Li
- Shaanxi Provincial People's HospitalXi'anChina
| | - Jing Liu
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Kan‐she Li
- School of Chemistry and Chemical EngineeringXi'an University of Science and TechnologyXi'anChina
| | - Pin Gong
- School of Food Science and EngineeringShaanxi University of Science and TechnologyXi'anChina
| |
Collapse
|
6
|
Miao T, Song G, Yang J. Protective Effect of Apple Polyphenols on H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress Damage in Human Colon Adenocarcinoma Caco-2 Cells. Chem Pharm Bull (Tokyo) 2023; 71:262-268. [PMID: 37005250 DOI: 10.1248/cpb.c22-00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Apple is an important dietary agent for human and apple polyphenols (AP) are the main secondary metabolites of apples. In this study, the protective effects of AP on hydrogen peroxide (H2O2)-induced oxidative stress damage in human colon adenocarcinoma Caco-2 cells were investigated by cell viability, oxidative stress change as well as cell apoptosis. Pre-adding AP could significantly increase the survival rate of H2O2-treated Caco-2 cells. Besides, the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) were elevated. While the malondialdehyde (MDA) content which is the major oxidant products of polyunsaturated fatty acids (PUFA) reduced after AP treatment. In addition, AP also suppressed the emergence of DNA fragment and decreased the expression of apoptosis-related protein Caspase-3. These results demonstrated that AP could ameliorate H2O2-induced oxidative stress damage in Caco-2 cells, which could serve as a reference for further studies of apple natural active products and deep study of the anti-oxidative stress mechanism.
Collapse
Affiliation(s)
- Tianyi Miao
- Department of Pharmacy, Northwest Women’s and Children’s Hospital
| | - Guangming Song
- Center for Drug Evaluation, National Medical Products Administration
| | - Jing Yang
- School of Chemical Engineering, Northwest University
| |
Collapse
|
7
|
Popiolek-Kalisz J, Glibowski P. Apple Peel Supplementation Potential in Metabolic Syndrome Prevention. Life (Basel) 2023; 13:life13030753. [PMID: 36983908 PMCID: PMC10056680 DOI: 10.3390/life13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Introduction: Apples are a source of bioactive substances, e.g., anthocyanidins and flavonols, and dietary fiber. Their highest concentrations are observed in the skin. Metabolic syndrome (MetS) is a set of conditions originally associated with obesity. Excessive adipose tissue accompanying obesity leads to chronic inflammation and metabolic disorders, which result in the development of dyslipidemia, elevated blood pressure, and glucose levels. Thus, supplementation of apple peels, a source of antioxidant substances and fiber, could potentially be a method supporting the prevention of MetS. This paper summarizes the results of available research on the potential impact of apple peel supplementation on the components of MetS. (2) Results: The results from in vitro and animal model studies indicate a positive effect of apple peel supplementation on lipid profile, glucose levels, and blood pressure regulation mediators. Only one human study was performed, and it showed that the consumption of apple peels had an effect on endothelial function but not on other clinical parameters. At the moment, there are no results from observations on large groups of people available. (3) Conclusions: The results of in vitro and animal-model studies indicate the potential of apple peel supplementation in MetS prevention, but it has not been clinically confirmed in human studies. Conducting large human studies could allow a definite clarification of the role of apple peel supplementation in MetS prevention.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, 20-718 Lublin, Poland
- Correspondence:
| | - Paweł Glibowski
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| |
Collapse
|
8
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Szabo K, Mitrea L, Călinoiu LF, Teleky BE, Martău GA, Plamada D, Pascuta MS, Nemeş SA, Varvara RA, Vodnar DC. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022; 27:7977. [PMID: 36432076 PMCID: PMC9697562 DOI: 10.3390/molecules27227977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.
