1
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025; 35:325-356. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
2
|
Bian DD, Zhang X, Zhu XR, Tang WH, Peng Q, Chen YH, Wang G, Zhang DZ, Tang BP, Liu QN. The Nrf2-Keap1/ARE signaling pathway in aquatic animals. Int J Biol Macromol 2025; 308:142595. [PMID: 40158560 DOI: 10.1016/j.ijbiomac.2025.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The complex and fluctuating conditions of aquatic ecosystems make aquatic organisms vulnerable to oxidative stress. The Nrf2-Keap1/ARE signaling pathway serves as an important intracellular defense mechanism, particularly for aquatic organisms exposed to environmental stressors and toxic substances. Environmental stimuli can disrupt an organism's internal redox balance, leading to cellular oxidative stress responses. To counteract these effects, cells develop intricate defense mechanisms, with the Nrf2-Keap1/ARE signaling pathway is playing a crucial role. In this pathway, the nuclear transcription factor Nrf2 translocates into the nucleus to initiate the transcription of antioxidant genes, thereby reducing reactive oxygen species (ROS)-induced cellular damage and maintaining the organism's oxidative-antioxidative equilibrium. While research on this pathway in mammals is well-established, studies on aquatic organisms are still limited. This review provides a comprehensive analysis of the regulatory functions of the Nrf2-Keap1/ARE pathway on oxidative stress and delves into the molecular structures of Nrf2, Keap1, and ARE, offering insights into the physiological regulation of antioxidant defenses in aquatic organisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yao-Hui Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| |
Collapse
|
3
|
Dabravolski SA, Churov AV, Beloyartsev DF, Kovyanova TI, Lyapina IN, Sukhorukov VN, Orekhov AN. The role of NRF2 function and regulation in atherosclerosis: an update. Mol Cell Biochem 2025:10.1007/s11010-025-05233-y. [PMID: 40025257 DOI: 10.1007/s11010-025-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. This review examines the molecular mechanisms underlying NRF2 role in atherosclerosis, focusing on the recently defined intricate interplay between autophagy, the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, microRNAs (miRNAs), and genes regulating NRF2 with atheroprotective effects. The NRF2/autophagy axis emerges as a critical regulator of cellular responses to oxidative stress and inflammation in atherosclerosis, with key players including Heat Shock Protein 90 (HSP90), Neuropeptide Y (NPY), and Glutaredoxin 2 (GLRX2). MiRNAs are identified as potent regulators of gene expression in atherosclerosis, impacting NRF2 signalling and disease susceptibility. Additionally, genes such as Prenyl diphosphate synthase subunit 2 (PDSS2), Sulfiredoxin1 (Srxn1), and Isocitrate dehydrogenase 1 (IDH1) are implicated in NRF2-dependent atheroprotective pathways. Future research directions include elucidating the complex interactions between these molecular pathways, evaluating novel therapeutic targets in preclinical and clinical settings, and addressing challenges related to drug delivery and patient heterogeneity. Despite limitations, this review underscores the potential for targeted interventions aimed at modulating NRF2/autophagy signalling and miRNA regulatory networks to mitigate atherosclerosis progression and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, 2161002, Karmiel, Israel.
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Tatiana I Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Irina N Lyapina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, Kemerovo, Russia, 650002
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| |
Collapse
|
4
|
Lv W, Chen H, Zhou P, Du A, Lei Y. Mechanisms Associated With Renal Injury in Hyperuricemia and Strategies for the Development of Natural Active Substances. Int J Rheum Dis 2025; 28:e70096. [PMID: 39895275 DOI: 10.1111/1756-185x.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Hyperuricemia (HUA) is a metabolic condition resulting from an abnormality in the process of purine metabolism. Its occurrence has been on the rise globally. The results of relevant studies show that 5% to 12% of HUA patients will eventually develop gout, and one-third of these patients may involve the kidneys and develop kidney disease. Although the severe renal health hazards associated with excessive uric acid levels are well known, the specific molecular mechanisms remain unknown. Therefore, this paper provides insights into the mechanisms and related chain reactions of HUA leading to renal injury from three perspectives: imbalance of intestinal homeostasis, oxidative stress response, and NLRP3 inflammasome. In addition, standing against the background of the strong side effects and high tolerability disadvantages of commercially available uric acid-lowering drugs such as allopurinol, benzbromarone, and febuxostat, the development of a new active anti-hyperuricemic drug with fewer side effects is justified. This article reviews the progress of research on natural actives (probiotics, dietary polyphenols, peptides) with a high safety profile, multi-targeting, and integrative modulatory effects, in an attempt to provide some ideas for drug developers.
