1
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Du X, Duan M, Kan S, Yang Y, Xu S, Wei J, Li J, Chen H, Zhou X, Xie J. TGF-β3 mediates mitochondrial dynamics through the p-Smad3/AMPK pathway. Cell Prolif 2024; 57:e13579. [PMID: 38012096 PMCID: PMC11056712 DOI: 10.1111/cpr.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
It is well recognized that mitochondrial dynamics plays a vital role in cartilage physiology. Any perturbation in mitochondrial dynamics could cause disorders in cartilage metabolism and even lead to the occurrence of cartilage diseases such as osteoarthritis (OA). TGF-β3, as an important growth factor that appears in the joints of OA disease, shows its great potential in chondrocyte growth and metabolism. Nevertheless, the role of TGF-β3 on mitochondrial dynamics is still not well understood. Here we aimed to investigate the effect of TGF-β3 on mitochondrial dynamics of chondrocytes and reveal its underlying bio-mechanism. By using transmission electron microscopy (TEM) for the number and morphology of mitochondria, western blotting for the protein expressions, immunofluorescence for the cytoplasmic distributions of proteins, and RNA sequencing for the transcriptome changes related to mitochondrial dynamics. We found that TGF-β3 could increase the number of mitochondria in chondrocytes. TGF-β3-enhanced mitochondrial number was via promoting the mitochondrial fission. The mitochondrial fission induced by TGF-β3 was mediated by AMPK signaling. TGF-β3 activated canonical p-Smad3 signaling and resultantly mediated AMPK-induced mitochondrial fission. Taken together, these results elucidate an understanding of the role of TGF-β3 on mitochondrial dynamics in chondrocytes and provide potential cues for therapeutic strategies in cartilage injury and OA disease in terms of energy metabolism.
Collapse
Affiliation(s)
- Xinmei Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Song B, Wang W, Tang X, Goh RMWJ, Thuya WL, Ho PCL, Chen L, Wang L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers (Basel) 2023; 15:2758. [PMID: 37345095 DOI: 10.3390/cancers15102758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer metastasis is a significant challenge in cancer treatment, and most existing drugs are designed to inhibit tumor growth but are often ineffective in treating metastatic cancer, which is the leading cause of cancer-related deaths. Resveratrol, a polyphenol found in grapes, berries, and peanuts, has shown potential in preclinical studies as an anticancer agent to suppress metastasis. However, despite positive results in preclinical studies, little progress has been made in clinical trials. To develop resveratrol as an effective anticancer agent, it is crucial to understand its cellular processes and signaling pathways in tumor metastasis. This review article evaluates the current state and future development strategies of resveratrol to enhance its potency against cancer metastasis within its therapeutic dose. In addition, we critically evaluate the animal models used in preclinical studies for cancer metastasis and discuss novel techniques to accelerate the translation of resveratrol from bench to bedside. The appropriate selection of animal models is vital in determining whether resveratrol can be further developed as an antimetastatic drug in cancer therapy.
Collapse
Affiliation(s)
- Baohong Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Robby Miguel Wen-Jing Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Paul Chi Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University of Singapore, Singapore 119074, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
5
|
Schwager SC, Mosier JA, Padmanabhan RS, White A, Xing Q, Hapach LA, Taufalele PV, Ortiz I, Reinhart-King CA. Link between glucose metabolism and epithelial-to-mesenchymal transition drives triple-negative breast cancer migratory heterogeneity. iScience 2022; 25:105190. [PMID: 36274934 PMCID: PMC9579510 DOI: 10.1016/j.isci.2022.105190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.