Collapse
Affiliation(s)
- Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Arif MU, Khan MKI, Riaz S, Nazir A, Maan AA, Amin U, Saeed F, Afzaal M. Role of fruits in aging and age-related disorders. Exp Gerontol 2022; 162:111763. [DOI: 10.1016/j.exger.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
|
11
|
Pei S, Zhao H, Chen L, He X, Hua Q, Meng X, Shi R, Zhang J, Zhang H, Liu R, Li D. Preventive Effect of Ellagic Acid on Cardiac Dysfunction in Diabetic Mice through Regulating DNA Hydroxymethylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1902-1910. [PMID: 35129965 DOI: 10.1021/acs.jafc.1c07574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ellagic acid (EA) improves mitochondrial dysfunction and protects diabetic hearts. The mitochondrial tricarboxylic acid (TCA) cycle regulates DNA 5-hydroxymethylcytosine (5hmC) levels by affecting activity of 10-11 translocation enzymes (TETs). Therefore, we hypothesized that EA prevents diabetic cardiac dysfunction by modulating DNA 5hmC levels. C57BL/6J mice were fed a high-fat diet to induce diabetes and treated with EA (100 mg kg-1 day-1) for 8 weeks. Serum concentrations of glucose, insulin, and triglyceride and aspartate transaminase and creatine kinase activities were significantly lower in the EA group than the diabetes mellitus (DM) group. DNA 5hmC levels of mice hearts were significantly higher in the EA group than the DM group. The protein levels of TET, complexes I/III/V were significantly higher in the EA group than the DM group. The results shows that EA has a preventive effect on diabetic cardiac dysfunction, which may be achieved by upregulating TET activity through improving the TCA cycle, to reshape DNA 5hmC levels of mice hearts.
Collapse
Affiliation(s)
- Shengjie Pei
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Haifeng Zhao
- Qingdao Institute for Food and Drug Control, Qingdao, Shandong 266071, People's Republic of China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Qinglian Hua
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xiangyuan Meng
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Ruiqing Shi
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jingyuan Zhang
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hong Zhang
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
12
|
Rezaei kelishadi M, Asbaghi O, Nazarian B, Naeini F, Kaviani M, Moradi S, Askari G, Nourian M, Ashtary-Larky D. Lycopene Supplementation and Blood Pressure: Systematic review and meta-analyses of randomized trials. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Kamdi SP, Badwaik HR, Raval A, Ajazuddin, Nakhate KT. Ameliorative potential of phloridzin in type 2 diabetes-induced memory deficits in rats. Eur J Pharmacol 2021; 913:174645. [PMID: 34800467 DOI: 10.1016/j.ejphar.2021.174645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Diabetes associated oxidative stress and impaired cholinergic neurotransmission causes cognitive deficits. Although phloridzin shows antioxidant- and insulin sensitizing-activities, its ameliorative potential in diabetes-induced memory dysfunction remains unexplored. In the present study, type 2 diabetes (T2D) was induced by streptozotocin (35 mg/kg, intraperitoneal) in rats on ad libitum high-fat diet. Diabetic animals were treated orally with phloridzin (10 and 20 mg/kg) for four weeks. Memory functions were evaluated by passive avoidance test (PAT) and novel object recognition (NOR) test. Brains of rats were subjected to biochemical analysis of glutathione (GSH), brain-derived neurotrophic factor (BDNF), malonaldehyde (MDA) and acetylcholinesterase (AChE). Role of cholinergic system in the effects of phloridzin was evaluated by scopolamine pre-treatment in behavioral studies. While diabetic rats showed a significant decrease in step through latency in PAT, and exploration time and discrimination index in NOR test; a substantial increase in all parameters was observed following phloridzin treatment. Phloridzin reversed abnormal levels of GSH, BDNF, MDA and AChE in the brain of diabetic animals. Moreover, in silico molecular docking study revealed that phloridzin acts as a potent agonist at M1 receptor as compared to acetylcholine. Viewed collectively, reversal of T2D-induced memory impairment by phloridzin might be attributed to upregulation of neurotrophic factors, reduced oxidative stress and increased cholinergic signaling in the brain. Therefore, phloridzin may be a promising molecule in the management of cognitive impairment comorbid with T2D.