Collapse
Affiliation(s)
- Wanping Lv
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huixiang Chen
- Hospitalization Department, Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, China
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Pan Zhou
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aihua Du
- Hospitalization Department, Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, China
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Yu Lei
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Cairang N, Wu Y, Zhi S, Tang J, Tie X, Zhan D, Lu G, Shi Y, Zhao Q. 5-(3-( N-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1 H-pyrrole-2-carboxylic acid as a Keap1-Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment. RSC Adv 2025; 15:1052-1059. [PMID: 39807188 PMCID: PMC11726444 DOI: 10.1039/d4ra06512c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
The Keap1 (Kelch-like ECH-Associating Protein 1)-Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2)-ARE (Antioxidant Response Element) signaling pathway plays a crucial role in the oxidative stress response and has been linked to the development and progression of various diseases. Its influence on cerebral ischemia/reperfusion (I/R) injury has garnered significant attention. In our study, we investigated the effect of compound 2, a non-covalent inhibitor of the Keap1-Nrf2 interaction, which was previously discovered by our research group. Specifically, we used 5-(3-(N-(carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1H-pyrrole-2-carboxylic acid (compound 2) to assess its therapeutic potential in a cerebral I/R injury model. The results demonstrated that compound 2 had a significant therapeutic effect, promoting the translocation of Nrf2 from the cytoplasm to the nucleus in diseased tissue. Additionally, it increased the production of key antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH).
Collapse
Affiliation(s)
- Nanjia Cairang
- Department of Tibetan Medicine, University of Xizang Medicine 10 Dangre Middle Road, Chengguan District Lhasa City 850000 China
| | - Yanran Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jiaqin Tang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Xin Tie
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Dui Zhan
- Department of Tibetan Medicine, University of Xizang Medicine 10 Dangre Middle Road, Chengguan District Lhasa City 850000 China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Qipeng Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| |
Collapse
|
6
|
Tang J, Tie X, Zhi S, Wang Z, Zhao Q, Qu Z, Lu G, Li Q, Wu Y, Shi Y. Discovery of novel 5-phenyl-1H-pyrrole-2-carboxylic acids as Keap1-Nrf2 inhibitors for acute lung injury treatment. Bioorg Chem 2024; 153:107741. [PMID: 39232343 DOI: 10.1016/j.bioorg.2024.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Oxidative stress is intricately linked to acute lung injury (ALI) and cerebral ischemic/reperfusion (I/R) injury. The Keap1 (Kelch-like ECH-Associating protein 1)-Nrf2 (nuclear factor erythroid 2-related factor 2)-ARE (antioxidant response element) signaling pathway, recognized as a crucial regulatory mechanism in oxidative stress, holds immense potential for the treatment of both diseases. In our laboratory, we initially screened a compound library and identified compound 3, which exhibited a dissociation constant of 5090 nM for Keap1. To enhance its binding affinity, we developed a novel 5-phenyl-1H-pyrrole-2-carboxylic acid Keap1-Nrf2 inhibitor through scaffold hopping from compound 3. Structure-activity relationship studies identified compound 19 as the most potent, with a KD2 of 42.2 nM against Keap1. Furthermore, compound 19 showed significant protection against LPS-induced injury in BEAS-2B cells and promoted Nrf2 nuclear translocation. Subsequently, we investigated its therapeutic effects in mouse models of ALI injury. Compound 19 effectively alleviated symptoms at doses of 15 mg/kg for ALI injury. Additionally, it facilitated Nrf2 translocation to the nucleus, increased Nrf2 levels, and upregulated the expression of HO-1 and NQO1 in affected tissues.