Collapse
Affiliation(s)
- Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Reethi S. Padmanabhan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Addison White
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Qinzhe Xing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | | |
Collapse
|
6
|
Zhang J, Peng J, Kong D, Wang X, Wang Z, Liu J, Yu W, Wu H, Long Z, Zhang W, Liu R, Hai C. Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status. Life Sci 2021; 280:119716. [PMID: 34119539 DOI: 10.1016/j.lfs.2021.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
AIMS Silent information regulator 1 (SIRT1) is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, cell metabolism, and mitochondrial functions. Given that it acts as both a tumor promoter and suppressor, the complex mechanisms underlying SIRT1 signaling in cancer remain controversial. Epithelial-to-mesenchymal transition (EMT) plays a key role in the progression of carcinogenesis and tumors metastasis. Studies have shown that mitochondrial defects are critical in EMT process, and SIRT1 is found to regulate the generation and energy metabolism of mitochondria. Here, we elucidate a novel mechanism by which SIRT1 affects EMT in lung cancer cells via its regulation on mitochondria. MAIN METHODS SIRT1 signaling was detected in TGF-β1-induced EMT and was found to regulate mitochondria status, including mitochondrial biogenesis-related protein levels as detected by western blotting, mitochondrial structure observed by transmission electron microscopy, and respiratory functions analyzed by a respiration capacity assay. The effects of modulating SIRT1 expression on EMT and migration of lung cancer cells or normal cells were evaluated by in vitro and in vivo models. KEY FINDINGS We found that the regulation of SIRT1 signaling on the biogenesis or functions of mitochondria was critical to EMT. Overexpression of SIRT1 reduced EMT or metastasis potential of lung cancer cells by improving the quantity and quality of mitochondria, whereas silencing SIRT1 promote EMT in cancer cells, even in normal cells by disturbing mitochondria status. SIGNIFICANCE Consequently, SIRT1 is an attractive therapeutic target for reversing EMT or tumor metastasis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhao Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
TGF Beta Induces Vitamin D Receptor and Modulates Mitochondrial Activity of Human Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:cancers13122932. [PMID: 34208208 PMCID: PMC8230851 DOI: 10.3390/cancers13122932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
The inflammatory cytokine TGFβ is both a tumor suppressor during cancer initiation and a promoter of metastasis along cancer progression. Inflammation and cancer are strictly linked, and cancer onset often correlates with the insufficiency of vitamin D, known for its anti-inflammatory properties. In this study, we investigated the interplay between TGFβ and vitamin D in two models of human pancreatic cancer, and we analyzed the metabolic effects of a prolonged TGFβ treatment mimicking the inflammatory environment of pancreatic cancer in vivo. We confirmed the induction of the vitamin D receptor previously described in epithelial cells, but the inhibitory effects of vitamin D on epithelial-mesenchymal transition (EMT) were lost when the hormone was given after a long treatment with TGFβ. Moreover, we detected an ROS-mediated toxicity of the acute treatment with TGFβ, whereas a chronic exposure to low doses had a protumorigenic effect. In fact, it boosted the mitochondrial respiration and cancer cell migration without ROS production and cytotoxicity. Our observations shed some light on the multifaceted role of TGFβ in tumor progression, revealing that a sustained exposure to TGFβ at low doses results in an irreversibly increased EMT associated with a metabolic modulation which favors the formation of metastasis.
Collapse
|
8
|
Sreekumar PG, Ferrington DA, Kannan R. Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 2021; 10:661. [PMID: 33923192 PMCID: PMC8146950 DOI: 10.3390/antiox10050661] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is present ubiquitously, and its role as a crucial cellular antioxidant in tissues, including the retina, is well established. GSH's antioxidant function arises from its ability to scavenge reactive oxygen species or to serve as an essential cofactor for GSH S-transferases and peroxidases. This review summarizes the general functions, retinal distribution, disorders linked to GSH deficiency, and the emerging role for mitochondrial GSH (mGSH) in retinal function. Though synthesized only in the cytosol, the presence of GSH in multiple cell organelles suggests the requirement for its active transport across organellar membranes. The localization and distribution of 2-oxoglutarate carrier (OGC) and dicarboxylate carrier (DIC), two recently characterized mitochondrial carrier proteins in RPE and retina, show that these transporters are highly expressed in human retinal pigment epithelium (RPE) cells and retinal layers, and their expression increases with RPE polarity in cultured cells. Depletion of mGSH levels via inhibition of the two transporters resulted in reduced mitochondrial bioenergetic parameters (basal respiration, ATP production, maximal respiration, and spare respiratory capacity) and increased RPE cell death. These results begin to reveal a critical role for mGSH in maintaining RPE bioenergetics and cell health. Thus, augmentation of mGSH pool under GSH-deficient conditions may be a valuable tool in treating retinal disorders, such as age-related macular degeneration and optic neuropathies, whose pathologies have been associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Giordo R, Nasrallah GK, Posadino AM, Galimi F, Capobianco G, Eid AH, Pintus G. Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences member of QU Health, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| |
Collapse
|
11
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
12
|
Vismara M, Zarà M, Negri S, Canino J, Canobbio I, Barbieri SS, Moccia F, Torti M, Guidetti GF. Platelet-derived extracellular vesicles regulate cell cycle progression and cell migration in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118886. [PMID: 33039555 DOI: 10.1016/j.bbamcr.2020.118886] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Platelets have been extensively implicated in the progression of cancer and platelet-derived extracellular vesicles (PEVs) are gaining growing attention as potential mediators of the platelet-cancer interplay. PEVs are shed from platelet membrane in response to extracellular stimuli and carry important biological signals for intercellular communication. In this study we demonstrate that PEVs specifically bind to different breast cancer cells and elicit cell-specific functional responses. PEVs were massively internalized by the metastatic cell lines MDA-MB-231 and SKBR3 and the ductal carcinoma cell line BT474, but not by the MCF-7 cell line. In SKBR3 cells, PEVs decreased mitochondrial dehydrogenase activities and altered cell cycle progression without affecting cell viability. Conversely, PEVs potently stimulated migration and invasion of MDA-MB-231, without affecting the distribution in the different phases of the cell cycle. In all the analyzed breast cancer cells, PEVs triggered a sustained increase of intracellular Ca2+, but only in MDA-MB-231 cells, this was associated to the stimulation of selected signaling proteins implicated in migration, including p38MAPK and myosin light chain. Importantly, inhibition of myosin light chain phosphorylation by a Rho kinase inhibitor prevented PEVs-stimulated migration of MDA-MB-231 cells. Our results demonstrate that PEVs are versatile regulators of cancer cell behavior and elicit a variety of different responses depending on the specific breast cancer cell subtype.
Collapse
Affiliation(s)
- Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
13
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
14
|
Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Park C, Hong SH, Kim GY, Song KS, Hyun JW, Choi YH. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114301. [PMID: 32155554 DOI: 10.1016/j.envpol.2020.114301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Although several studies have linked PM2.5 (particulate matter with a diameter less than 2.5 μm) to ocular surface diseases such as keratitis and conjunctivitis, very few studies have previously addressed its effect on the retina. Therefore, the aim of this study was to evaluate the effect of PM2.5 on epithelial-mesenchymal transition (EMT), a process involved in disorders of the retinal pigment epithelial (RPE) on APRE-19 cells. PM2.5 changed the phenotype of RPE cells from epithelial to fibroblast-like mesenchymal, and increased cell migration. Exposure to PM2.5 markedly increased the expression of mesenchymal markers, but reduced the levels of epithelial markers. Moreover, PM2.5 promoted the phosphorylation of MAPKs and the expression of transforming growth factor-β (TGF-β)-mediated nuclear transcriptional factors. However, these PM2.5-mediated changes were completely reversed by LY2109761, a small molecule inhibitor of the TGF-β receptor type I/II kinases, and N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger. Interestingly, NAC, but not LY2109761, effectively restored the PM2.5-induced mitochondrial defects, including increased ROS, decreased mitochondrial activity, and mitochondrial membrane potential disruption. Collectively, our findings indicate that the TGF-β/Smad/ERK/p38 MAPK signaling pathway is activated downstream of cellular ROS during PM2.5-induced EMT. The present study provides the first evidence that EMT of RPE may be one of the mechanisms of PM2.5-induced retinal dysfunction.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Hyun Hwang-Bo
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan, 47340, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kyoung Seob Song
- Department of Cell Biology and Biophysics, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju, 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea.