Collapse
Affiliation(s)
- Sandesh P Kamdi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, 313001, Rajasthan, India.
| | - Hemant R Badwaik
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, Chhattisgarh, India
| | - Amit Raval
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, 313001, Rajasthan, India
| | - Ajazuddin
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, 425405, Maharashtra, India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, Chhattisgarh, India; Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| |
Collapse
|
14
|
Wang G, Han Q, Yan X, Feng L, Zhang Y, Zhang R, Zhang Y. Polyphenols-rich extracts from walnut green husk prevent non-alcoholic fatty liver disease, vascular endothelial dysfunction and colon tissue damage in rats induced by high-fat diet. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, Begum MY, Lum PT, Subramaniyan V, Fuloria NK, Fuloria S. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc Health Risk Manag 2021; 17:739-769. [PMID: 34858028 PMCID: PMC8631183 DOI: 10.2147/vhrm.s328096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
Collapse
Affiliation(s)
- Nur Zulaikha Azwa Zuraini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherché des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
16
|
Kamdi SP, Raval A, Nakhate KT. Effect of apple peel extract on diabetes-induced peripheral neuropathy and wound injury. J Diabetes Metab Disord 2021; 20:119-130. [PMID: 34222062 PMCID: PMC8212242 DOI: 10.1007/s40200-020-00719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/07/2020] [Accepted: 12/28/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) affects up to 50 % diabetic patients. Moreover, uncontrolled diabetes associated with impaired wound healing. The present study was aimed at exploring the effect of apple peel extract (APE) on type 2 diabetes (T2D)-induced DPN and delayed wound healing. METHODS In adult male Sprague-Dawley rats on high-fat diet, a single low dose streptozotocin (STZ, 35 mg/kg) was administered via intraperitoneal route to induce T2D. Plantar test using Hargreaves apparatus was used to evaluate the DPN. Six different groups of rats were treated orally with saline (naïve control and DPN control), APE (100, 200 and 400 mg/kg) and gabapentin (30 mg/kg) daily for 7 consecutive days and thermal paw withdrawal latency (PWL) was measured. To elucidate the underlying antioxidant effect of APE, the catalase (CAT), glutathione (GSH) and malonaldehyde (MDA) levels were measured. To evaluate the wound healing potential of APE, excision ischemic open wound model was used. Six different groups of rats were applied with 2 % gum acacia (naïve control and diabetic control), 1 % silver sulfadiazine (SSD) cream and APE cream (5, 10 and 20 %) twice daily for 28 days. Dry connective tissue parameters like hydroxyproline and hexosamine were also measured to further confirm the wound healing activity. RESULTS Diabetes produced thermal hyperalgesia in rats with a significant decrease in PWL as compared to naive controls indicating induction of DPN. APE and gabapentin significantly improved PWL in diabetic animals. Biochemical analysis revealed a significant improvement in oxidative stress parameters such as catalase, GSH and MDA. Wound closure was significantly more after day 15 of topical application of APE and SSD as compared to control group. APE significantly increased hydroxyproline and hexosamine levels as compared to standard cream. Moreover, histopathology revealed that, topical application of APE cream showed an enhanced healing process. CONCLUSIONS On the basis of the findings, we conclude that APE has a potential to be used as a therapeutic intervention for the management of DPN and delayed wound healing in the diabetic condition.