Collapse
Affiliation(s)
- Jiaqin Tang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Xin Tie
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhizhong Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qipeng Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhuo Qu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Guangyuan Lu
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Qin Li
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), No.301, Zhengyuan North Street, Jinfeng District, Yinchuan City 750001, China.
| | - Yanran Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| |
Collapse
|
7
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
8
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
9
|
Zhang X, Zhang W, Zhao L, Ma G, Huang Y, Geng Z, Jiang Q, Wen X, Lin Y, Meng Q, Zhang Z, Bi Y. Ocotillol Derivatives Mitigate Retinal Ischemia-Reperfusion Injury by Regulating the Keap1/Nrf2/ARE Signaling Pathway. J Med Chem 2024; 67:15268-15290. [PMID: 39145589 DOI: 10.1021/acs.jmedchem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Retinal ischemia-reperfusion (RIR) injury can lead to various retinal diseases. Oxidative stress is considered an important pathological event in RIR injury. Here, we designed and synthesized 34 ocotillol derivatives, then examined their antioxidant and anti-inflammatory capacities; we found that compounds 7 (C24-R) and 8 (C24-S) were most active. To enhance their water solubility, sustained release, and biocompatibility, compounds 7 and 8 were encapsulated into liposomes for in vivo activity and mechanistic studies. In vivo studies indicated that compounds 7 and 8 protected normal retinal structure and physiological function after RIR injury, reversed damage to retinal ganglion cells, and the S-configuration exhibited significantly stronger activity compared with the R-configuration. Mechanistic studies showed that compound 8 exerted a therapeutic effect on RIR injury by activating the Keap1/Nrf2/ARE signaling pathway; compound 7 did not influence this pathway. We also demonstrated that differential isomerization at the C-24 position influenced protection against RIR injury.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Wen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Gongshan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Qian Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaomei Wen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yuqi Lin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| |
Collapse
|
10
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
11
|
Gan T, Xing Q, Li N, Deng Z, Pan C, Liu X, Zheng L. Protective Effect of Vitexin Against IL-17-Induced Vascular Endothelial Inflammation Through Keap1/Nrf2-Dependent Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300331. [PMID: 38299432 DOI: 10.1002/mnfr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Vitexin, a C-glycosylated flavonoid, is abundant in food sources and has potential health-beneficial properties. However, the targets for its beneficial effects remain largely unknown. This study aims to establish an in vitro cell model of vascular low-grade inflammation and explore the antiinflammatory mechanism of vitexin. METHODS AND RESULTS Low-dose TNFα and IL-17 are combined to establish a cell model of vascular low-grade inflammation. Cell-based studies show that low-dose TNFα (1 ng mL-1) alone has a slight effect, but its combination with IL-17 can potently induce protein expression of inflammatory cytokines, leading to an inflammatory state. However, the vascular inflammation caused by low-dose TNF plus IL-17 does not lead to oxidative stress, and reactive oxygen species (ROS) does not involved in developing this inflammation. Vitexin can be absorbed by human umbilical vein endothelial (HUVEC) cells to increase the Nrf2 protein level and attenuate inflammation. In addition, the antiinflammatory effect of vitexin is blocked by the knockdown of Nrf2. Further localized surface plasmon resonance, drug affinity responsive target stability, and molecular docking demonstrate that vitexin can directly interact with Keap1 to disrupt Keap1-Nrf2 interaction and thus activate Nrf2. Treatment of mice with a bolus oral gavage of vitexin (100 mg kg-1 body weight) or a high-fat diet supplemented with vitexin (5 mg kg-1 body weight per day) for 12 weeks confirms the rapid increase in blood vitexin levels and subsequent incorporation into blood vessels to activate Nrf2 and ameliorate inflammation in vivo. CONCLUSION The findings provide a reliable cell model of vascular low-grade inflammation and indicate Nrf2 protein as the potential target of vitexin to inhibit vascular inflammation.
