1
|
Yang B, Xu Y, Zhang W, Zhu D, Huang B, Yang Y, Jia X, Feng L. Oral absorption mechanisms of polysaccharides and potential as carriers for the construction of nano-delivery systems: A review. Int J Biol Macromol 2025; 310:143184. [PMID: 40253019 DOI: 10.1016/j.ijbiomac.2025.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Polysaccharides have garnered increasing attention in recent years for their potential in oral drug delivery within biomaterials and pharmaceuticals, owing to their excellent physicochemical properties, bioactivity, and low toxicity. However, the absorption of polysaccharides encounters multiple challenges posed by the biological, chemical, mechanical, and immune barriers of the intestinal mucosa. Therefore, elucidating the mechanisms by which polysaccharides traverse the intestinal mucosa for oral absorption is essential for their further development and application. Current studies have identified several polysaccharide absorption pathways, including transcellular transport, paracellular transport, M cell and Peyer's patches mediated transport, and intestinal flora mediated transport. Furthermore, numerous studies have demonstrated that polysaccharides can enhance the solubility, gastrointestinal stability, and permeability of small molecule components, which significantly improves their bioavailability. More importantly, nano-delivery systems utilizing polysaccharides as carriers have shown great promise in enhancing the targeting of small molecule components, thereby opening new avenues for drug delivery applications. We hope this review will provide theoretical support and inspiration for a deeper understanding of oral absorption mechanisms and the potential of polysaccharides in the development of nano-delivery systems.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weiye Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dandan Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Ge Y, Kwon MH, Kou F, Uthamapriya RA, Zhang P, Lee DJ, Yang R, Bao H, Palanisamy S, You S. Folic-acid-targeted drug delivery system implementing Angelica gigas polysaccharide: A potential strategy for colorectal cancer treatment. Int J Biol Macromol 2024; 283:137653. [PMID: 39561833 DOI: 10.1016/j.ijbiomac.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The study focuses on the development of folate-targeted conjugates utilizing Angelica gigas polysaccharide (F2) as a drug carrier for colorectal cancer therapy. We synthesized F2-C-5-FU conjugates by linking carboxymethyl-5-fluorouracil (C-5-FU) with folic acid (FA) through ester bonding. The drug release behavior of F2-C-5-FU-FA was pH-dependent, favoring release under alkaline conditions. After 96 h in phosphate buffer (pH 7.4), the conjugate exhibited a cumulative release of 54.7%, which was higher compared to other pH environments. In vitro, F2-C-5-FU-FA showed enhanced cytotoxicity and increased cellular uptake in folate receptor-positive HCT-116 cells compared to A549 cells. The conjugate also induced G2/M cell cycle arrest and modulated the BAX/BCL-2 mRNA expression ratio through the MAPK and NF-κB signaling pathways. In vivo, F2-C-5-FU-FA increased tumor fluorescence intensity, prolonged drug circulation, and reduced organ toxicity to non-target organs. The treatment promoted cancer cell apoptosis by inhibiting the expression of apoptosis-related proteins. Overall, F2-C-5-FU-FA conjugates demonstrate potential as an effective drug delivery system for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Peng Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Honghui Bao
- Hubei International Scientific and Technological cooperation base for research and development of traditional medicine and food homologus products, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China..