Collapse
Affiliation(s)
- Sandesh P. Kamdi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, P.B-12 Pacific Hills, Airport Road, Debari, Udaipur, Rajasthan 313024 India
| | - Amit Raval
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, P.B-12 Pacific Hills, Airport Road, Debari, Udaipur, Rajasthan 313024 India
| | - Kartik T. Nakhate
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024 India
| |
Collapse
|
17
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
18
|
Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the most widely consumed fruit in the world, apple (Malus domestica Borkh.) fruits provide a high level of phenolics and have many beneficial effects on human health. The composition and content of phenolic compounds in natural apples differs according to the tissue types and cultivar varieties. The bioavailability of apple-derived phenolics, depending on the absorption and metabolism of phenolics during digestion, is the key determinant of their positive biological effects. Meanwhile, various processing technologies affect the composition and content of phenolic compounds in apple products, further affecting the bioavailability of apple phenolics. This review summarizes current understanding on the compositions, distribution, absorption, and metabolism of phenolic compounds in apple and their stability when subjected to common technologies during processing. We intend to provide an updated overview on apple phenolics and also suggest some perspectives for future research of apple phenolics.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
19
|
Xie Y, Wang H, He Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J Appl Toxicol 2020; 41:701-712. [PMID: 33251608 DOI: 10.1002/jat.4123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yixi Xie
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Hui Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
20
|
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43:1128-1143. [DOI: 10.1007/s12272-020-01292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
21
|
Abstract
Although the association between fruit consumption and CHD risk has been well studied, few studies have focused on flavonoid-rich fruits (FRF), in particular strawberries and grapes. We aimed to verify the association of total and specific FRF consumption with risk of CHD by a large prospective cohort study. A total of 87 177 men and women aged 44-75 years who were free of CVD and cancer at study baseline were eligible for the present analysis. FRF consumption was assessed using a FFQ. Cox proportional hazards regression models were used to estimate the hazard ratios (HR) of CHD in relation to FRF consumption with adjustment for potential risk factors and confounders. During a mean follow-up of 13·2 years, we identified 1156 incident CHD cases. After full adjustment for covariates including demographics, lifestyles and dietary factors, the HR were 0·93 (95 % CI 0·77, 1·11), 0·91 (95 % CI 0·75, 1·11), 0·84 (95 % CI 0·67, 1·04) and 0·78 (95 % CI 0·62, 0·99) for the second, third, fourth and fifth quintiles compared with the lowest quintile of FRF consumption. Regarding specific fruits, we observed a significant inverse association for citrus fruit consumption and a borderline inverse association for strawberry consumption, while no association was observed for apple/pear or grape consumption. Although the associations appeared to be stronger in women, they were not significantly modified by sex. Higher consumption of FRF, in particular, citrus fruits, may be associated with a lower risk of developing CHD.
Collapse
|
22
|
Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. PLANTS 2020; 9:plants9111408. [PMID: 33105724 PMCID: PMC7690411 DOI: 10.3390/plants9111408] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023]
Abstract
Fruit-derived bioactive substances have been spotlighted as a regulator against various diseases due to their fewer side effects compared to chemical drugs. Among the most frequently consumed fruits, apple is a rich source of nutritional molecules and contains high levels of bioactive compounds. The main structural classes of apple constituents include polyphenols, polysaccharides (pectin), phytosterols, and pentacyclic triterpenes. Also, vitamins and trace elements complete the nutritional features of apple fruit. There is now considerable scientific evidence that these bioactive substances present in apple and peel have the potential to improve human health, for example contributing to preventing cardiovascular disease, diabetes, inflammation, and cancer. This review will focus on the current knowledge of bioactive substances in apple and their medicinal value for human health.