Collapse
Affiliation(s)
- Ting Gan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Qian Xing
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Changxuan Pan
- Inspection and Quarantine and Epidemic Prevention and Control Center of Daxing District Agriculture and Rural Bureau of Beijing, Beijing, 102600, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
12
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Kanwugu ON, Glukhareva TV. Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: Potential of astaxanthin. Arch Biochem Biophys 2023; 741:109601. [PMID: 37086962 DOI: 10.1016/j.abb.2023.109601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Astaxanthin, a red-orange liposoluble carotenoid, has been the centre of considerable attention in recent years for its numerous biological activities, notably its potent antioxidant activity. It is reported that astaxanthin elicits these biological activities via a number of cellular pathways. The Nrf2/Keap1 pathway is a major regulator of the antioxidant defence system of cells; it modulates the expression of a plethora of genes related to redox homeostasis as well as cellular detoxification. The pathway has received lots of attention as a prospective therapeutic target for diseases related to oxidative stress and aging. Several reports have shown that the pathway is inducible by many natural compounds. This present work reviews the Nrf2/Keap1 pathway, its regulation and involvement in diseases, provides a brief overview of naturally occurring compounds as activators of the pathway as well as discusses the effect of astaxanthin on the pathway.
Collapse
Affiliation(s)
- Osman N Kanwugu
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Chemical Engineering, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Street 28, 620002, Ekaterinburg, Russia.
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Street 28, 620002, Ekaterinburg, Russia
| |
Collapse
|
14
|
Qi Z, Tong Y, Luo H, Chen M, Zhou N, Chen L. Neuroprotective effect of a Keap1-Nrf2 Protein-Protein Inter-action inhibitor on cerebral Ischemia/Reperfusion injury. Bioorg Chem 2023; 132:106350. [PMID: 36681044 DOI: 10.1016/j.bioorg.2023.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Oxidative stress has been confirmed to be closely related to the occurrence and development of cerebral ischemic/reperfusion (I/R). The Keap1-Nrf2 pathway is widely recognized as a defensive system to maintain cellular redox homeostasis. Targeting Keap1-Nrf2 interaction by small molecules to release Nrf2 should be a promising strategy to treat cerebral I/R injury. The piperazinyl-naphthalenesulfonamide 6 K was reported to be a Keap1-Nrf2 protein-protein interaction inhibitor, showing promising antioxidative effect. Herein, this study is to investigate whether 6 K could prevent brain from I/R injury. The related mechanism of oxidative stress was also elucidated using in vivo mice middle cerebral artery occlusion (MCAO) model and in vitro SH-SY5Y oxygen-glucose deprivation/reperfusion (OGD/R) model. The results indicated that treatment of 6 K markedly decreased infarct volume, apoptotic neurons and oxidative damage and promoted neurologic recovery in vivo. The cell model revealed that the reactive oxygen species (ROS) was decreased, and cell viability was increased. Western blots and immunofluorescence staining demonstrated that compound treatment promoted Nrf2 release and nuclear translocation. The downstream protective enzymes were significantly enhanced at both in vivo and in vitro levels. Collectively, 6 K is a promising protective agent against cerebral I/R injury through activation of Nrf2 to suppress oxidative stress.
Collapse
Affiliation(s)
- Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Nan Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.