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Palanisamy S, Kwon MH, Ge Y, Kou F, Uthamapriya RA, Lee D, Lee DJ, Bao H, You S, Zhang Y. A novel targeted anticancer drug delivery strategy: Cnidium officinale polysaccharide conjugated with carboxymethyl-5-fluorouracil and folic acid for ovarian cancer therapy. Int J Biol Macromol 2024; 285:138107. [PMID: 39608520 DOI: 10.1016/j.ijbiomac.2024.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
To mitigate adverse reactions induced by 5-fluorouracil (5-FU), Cnidium officinale fraction 2 (F2) polysaccharides served as the macromolecular carrier, facilitating its reaction with carboxymethyl-5-fluorouracil (C-5-FU) for producing F2-C-5-FU. Subsequently, this compound could react with folic acid (FA) through the ester bond, forming F2-C-5-FU-FA, as verified through NMR analysis. The in vitro anticancer efficacy of F2-C-5-FU-FA was evaluated using SKOV-3 cells that expressed folate receptor (FR) and FR-deficient A549 cells, showing greater cytotoxicity in the SKOV-3 cell line due to the FRs on the cell membrane. In vivo experiments were conducted on SKOV-3-bearing xenograft mice using an in vivo imaging system (IVIS). Animals injected with F2-C-5-FU-FA exhibited significantly stronger targeting of tumor tissue compared to those injected with F2-C-5-FU. These findings highlighted enhanced drug delivery and accumulation in targeted tumor regions facilitated by folate-targeted conjugates. Moreover, F2-C-5FU-FA showed reduced cardiac toxicity in mice and minimal spleen accumulation, indicating a negligible effect on the immune system. Overall, this study introduced a novel strategy for achieving highly efficient anticancer drug delivery into tumor cells that express FR.
Collapse
Affiliation(s)
- Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, Hainan, China
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - DongKi Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
5
|
Zhang Z, Li M, Zhang X, Zhou F. Novel Strategies for Tumor Treatment: Harnessing ROS-Inducing Active Ingredients from Traditional Chinese Medicine Through Multifunctional Nanoformulations. Int J Nanomedicine 2024; 19:9659-9688. [PMID: 39309188 PMCID: PMC11416109 DOI: 10.2147/ijn.s479212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Reactive oxygen species (ROS) encompass a diverse group of chemically reactive molecules or ions distinguished by their substantial oxidative potential. Empirical studies have shown that the targeted administration of high toxic concentrations of ROS can effectively induce tumor cell death in various types. Numerous bioactive ingredients derived from traditional Chinese medicine (TCM), recognized for their ROS-inducing properties, have demonstrated significant anti-tumor activity. Nonetheless, their clinical application has been hindered by challenges such as low solubility, limited bioavailability, and poor selectivity. Multifunctional nanoformulations possess the potential to overcome these challenges and enhance the anticancer efficacy of ROS-inducing active compounds. Through extensive searches of various academic databases and a thorough review and screening of relevant literature, this study aims to systematically summarize and generalize multiple active ingredients in TCM that induce ROS generation, along with their multifunctional nanoformulations, from various perspectives. The objective is to provide new insights and references for fundamental cancer research and clinical treatments. Furthermore, we acknowledge that although numerous active ingredients and their nanoformulations in TCM have demonstrated ROS-inducing and anti-tumor potentials, potentially offering novel strategies for tumor therapy, the underlying mechanisms require further comprehensive investigation.
Collapse
Affiliation(s)
- Zhengguang Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Xiaolong Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Chen Y, Li Z, Bai L, Lu B, Peng Y, Xu P, Song X, Bian Y, Wang X, Zhao S. Glycyrrhiza polysaccharides may have an antitumor effect in γδT cells through gut microbiota and TLRs/NF-κB pathway in mice. FEBS Open Bio 2024; 14:1011-1027. [PMID: 38604998 PMCID: PMC11148121 DOI: 10.1002/2211-5463.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Tumor immunotherapy can be a suitable cancer treatment option in certain instances. Here we investigated the potential immunomodulatory effect of oral glycyrrhiza polysaccharides (GCP) on the antitumor function of γδT cells in intestinal epithelial cells in mice. We found that GCP can inhibit tumor growth and was involved in the regulation of systemic immunosuppression. GCP administration also promoted the differentiation of gut epithelia γδT cells into IFN-γ-producing subtype through regulation of local cytokines in gut mucosa. GCP administration increased local cytokine levels through gut microbiota and the gut mucosa Toll-like receptors / nuclear factor kappa-B pathway. Taken together, our results suggest that GCP might be a suitable candidate for tumor immunotherapy, although further clinical research, including clinical trials, are required to validate these results.