Collapse
|
23
|
Xu X, Chen X, Huang Z, Chen D, Yu B, Chen H, He J, Luo Y, Zheng P, Yu J, Luo J. Dietary apple polyphenols supplementation enhances antioxidant capacity and improves lipid metabolism in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1512-1520. [PMID: 31268198 DOI: 10.1111/jpn.13152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023]
Abstract
Apple polyphenols (APPs) are biologically active flavonoids that have antioxidant, anti-inflammatory, improving insulin sensitivity, hypocholesterolaemic effect and antiviral properties. This study was conducted to explore effects of dietary APPs supplementation on antioxidant activities and lipid metabolism in weaned piglets. Fifty-four weaned piglets (half male and female) were randomly divided into three groups with six replicates in each group and three piglets in each repetition. Piglets were fed control diet (basal diet) or a control diet supplemented with 400 mg/kg or 800 mg/kg APPs for 6 weeks. Blood and liver samples were collected to determine biochemical, antioxidant and lipid metabolism parameters. Here we showed that dietary APPs supplementation increased HDL-C and decreased T-CHO, TG and LDL-C concentrations. Dietary APPs supplementation increased antioxidative capacity in serum and CAT activity in liver, and significantly increased the mRNA expressions of CAT, GST and SOD1 in liver. ACC mRNA level and LPL activity were tended to decrease by APPs. HMG-CoAR, CTP7A1, CD36 and FATP1 mRNA levels were decreased by APPs, while LDL-R, PGC-1α, Sirt1 and CPT1b mRNA levels were increased by 400 mg/kg APPs. No alterations in growth performance were found in all treatments. This study firstly provided the evidence that dietary APPs supplementation could enhance systemic antioxidant capacity and improve lipid metabolism in weaned piglets. The mechanism by which APPs improve lipid metabolism might be through regulating hepatic cholesterol metabolism and increasing fatty acid oxidation, and decreasing fatty acid uptake and de novo synthesis.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Wang W, Yang X, Ye Z, Li Y, Liu Y, Cao P. Extraction Technology Can Impose Influences on Peanut Oil Functional Quality: A Study to Investigate the Lipid Metabolism by Sprague-Dawley Rat Model. J Food Sci 2019; 84:911-919. [PMID: 30835849 DOI: 10.1111/1750-3841.14457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
In this study, peanut oil was prepared by cold pressing (temperature under 60 °C), hot pressing (temperature above 105 °C), and enzyme-assisted aqueous extraction technology. Influences of an extraction technology on the oil fatty acid composition and the content of minor bioactive compounds, including tocopherols, polyphenols, and squalene, were investigated in detail. High-fat-diet Sprague-Dawley (SD) rat model was then established to probe the impact of cold-pressed peanut oil (CPO), hot-pressed peanut oil (HPO), and enzyme-assisted aqueous-extracted peanut oil (EAO) on lipid metabolism outcomes, to explore influences of different extraction technologies on lipid functional quality. Results showed that oleic acid was the predominate fatty acid in the EAO (52.57 ± 0.11%), which was also significantly higher (P < 0.05) than CPO and HPO. The HPO showed higher total tocopherol and polyphenol contents (206.84 ± 6.93 mg/kg and 47.87 ± 6.50 mg GA/kg, respectively) than CPO and EAO (P < 0.05). However, the squalene content in CPO was 475.47 ± 12.75 mg/kg, which was the highest among the three oils (P < 0.05). The animal experiment results revealed that EAO could be more prone to induce lipid accumulation in the liver, which may likely to cause nonalcoholic fatty liver disease. However, the serum lipid profiles indicated that the CPO was more beneficial than the EAO and HPO in lowering the serum low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate aminotransferase contents, and increasing the high-density lipoprotein cholesterol content. All of our efforts indicated that an extraction technology can affect the peanut oil lipid fatty acid composition, the bioactive compounds content, and, correspondingly, the lipid metabolism in SD rats.
Collapse
Affiliation(s)
- Wuliang Wang
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xiaoyu Yang
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhan Ye
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Youdong Li
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,State Key Laboratory of Food Science and Technology, Natl. Engineering Laboratory for Cereal Fermentation Technology, Natl. Engineering Research Center for Functional Food, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Peirang Cao
- School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,State Key Laboratory of Food Science and Technology, Natl. Engineering Laboratory for Cereal Fermentation Technology, Natl. Engineering Research Center for Functional Food, Jiangnan Univ., 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E93. [PMID: 30149600 PMCID: PMC6165118 DOI: 10.3390/medicines5030093] [Citation(s) in RCA: 734] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Phenolic compounds as well as flavonoids are well-known as antioxidant and many other important bioactive agents that have long been interested due to their benefits for human health, curing and preventing many diseases. This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications. The examples of these phytochemicals from several medicinal plants are also illustrated, and their potential applications in pharmaceutical and medical aspects, especially for health promoting e.g., antioxidant effects, antibacterial effect, anti-cancer effect, cardioprotective effects, immune system promoting and anti-inflammatory effects, skin protective effect from UV radiation and so forth are highlighted.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
- Department of Botany, Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan.
| | - Areeya Thongboonyou
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Apinan Pholboon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Aujana Yangsabai
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|