| |
Collapse
|
15
|
Synthesis of New Shogaol Analogues as NRF2 Activators and Evaluation of Their Anti-Inflammatory Activity, Modes of Action and Metabolic Stability. Antioxidants (Basel) 2023; 12:antiox12020475. [PMID: 36830033 PMCID: PMC9951879 DOI: 10.3390/antiox12020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
6-shogaol is a natural and the most potent bioactive vanilloid in dried Zingiber officinale rhizomes. Many scientific studies have reported the diverse biological activities of 6-shogaol. However, the major drawback of 6-shogaol is its instability at room temperature. We synthesised new shogaol thiophene compounds (STCs) by replacing the pentyl group in the sidechain with thiophene derivatives. The STCs were tested for their nuclear factor erythroid 2-related factor 2 (NRF2) activation ability in murine hepatoma cells (Hepa1c1c-7) by determining their NAD(P)H quinone oxidoreductase 1 (NQO1) inducing ability and expression of NRF2-associated antioxidant genes. The anti-inflammatory activity of STCs was determined in Escherichia coli lipopolysaccharide (LPSEc)-stimulated NR2-proficient and -silenced mouse microglial cells (BV-2) by measuring the inflammatory markers, cytokines, and mediators. The modes of action (interacting with the Kelch domain of KEAP1, covalent bonding with cysteines of KEAP1, and inhibition of GSK-3β enzyme activity) of NRF2 activation by STCs were determined using commercially available kits. The in vitro metabolic stability of the STCs in liver microsomes (humans, rats, and mice) was also investigated. The molecular docking and molecular dynamics studies were conducted to identify the binding poses, stability, and molecular interactions of the STCs in the binding pockets of Kelch and BTB domains of KEAP1 and GSK-3β enzyme. The new STCs were synthesised in good yields of > 85%, with a purity of about 95%, using a novel synthesis method by employing a reusable proline-proline dipeptide catalyst. The STCs are more potent than 6-shogaol in activating NRF2 and reducing inflammation. The nature of substituents on thiophene has a profound influence on the bioactivity of the STCs. Phenylthiophene STC (STC5) is the most potent, while thiophenes containing electron-withdrawing groups showed weaker bioactivity. The bioactivity of 6-shogaol is in the micromolar range, whereas STC5 showed bioactivity in the sub micromolar range. The STCs showed anti-inflammatory effects via NRF2-dependent and NRF2-independent mechanisms. The STCs improved NRF2 activity through multiple (KEAP1-independent and -dependent) mechanisms. The STCs showed decreased reactivity with thiols than 6-shogaol and thus may possess fewer side-effects than 6-shogaol. The STCs were more metabolically stable than 6-shogaol.
Collapse
|
16
|
Zhao Z, Dong R, Cui K, You Q, Jiang Z. An updated patent review of Nrf2 activators (2020-present). Expert Opin Ther Pat 2023; 33:29-49. [PMID: 36800917 DOI: 10.1080/13543776.2023.2178299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor that controls the expression of numerous cytoprotective genes and regulates cellular defense system against oxidative insults. Thus, activating the Nrf2 pathway is a promising strategy for the treatment of various chronic diseases characterized by oxidative stress. AREAS COVERED This review first discusses the biological effects of Nrf2 and the regulatory mechanism of Kelch-like ECH-associated protein 1-Nrf2-antioxidant response element (Keap1-Nrf2-ARE) pathway. Then, Nrf2 activators (2020-present) are summarized based on the mechanism of action. The case studies consist of chemical structures, biological activities, structural optimization, and clinical development. EXPERT OPINION Extensive efforts have been devoted to developing novel Nrf2 activators with improved potency and drug-like properties. These Nrf2 activators have exhibited beneficial effects in in vitro and in vivo models of oxidative stress-related chronic diseases. However, some specific problems, such as target selectivity and brain blood barrier (BBB) permeability, still need to be addressed in the future.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keni Cui
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Frantz MC, Rozot R, Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. Biofactors 2023; 49:32-61. [PMID: 36258295 DOI: 10.1002/biof.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The skin is the organ that is most susceptible to the impact of the exposome. Located at the interface with the external environment, it protects internal organs through the barrier function of the epidermis. It must adapt to the consequences of the harmful effects of solar radiation, the various chemical constituents of atmospheric pollution, and wounds associated with mechanical damage: oxidation, cytotoxicity, inflammation, and so forth. In this biological context, a capacity to adapt to the various stresses caused by the exposome is essential; otherwise, more or less serious conditions may develop accelerated aging, pigmentation disorders, atopy, psoriasis, and skin cancers. Nrf2-controlled pathways play a key role at this level. Nrf2 is a transcription factor that controls genes involved in oxidative stress protection and detoxification of chemicals. Its involvement in UV protection, reduction of inflammation in processes associated with healing, epidermal differentiation for barrier function, and hair regrowth, has been demonstrated. The modulation of Nrf2 in the skin may therefore constitute a skin protection or care strategy for certain dermatological stresses and disorders initiated or aggravated by the exposome. Nrf2 inducers can act through different modes of action. Keap1-dependent mechanisms include modification of the cysteine residues of Keap1 by (pro)electrophiles or prooxidants, and disruption of the Keap1-Nrf2 complex. Indirect mechanisms are suggested for numerous phytochemicals, acting on upstream pathways, or via hormesis. While developing novel and safe Nrf2 modulators for skin care may be challenging, new avenues can arise from natural compounds-based molecular modeling and emerging concepts such as epigenetic regulation.