Collapse
Affiliation(s)
- Yinxiao Chen
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Zhaodong Li
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Liding Bai
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Bin Lu
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Yanfei Peng
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Pengjuan Xu
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Xinbo Song
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Yuhong Bian
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Xiangling Wang
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Shuwu Zhao
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| |
Collapse
|
7
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed Pharmacother 2024; 173:116330. [PMID: 38422656 DOI: 10.1016/j.biopha.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Wu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumei Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Chemistry, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Clinical Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Homayoonfal M, Aminianfar A, Asemi Z, Yousefi B. Application of Nanoparticles for Efficient Delivery of Quercetin in Cancer Cells. Curr Med Chem 2024; 31:1107-1141. [PMID: 36856173 DOI: 10.2174/0929867330666230301121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 03/02/2023]
Abstract
Quercetin (Qu, 3,5,7,3', 4'-pentahydroxyflavanone) is a natural polyphenol compound abundantly found in health food or plant-based products. In recent decades, Qu has gained significant attention in the food, cosmetic, and pharmaceutic industries owning to its wide beneficial therapeutic properties such as antioxidant, anti-inflammatory and anticancer activities. Despite the favorable roles of Qu in cancer therapy due to its numerous impacts on the cell signaling axis, its poor chemical stability and bioavailability, low aqueous solubility as well as short biological half-life have limited its clinical application. Recently, drug delivery systems based on nanotechnology have been developed to overcome such limitations and enhance the Qu biodistribution following administration. Several investigations have indicated that the nano-formulation of Qu enjoys more remarkable anticancer effects than its free form. Furthermore, incorporating Qu in various nano-delivery systems improved its sustained release and stability, extended its circulation time, enhanced its accumulation at target sites, and increased its therapeutic efficiency. The purpose of this study was to provide a comprehensive review of the anticancer properties of various Qu nano-formulation to augment their effects on different malignancies. Various targeting strategies for improving Qu delivery, including nanoliposomes, lipids, polymeric, micelle, and inorganic nanoparticle NPs, have been discussed in this review. The results of the current study illustrated that a combination of appropriate nano encapsulation approaches with tumor-oriented targeting delivery might lead to establishing QU nanoparticles that can be a promising technique for cancer treatment.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Andishmand H, Yousefi M, Jafari N, Azadmard-Damirchi S, Homayouni-Rad A, Torbati M, Hamishehkar H. Designing and fabrication of colloidal nano-phytosomes with gamma-oryzanol and phosphatidylcholine for encapsulation and delivery of polyphenol-rich extract from pomegranate peel. Int J Biol Macromol 2024; 256:128501. [PMID: 38040148 DOI: 10.1016/j.ijbiomac.2023.128501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Nano-carriers are well-known delivery systems to encapsulate different bioactive compounds and extracts. Such nano-systems are used in various food and drug areas to protect active ingredients, increase bioavailability, control the release, and deliver bioactive substances. This study aimed to design and fabricate a stable colloidal nano-delivery system to better preserve the antioxidant properties of pomegranate peel extract (PPE) and protect its sustained release in a gastrointestinal model. To achieve this goal, a nano-phytosomal system was fabricated with plant-based, cost-effective, and food-grade compounds, i.e., phosphatidylcholine (PC) and gamma-oryzanol (GO) for encapsulation of PPE. To fabricate the nano-phytosomes, thin film hydration/sonication method was used. The parameters of particle size, zeta potential, polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) were investigated to evaluate the efficiency of the produced nano-system. In summary, the size, zeta potential, PDI, LC, and EE of homogenous spherical PC-GO-PPE nano-phytosomes (NPs) in the ratio of 8:2:2 % w/w were achieved as 60.61 ± 0.81 nm, -32.24 ± 0.84 mV, 0.19 ± 0.01, 19.13 ± 0.30 %, and 95.66 ± 1.52 %, respectively. Also, the structure of NPs was approved by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The optimized NPs were stable during one month of storage at 4 °C, and changes in the size of particles and PPE retention rate were insignificant (p > 0.05). The nano-encapsulation of PPE significantly decreased the loss of its antioxidant activity during one month of storage at 4 °C. The optimized NPs exhibited prolonged and sustained release of PPE in a gastrointestinal model, so that after 2 h in simulated gastric fluid (SGF) and 4 h in simulated intestinal fluid (SIF), 22.66 ± 2.51 % and 69.33 ± 4.50 % of initially loaded PPE was released, respectively. Optimized NPs had considerable cytotoxicity against the Michigan Cancer Foundation-7 cell line (MCF7) (IC50 = 103 μg/ml), but not against Human Foreskin Fibroblast cell line (HFF-2) (IC50 = 453 μg/ml). In conclusion, spherical PC-GO-PPE NPs were identified as a promising delivery system to efficiently encapsulate PPE, as well as protect and preserve its bioactivity, including antioxidant and cytotoxicity against cancer cell line.