| |
Collapse
|
15
|
Han Q, Han L, Tie F, Wang Z, Ma C, Li J, Wang H, Li G. (20S)-Protopanaxadiol Ginsenosides Induced Cytotoxicity via Blockade of Autophagic Flux in HGC-27 Cells. Chem Biodivers 2020; 17:e2000187. [PMID: 32384197 DOI: 10.1002/cbdv.202000187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
(20S)-Protopanaxadiol ginsenosides Rg3, Rh2 and PPD have been demonstrated for their anticancer activity. However, the underlying mechanism of their antitumor activity remains unclear. In the present study, we investigated the role of these three ginsenosides on cell proliferation and death of human gastric cancer cells (HGC-27 cells). The sulforhodamine B (SRB) assay, Western blot analysis, fluorescence microscopy, confocal microscopy, high performance liquid chromatography (HPLC) analysis, flow cytometry, and transmission electron microscopy (TEM) were used to evaluate cell proliferation, apoptosis, and autophagy. The results showed that both Rh2 and PPD were more effective than Rg3 in inhibiting HGC-27 cell proliferation and inducing cytoplasmic vacuolation, while no significant changes in apoptosis were observed. Interestingly, cytoplasmic vacuolation and blockade of autophagy flux were observed after treatment with Rh2 and PPD. Rh2 obviously up-regulated the expression of the LC3II and p62. Furthermore, the increase in lysosomal pH and membrane rupture was observed in Rh2-treated and PPD-treated cells. When HGC-27 cells were pretreated with bafilomycin A1, a specific inhibitor of endosomal acidification, cellular vacuolization was increased, and the cell viability was significantly decreased, which indicated that Rh2-induced lysosome-damage accelerated cell death. Furthermore, data derived from mitochondrial analysis showed that excessive mitochondrial reactive oxygen species (ROS) and dysregulation of mitochondrial energy metabolism were caused by Rh2 and PPD treatment in HGC-27 cells. Taken together, these phenomena indicated that Rh2 and PPD inhibited HCG-27 cells proliferation by inducing mitochondria damage, dysfunction of lysosomes, and blockade of autophagy flux. The number of glycosyl groups at C-3 position could have an important effect on the cytotoxicity of Rg3, Rh2 and PPD.
Collapse
Affiliation(s)
- Qingqing Han
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Lijuan Han
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, P. R. China
| | - Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Chengjun Ma
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Honglun Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
16
|
Shukal D, Bhadresha K, Shastri B, Mehta D, Vasavada A, Johar K. Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2020; 197:108072. [PMID: 32473169 DOI: 10.1016/j.exer.2020.108072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Proliferative retinopathies are associated with formation of fibrous epiretinal membranes. At present, there is no pharmacological intervention for the treatment of retinopathies. Cytokines such as TGFβ are elevated in the vitreous humor of the patients with proliferative vitro-retinopathy, diabetic retinopathy and age-related macular degeneration. TGFβ isoforms lead to epithelial-mesenchymal transition (EMT) or trans-differentiation of the retinal pigment epithelial (RPE) cells. PI3K/Akt and MAPK/Erk pathways play important roles in the EMT of RPE cells. Therefore, inhibition of EMT by pharmacological agents is an important therapeutic strategy in retinopathy. Dichloroacetate (DCA) is shown to prevent proliferation and EMT of cancer cell lines but its effects are not explored on the prevention of EMT of RPE cells. In the present study, we have investigated the role of DCA in preventing TGFβ2 induced EMT of RPE cell line, ARPE-19. A wound-healing assay was utilized to detect the anti-EMT effect of DCA. The expressions of EMT and cell adhesion markers were carried out by immunofluorescence, western blotting, and quantitative real-time PCR. The expression of MAPK/Erk and PI3K/Akt pathway members was carried out using western blotting. We found that TGFβ2 exposure leads to an increase in the wound healing response, expression of EMT markers (Fibronectin, Collagen I, N-cadherin, MMP9, S100A4, α-SMA, Snai1, Slug) and a decrease in the expression of cell adhesion/epithelial markers (ZO-1, Connexin 43, E-cadherin). These changes were accompanied by the activation of PI3K/Akt and MAPK/Erk pathways. Simultaneous exposure of DCA along with TGFβ2 significantly inhibited wound healing response, expression of EMT markers and cell adhesion/epithelial markers. Furthermore, DCA and TGFβ2 effectively attenuated the activation of MAPK/Erk/JNK and PI3K/Akt/GSK3β pathways. Our results demonstrate that DCA has a strong anti-EMT effect on the ARPE-19 cells and hence can be utilized as a therapeutic agent in the prevention of proliferative retinopathies.