Collapse
Affiliation(s)
| | - Roger Rozot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| | - Laurent Marrot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
18
|
Jayasuriya R, Ramkumar KM. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway. Eur J Pharmacol 2022; 936:175359. [DOI: 10.1016/j.ejphar.2022.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
19
|
Design and characterization of a heterobifunctional degrader of KEAP1. Redox Biol 2022; 59:102552. [PMID: 36473314 PMCID: PMC9720105 DOI: 10.1016/j.redox.2022.102552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1) - nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway senses reactive oxygen species and regulates cellular oxidative stress. Inhibiting KEAP1 to activate the NRF2 antioxidant response has been proposed as a promising strategy to treat chronic diseases caused by oxidative stress. Here, we developed a proteolysis targeting chimera (PROTAC) that depletes KEAP1 from cells through the ubiquitin-proteasome pathway. A previously developed KEAP1 inhibitor and thalidomide were incorporated in the heterobifunctional design of the PROTAC as ligands for KEAP1 and CRBN recruitment, respectively. Optimization of the chemical composition and linker length resulted in PROTAC 14 which exhibited potent KEAP1 degradation with low nanomolar DC50 in HEK293T (11 nM) and BEAS-2B (<1 nM) cell lines. Furthermore, PROTAC 14 increased the expression of NRF2 regulated antioxidant proteins and prevented cell death induced by reactive oxygen species. Together, these results established a blueprint for further development of KEAP1-targeted heterobifunctional degraders and will facilitate the study of the biological consequences of KEAP1 removal from cells. This approach represents an alternative therapeutic strategy to existing treatments for diseases caused by oxidative stress.
Collapse
|
20
|
Narayanan D, Tran KT, Pallesen JS, Solbak SMØ, Qin Y, Mukminova E, Luchini M, Vasilyeva KO, González Chichón D, Goutsiou G, Poulsen C, Haapanen N, Popowicz GM, Sattler M, Olagnier D, Gajhede M, Bach A. Development of Noncovalent Small-Molecule Keap1-Nrf2 Inhibitors by Fragment-Based Drug Discovery. J Med Chem 2022; 65:14481-14526. [PMID: 36263945 DOI: 10.1021/acs.jmedchem.2c00830] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the protein-protein interaction (PPI) between the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its repressor, Kelch-like ECH-associated protein 1 (Keap1), constitutes a promising strategy for treating diseases involving oxidative stress and inflammation. Here, a fragment-based drug discovery (FBDD) campaign resulted in novel, high-affinity (Ki = 280 nM), and cell-active noncovalent small-molecule Keap1-Nrf2 PPI inhibitors. We screened 2500 fragments using orthogonal assays─fluorescence polarization (FP), thermal shift assay (TSA), and surface plasmon resonance (SPR)─and validated the hits by saturation transfer difference (STD) NMR, leading to 28 high-priority hits. Thirteen co-structures showed fragments binding mainly in the P4 and P5 subpockets of Keap1's Kelch domain, and three fluorenone-based fragments featuring a novel binding mode were optimized by structure-based drug discovery. We thereby disclose several fragment hits, including their binding modes, and show how FBDD can be performed to find new small-molecule Keap1-Nrf2 PPI inhibitors.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jakob S Pallesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elina Mukminova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Martina Luchini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kristina O Vasilyeva
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Dorleta González Chichón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Georgia Goutsiou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Cecilie Poulsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Nanna Haapanen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Dong J, Zhang L, Ruan B, Lv Z, Wang H, Wang Y, Jiang Q, Cao W. NRF2 is a critical regulator and therapeutic target of metal implant particle-incurred bone damage. Biomaterials 2022; 288:121742. [PMID: 36030105 DOI: 10.1016/j.biomaterials.2022.121742] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Aseptic metal implant loosening due to wear particle-induced bone damage is a major complication of total joint arthroplasty often leading to revision surgery, of