Collapse
Affiliation(s)
- Hashem Andishmand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, Parmar HS, Meena AK, Jha HC. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis 2023; 28:1596-1617. [PMID: 37658919 DOI: 10.1007/s10495-023-01883-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Siddharth Singh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
12
|
Shen Y, Guo Q, Zhang T, Wang L, Chen S, Lan X, Li Q, Xiao H. Zwitterionic dendrimer self-assembled nanodrugs with high drug loading for enhanced anti-tumor ability. Colloids Surf B Biointerfaces 2023; 231:113574. [PMID: 37797468 DOI: 10.1016/j.colsurfb.2023.113574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Zwitterionic dendrimers have been used to construct many nanomedicines due to their ability to achieve controlled drug release, but their low drug loading content limits their application in nanodrug delivery. To solve this problem, the surface of second generation polypropylimine (G2 PPI) was modified with mercapturized paclitaxel (PTX-SH) and zwitterionic groups to prepare zwitterionic prodrug molecule (PPIMPC), and then zwitterionic dendrimer self-assembled nanodrugs (PPIMPC-DOX micelles) were prepared by incorporating doxorubicin (DOX) into the micelles. The DOX loading and paclitaxel (PTX) loading in PPIMPC-DOX micelles was 6.7% and 26.2%, respectively, and the total drug loading of PPIMPC-DOX was high to 32.9%. In addition, PPIMPC-DOX micelles showed enhanced cytotoxicity due to improved cell uptake of DOX. More importantly, the inhibition rate of tumor was much higher than free DOX. The zwitterionic property and high drug loading of PPIMPC-DOX micelles enhanced anti-tumor ability of chemotherapeutic drugs. The method of preparation of zwitterionic and high drug loading of nanodrugs shows good application prospects in the future.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Quanling Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tiantian Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xifa Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qiurong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
13
|
Kleczka A, Dzik R, Kabała-Dzik A. Caffeic Acid Phenethyl Ester (CAPE) Synergistically Enhances Paclitaxel Activity in Ovarian Cancer Cells. Molecules 2023; 28:5813. [PMID: 37570782 PMCID: PMC10420888 DOI: 10.3390/molecules28155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) belongs to the phenols found in propolis. It has already shown strong antiproliferative, cytotoxic and pro-apoptotic activities against head and neck cancers and against breast, colorectal, lung and leukemia cancer cells. Ovarian cancer is one of the most dangerous gynecological cancers. Its treatment involves intensive chemotherapy with platinum salts and paclitaxel (PTX). The purpose of this study was to evaluate whether the combined use of CAPE and paclitaxel increases the effectiveness of chemotherapeutic agents. The experiment was performed on three ovarian cancer lines: OV7, HTB78, and CRL1572. The effect of the tested compounds was assessed using H-E staining, a wound-healing test, MTT and the cell death detection ELISAPLUS test. The experiment proved that very low doses of PTX (10 nM) showed a cytotoxic effect against all the cell lines tested. Also, the selected doses of CAPE had a cytotoxic effect on the tested ovarian cancer cells. An increase in the cytotoxic effect was observed in the OV7 line after the simultaneous administration of 10 nM PTX and 100 µM CAPE. The increase in the cytotoxicity was dependent on the CAPE dosage (50 vs. 100 µM) and on the duration of the experiment. In the other cell lines tested, the cytotoxic effect of PTX did not increase after the CAPE administration. The administration of PTX together with CAPE increased the percentage of apoptotic cells in the tested ovarian cancer cell lines. Moreover, the simultaneous administration of PTX and CAPE enhanced the anti-migration activity of the chemotherapeutic used in this study.