Collapse
Affiliation(s)
- Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India; Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Kinjal Bhadresha
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Bhoomi Shastri
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Deval Mehta
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Abhay Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
17
|
Stegemann A, Flis D, Ziolkowski W, Distler JHW, Steinbrink K, Böhm M. The α7 Nicotinic Acetylcholine Receptor: A Promising Target for the Treatment of Fibrotic Skin Disorders. J Invest Dermatol 2020; 140:2371-2379. [PMID: 32335129 DOI: 10.1016/j.jid.2020.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Targeting neuroendocrine receptors can be considered as another interesting approach to treating fibrotic disorders. Previously, we could demonstrate that tropisetron, a classical serotonin receptor blocker, can modulate collagen synthesis and acts in vitro through the α7 nicotinic acetylcholine receptor (α7nAchR). Here, we used a pharmacologic approach with specific α7nAchR agonists to validate this hypothesis. PHA-543613, an α7nAchR-specific agonist, not only prevented but also reversed established skin fibrosis of mice injected with bleomycin. Interestingly, agonistic stimulation of α7nAchR also attenuated experimental skin fibrosis in the non-inflammation driven adenovirus coding for TGFβ receptor Iact mouse model, indicating fibroblast-mediated and not only anti-inflammatory effects of such agents. The fibroblast-mediated effects were confirmed in vitro using human dermal fibroblasts, in which the α7nAchR-specific agonists strongly reduced the impact of TGFβ1-mediated expression on collagen and myofibroblast marker expression. These actions were linked to modulation of the redox-sensitive transcription factor JunB and impairment of the mitochondrial respiratory system. Our results indicate that pharmacologic stimulation of the α7nAchR could be a promising target for treatment of patients with skin fibrotic diseases. Moreover, our results suggest a mechanistic axis of collagen synthesis regulation through the mitochondrial respiratory system.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Damian Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Wieslaw Ziolkowski
- Department of Rehabilitation Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jörg H W Distler
- Institute for Rheumatology and Immunology, University of Erlangen, Erlangen, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
19
|
Chen TT, Peng S, Wang Y, Hu Y, Shen Y, Xu Y, Yin J, Liu C, Cao J. Improvement of Mitochondrial Activity and Fibrosis by Resveratrol Treatment in Mice with Schistosoma japonicum Infection. Biomolecules 2019; 9:biom9110658. [PMID: 31717714 PMCID: PMC6920829 DOI: 10.3390/biom9110658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a major parasitic disease in the People's Republic of China. Liver fibrosis is the main pathological mechanism of schistosomiasis, and it is also the major lesion. The common drug used for its treatment, praziquantel (PZQ), does not have a marked effect on liver fibrosis. Resveratrol (RSV), which is an antioxidant, improves mitochondrial function and also attenuates liver fibrosis. The combination of PZQ and RSV has been found to have a synergistic antischistosomal effect on Schistosoma mansoni; additionally, the activity of PZQ is enhanced in the presence of RSV. Here, we examine the therapeutic effects of RSV on the S. japonicum infection in a mouse model, and we investigate RSV as a novel therapeutic agent for mitochondrial function and schistosomiasis-associated liver fibrosis (SSLF). Mitochondrial membrane potential was examined using flow cytometry analysis. The expression of the mitochondrial biogenesis genes PGC-α and fibrosis-associated genes collagen I, collagen III and α-SMA were examined using western blot analysis. Fibrosis-associated histological changes were examined using Masson trichrome staining. Additionally, the effects of RSV on S. japonicum adult worms were examined using scanning electron microscopy and transmission electron microscopy. RSV treatment improved mitochondrial function by increasing membrane potential and increasing PGC-α expression (mitochondrial biogenesis). Further, RSV attenuated liver injury, including liver scarring, by decreasing collagen deposition and the extent of fibrosis, based on the decrease in expression of the fibrosis-related genes. RSV also decreased the adult worm count and caused considerable physical damage to the worm. These results indicate that RSV upregulates mitochondrial biogenesis and inhibits fibrosis. RSV may have potential as a therapeutic target for the treatment of fibrosis in schistosomiasis.
Collapse
Affiliation(s)
- Tina Tuwen Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shihyi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
20
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|