Collapse
Affiliation(s)
- Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Radosław Dzik
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| |
Collapse
|
14
|
Guo C, Cao M, Diao N, Wang W, Geng H, Su Y, Sun T, Lu X, Kong M, Chen D. Novel pH-responsive E-selectin targeting natural polysaccharides hybrid micelles for diabetic nephropathy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102696. [PMID: 37394108 DOI: 10.1016/j.nano.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Diabetic nephropathy (DN) is an important complication of diabetes and is the main cause of end-stage renal disease. The pathogenesis of DN is complex, including glucose and lipid metabolism disorder, inflammation, and so on. Novel hybrid micelles loaded Puerarin (Pue) based on Angelica sinensis polysaccharides (ASP) and Astragalus polysaccharide (APS) were fabricated with pH-responsive ASP-hydrazone-ibuprofen (BF) materials (ASP-HZ-BF, SHB) and sialic acid (SA) modified APS-hydrazone-ibuprofen materials (SA/APS-HZ-BF, SPHB) by thin-film dispersion method. The SA in hybrid micelles can specifically bind to the E-selectin receptor which is highly expressed in inflammatory vascular endothelial cells. The loaded Pue could be accurately delivered to the inflammatory site of the kidney in response to the low pH microenvironment. Overall, this study provides a promising strategy for developing hybrid micelles based on natural polysaccharides for the treatment of diabetic nephropathy by inhibiting renal inflammatory reactions, and antioxidant stress.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yanguo Su
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Tianying Sun
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xinyue Lu
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
15
|
Xiong YX, Li N, Han MM, Ye F, Liu T, Ye HY, Zheng TT, Wu JJ, Li Y, Zhang Y, Zhang YH, Lv S, Dong ZQ. Rhodiola rosea polysaccharides-based nanoparticles loaded with DOX boosts chemo-immunotherapy for triple-negative breast cancer by re-educating tumor-associated macrophages. Int J Biol Macromol 2023; 239:124110. [PMID: 36958441 DOI: 10.1016/j.ijbiomac.2023.124110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Efficient encapsulation and tumor targeting ability are the key issues for hydrophobic drugs delivery vectors in cancer therapy. In the current study, Rhodiola rosea polysaccharides (RHPs) serve as an immunoactive vector for drug delivery with tumor-associated macrophages (TAMs) modulating ability and typical structural characteristics. Firstly, Folic acid (FA) and stearic acid (SA) were chemically modified to the backbone of RHPs to obtain the self-assemble and tumor targeting behaviors. Then, the hydrophobic drug (Doxorubicin, DOX) was encapsulated in the RHPs derivatives (FA-RHPs-SA) with high efficiency. Moreover, the optimal formed DOX@FA-RHPs-SA were around 196 nm with uniform size distribution and a pH-sensitive release capacity in different acidic conditions. In vitro experiments demonstrated that DOX@FA-RHPs-SA could efficiently uptake by tumor cells. Furthermore, the modulatory function of the FA-RHPs-SA on RAW264.7 macrophages was also demonstrated in the transition from M0 to M1 phenotypes, and the M2 differentiated into the M1. Finally, in vivo antitumor study revealed that the inhibitory effect of DOX@FA-RHPs-SA was superior to the DOX monotherapy treatment, and the new preparation worked synergistically by inducing tumor cell apoptosis and modulating immune cell function. In summary, this study describes a RHPs-based hydrophobic delivery vector and achieved an additional helpful antitumor effect by modulating TAMs.
Collapse
Affiliation(s)
- Ying-Xia Xiong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, Heilongjiang, China
| | - Nan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Miao-Miao Han
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, Heilongjiang, China
| | - Fan Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Tian Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Han-Yi Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ting-Ting Zheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jin-Jia Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ying Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yun Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ying-Hua Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun 130012, Jilin, China
| | - Shaohua Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zheng-Qi Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Ju H, Yu C, Liu W, Li HH, Fu Z, Wu YC, Gong PX, Li HJ. Polysaccharides from marine resources exhibit great potential in the treatment of tumor: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
17
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Guo H, Su Y, Guo C, Chen Q, Liu Z, Geng H, Mu K, Wang J, Chen D. Polysaccharide based drug delivery systems for Chinese medicines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
20
|
Ghanbari-Movahed M, Mondal A, Farzaei MH, Bishayee A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153909. [PMID: 35092896 DOI: 10.1016/j.phymed.2021.153909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Natural products, with incredible chemical diversity, have been widely studied for their antitumor potential. Quercetin (QU) and quercetin glycoside (rutin), both polyphenolic flavonoids, stick out amongst the natural products, through various studies. Rutin (RU) and its aglycone (QU) have various biological properties that include antioxidant, anti-inflammatory, and anticarcinogenic activities. However, several side effects have restricted the efficacy of these polyphenolic flavonoids, which makes it necessary to use new strategies involving low and pharmacological doses of QU and RU, either alone or in combination with other anticancer drugs. PURPOSE The aim of this study is to present a comprehensive and critical evaluation of the anticancer ability of different nano-formulations of RU and QU for improved treatment of various malignancies. METHODS Studies were recognized via systematic searches of ScienceDirect, PubMed, and Scopus databases. Eligibility checks were conducted based upon predefined selection criteria. Ninety articles were included in this study. RESULTS There was conclusive evidence for the association between anticancer activity and treatment with RU or QU. Furthermore, studies indicated that nano-formulations of RU and QU have greater anticancer activities in comparison to either agent alone, which leads to increased efficiency for treating cancer. CONCLUSION The results of this systematic review demonstrate the anticancer activities of nano-formulations of RU and QU and their molecular mechanisms through preclinical studies. This paper also attempts to contribute to further research by addressing the current limitations/challenges and proposing additional studies to realize the full potential of RU- and QU-based formulations for cancer treatment.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| |
Collapse
|
21
|
Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q, Chen D, Mu H. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv 2021; 29:138-148. [PMID: 34967268 PMCID: PMC8725898 DOI: 10.1080/10717544.2021.2021324] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on the tumor hypoxic microenvironment and the new programmed cell death mode of combined ferroptosis, an angelica polysaccharide-based nanocarrier material was synthesized. The polymer contains hydrophilic angelica polysaccharide (ASP) that is linked by azobenzene (AZO) linker with ferrocene (Fc), and then the side chain was covalently modified with arachidonic acid (AA). It was postulated that the polymer micelles could work as an instinctive liver targeting drug delivery carrier, owing to the existence of ASP with liver targeting. Moreover, the aim was to engineer hypoxia-responsive polymer micelles which was modified by AA, for selective enhancement of ferroptosis in solid tumor, via diminishing glutathione (GSH) under hypoxia. Finally, we synthesized the amphiphilic polymer micelles AA/ASP-AZO-Fc (AAAF) by self-assembling. The structure of AAAF was confirmed by 1H-NMR and FT-IR. Then, we exemplified the hydrophobic medication curcumin into polymer micelles AAAF@Cur, which has smooth and regular spheres. In vitro release test affirmed that AAAF@Cur can achieve hypoxia response to drug release. In addition, a series of cell experiments confirmed that hypoxia could enhance cell uptake and effectively improve the proliferation inhibitory activity of HepG2 cells. In conclusion, AAAF, as an effective cell carrier, is expected to develop in sensitizing ferroptosis and anti-tumor.
Collapse
Affiliation(s)
- Xue Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, PR China
| | - Qingming Liu
- Shandong Academy of Chinese Medicine, Jinan, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Hongjie Mu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| |
Collapse
|
22
|
Sheik A, Kim K, Varaprasad GL, Lee H, Kim S, Kim E, Shin JY, Oh SY, Huh YS. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153698. [PMID: 34479785 DOI: 10.1016/j.phymed.2021.153698] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cancer is the most dreadful disease increasing rapidly causing an economic burden globally. A standardized chemotherapy regimen planned with curative intent weakens the immune system and damages healthy cells making the patient prone to infections and severe side effects with pain and fatigue. PURPOSE Astragalus membranaceus (AM) has a long history of use in the treatment of severe adverse diseases. For thousands of years, it has been used in mixed herbal decoctions for the treatment of cancer. Due to growing interest in this plant root for its application to treat various types of cancers and tumors, has attracted researcher's interest. METHOD The literature search was done from core collections of electronic databases such as Web of Science, Google Scholar, PubMed and Science Direct using keywords given below and terms like pharmacological and phytochemical details of this plant. OUTCOME Astragalus membranaceus has demonstrated the ability to modulate the immune system during drug therapy making the patient physically fit and prolonged life. It has become a buzzword of herbalists as it is one of the best of seven important adaptogenic herbs with a protective effect against chronic stress and cancer. It demonstrated significant amelioration of the perilous toxic effects induced by concurrently administered chemo onco-drugs. CONCLUSION The natural phytoconstituents of this plant formononetin, astragalus polysaccharide, and astragalosides which show high potential anti-cancerous activity are studied and discussed in detail. One of them are used in clinical trials to overcome cancer related fatigue. Overall, this review aims to provide an insight into Astragalus membranaceus status in cancer therapy.
Collapse
Affiliation(s)
- Aliya Sheik
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Kwanwoo Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Suheon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Eunsu Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Jin-Yong Shin
- Chungcheong Division Reliability Center, Korea Confomity Laboratories, Yuseong-gu, Daejeon, 34027, Republic of Korea
| | - Seo Yeong Oh
- Research Group of Consumer Safety, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| |
Collapse
|
23
|
Li H, Xia Z, Liu L, Pan G, Ding J, Liu J, Kang J, Li J, Jiang D, Liu W. Astragalus IV Undermines Multi-Drug Resistance and Glycolysis of MDA-MB-231/ADR Cell Line by Depressing hsa_circ_0001982-miR-206/miR-613 Axis. Cancer Manag Res 2021; 13:5821-5833. [PMID: 34326666 PMCID: PMC8314933 DOI: 10.2147/cmar.s297008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Background Allowing for the power of astragalus in improving cancer patients’ response to chemotherapy, we endeavored to clarify if hsa_circ_0001982-centered miRNA axes participated in the impact of astragaloside IV on multi-drug resistance (MDR) of triple-negative breast cancer (TNBC). Methods TNBC patients were recruited into an Astragalus detoxification decoction (ADD) treatment group (N=62) and a non-ADD treatment group (N=78), according to whether they consumed ADD after chemotherapy or not. Furthermore, drug resistance of the MDA-MB-231/ADR cell line in response to gemcitabine (GEM), adriamycin (ADM), oxaliplatin (OXA), and cisplatin (DDP) was evaluated, and glycolytic potential of MDA-MB-231/ADR cells was determined after astragaloside IV treatment or si-hsa_circ_0001982/miR-206 inhibitor/miR-613 inhibitor transfection. Results TNBC patients receiving ADD adjuvant therapy after chemotherapy, with decreased serum level of hsa_circ_0001982 and increased serum level of miR-206/miR-613 as relative to non-ADD treatment group (P<0.05), were less likely to relapse than TNBC population not undergoing ADD treatment (P<0.05). In addition, GEM/ADM/OXA/DDP-resistance and glycolysis of MDA-MB-231/ADR cell line were debilitated after exposure to astragaloside IV or transfection by si-hsa_circ_0001982 (P<0.05). Nonetheless, miR-206/miR-613 inhibitor transfection reversed inhibitory effects of si-hsa_circ_0001982 and astragaloside IV on glycolysis and MDR of MDA-MB-231/ADR cell line (P<0.05). Conclusion Astragaloside IV undermined MDR and glycolysis of MDA-MB-231/ADR cell line by blocking hsa_circ_0001982-miR-206/miR-613 axis.
Collapse
Affiliation(s)
- Hongchang Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Zhihua Xia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Limin Liu
- Department of Medical Rehabilitation, Heze Domestic Professional College, Heze, 274300, Shandong, People's Republic of China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Junbin Ding
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Jie Kang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Daowen Jiang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| |
Collapse
|
24
|
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, Gadanec LK, Šudomová M, Hassan STS, Zulli A, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021; 12:155-176. [PMID: 34025826 PMCID: PMC8126506 DOI: 10.1007/s13167-021-00242-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predictive, preventive, and personalized (3P) medicine. Main pillars considered are: - Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects; - Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their resistance towards currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
25
|
Ji Y, Song S, Li X, Lv R, Wu L, Wang H, Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Li W, Hu X, Li Y, Song K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J Nat Med 2021; 75:854-870. [PMID: 34043154 DOI: 10.1007/s11418-021-01525-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Astragalus polysaccharide (APS) has been frequently used as an adjuvant agent responsible for its immunoregulatory activity to enhance efficacy and reduce toxicity of chemotherapy used in the management of breast cancer. However, the other synergism mechanism of APS remains unclear. This study was performed to evaluate the potential targets and possible mechanism behind APS in vivo direct anti-tumor activity on breast cancer. Multiple biological detections were conducted to investigate the protein and mRNA expression levels of key targets. In total, 116 down-regulated and 73 up-regulated differential expressed genes (DEGs) were examined from 7 gene expression datasets. Top ten hub genes were obtained in four typical protein-protein interaction (PPI) network of DEGs involved in each specific biological process (BP, cell cycle, cell proliferation, cell apoptosis and death) that was related to inhibitory activity of APS in vitro against breast cancer cell lines. Four common DEGs (EGFR, ANXA1, KIF14 and IGF1) were further identified in the above four BP-PPI networks, among which EGFR and ANXA1 were the hub genes that were potentially linked to the progression of breast cancer. The results of biological detections indicated that the expression of EGFR in breast cancer cells was down-regulated, while the expression of ANXA1 was markedly increased in response to APS. In conclusion, the present study may provide potential molecular therapeutic targets and a new insight into the mechanism of APS against breast cancer.
Collapse
Affiliation(s)
- Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanjie Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
27
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Green nanogold activity in experimental breast carcinoma in vivo. Biosci Rep 2021; 40:226914. [PMID: 33165619 PMCID: PMC7689655 DOI: 10.1042/bsr20200115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Over the past few years, fabrication of nanoparticles (NPs) has been deployed widely in technologies and many concerns have emerged about the hazardous effect on human health after NPs exposure. Objective: Green synthesis of gold NPs (AuNPs) and assessment of their activity in 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mouse model. Methods: Chloroauric acid (HAuCl4) was used in formation of AuNPs with the help of Curcuma longa as aqueous reducing extract and stabilizing agent at room temperature. Formed NPs were characterized with UV-Vis spectrometry, Fourier-transform infrared spectroscopy (FTIR), Zetasizer measurement, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Virgin female albino mice with DMBA-induced breast cancer were treated with formed AuNPs for 5 consecutive days and were dissected after 28 days of the beginning of treatment. Results: UV-Vis spectrometry showed absorbance maximum peak at 530 nm for formed AuNPs, FTIR confirmed formation of plant extract layer around formed NPs; zetasizer measurement revealed 278.2 nm as an average size of produced NPs; SEM and TEM approved formation of monodisperse spherical AuNPs. Biochemical analysis of untreated breast cancer group revealed marked changes in liver and kidney functions manifested by raised activity levels of alanine transaminase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine. Whereas, the treated group with AuNPs post-breast cancer induction displayed reduction in the activities (of ALT, AST and creatinine), while the BUN activity level was raised. Histopathological examination showed heavy incidence of tumor foci in the breast and lymph nodes belonged to the untreated breast cancer group confirmed with intense response to Ki-67 antibodies. While the treated group with AuNPs post-breast cancer induction showed degenerated tumor foci in the breast and lymph nodes with weak response to Ki-67 antibodies. Conclusion: AuNPs were successfully synthesized using HAuCl4 and C. longa extract confirmed their ability to control DMBA-induced breast cancer in virgin female Swiss albino mice.
Collapse
|