which the key regulators mediating the processes are not clearly defined. Here we reported that in a mouse model of calvarial osteolysis, titanium particles (TiPs) and cobalt-chromium-molybdenum particles induced severe osteolysis accompanied by marked suppression of a master redox transcriptional factor NRF2 (Nuclear factor erythroid derived 2-related factor 2). Nfe2l2 knockout mice treated with TiPs developed worse osteolytic alterations compared with wild-type mice. On the contrary, NRF2 restoration by an NRF2 agonist TBHQ (tert-butylhydroquinone) effectively alleviated the osteolysis and the abnormal expression of NRF2 downstream antioxidant enzymes, inflammatory cytokines and osteogenic factors. Further, TiPs induced adverse osteoblastogenesis and osteoclastogenesis in cultured bone cells, which were substantially blocked by TBHQ in an NRF2 inhibition-sensitive manner. Consistently, the osteoprotective effects of TBHQ observed in wild-type mice were largely limited in Nfe2l2 knockout mice. Collectively, our data suggest that NRF2 suppression is a critical causal event of metal wear particle-incurred osteolysis, and the strategies reinstating NRF2 are effective to lessen the bone damage and potentially reduce the incidence of metal implant loosening.
Collapse
Affiliation(s)
- Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China
| | - Lijun Zhang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China
| | - Hongwei Wang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China.
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China; Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
22
|
Lee DH, Seo SH, Gotina L, Pae AN, Lim SM. Structural hybridization for inhibitors of the interaction between
NRF2
and Keap1. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Heun Lee
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST School Korea University of Science and Technology Seoul Republic of Korea
| | - Seon Hee Seo
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
| | - Lizaveta Gotina
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST School Korea University of Science and Technology Seoul Republic of Korea
| | - Ae Nim Pae
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST School Korea University of Science and Technology Seoul Republic of Korea
| | - Sang Min Lim
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST School Korea University of Science and Technology Seoul Republic of Korea
| |
Collapse
|
23
|
Liu G, Hou R, Xu L, Zhang X, Yan J, Xing C, Xu K, Zhuang C. Crystallography-Guided Optimizations of the Keap1-Nrf2 Inhibitors on the Solvent Exposed Region: From Symmetric to Asymmetric Naphthalenesulfonamides. J Med Chem 2022; 65:8289-8302. [PMID: 35687391 DOI: 10.1021/acs.jmedchem.2c00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly inhibiting the Keap1-Nrf2 protein-protein interaction has been investigated as a promising strategy to activate Nrf2 for anti-inflammation. We previously reported a naphthalensulfonamide Keap1-Nrf2 inhibitor NXPZ-2, but have not determined the exact binding mode with Keap1. This symmetric naphthalenesulfonamide compound has relatively low solubility. Herein, we first determined a crystal complex (resolution: 2.3 Å) of human Keap1 Kelch domain with NXPZ-2. Further optimizations on the solvent exposed region obtained asymmetric naphthalenesulfonamides and three crystal structures of Keap1 in complex with designed compounds. Among them, the asymmetric piperazinyl-naphthalenesulfonamide 6k with better aqueous solubility showed the best KD2 value of 0.21 μM to block the interaction. The productions of ROS and NO and the expression of TNF-α were inhibited by 6k in the in vitro model. This compound could relieve inflammations by significantly increasing the Nrf2 nuclear translocation in the LPS-induced ALI model with promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Guodong Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruilin Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xinqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Dai Z, An LY, Chen XY, Yang F, Zhao N, Li CC, Ren R, Li BY, Tao WY, Li P, Jiang C, Yan F, Jiang ZY, You QD, Di B, Xu LL. Target Fishing Reveals a Novel Mechanism of 1,2,4-Oxadiazole Derivatives Targeting Rpn6, a Subunit of 26S Proteasome. J Med Chem 2022; 65:5029-5043. [PMID: 35253427 DOI: 10.1021/acs.jmedchem.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,2,4-Oxadiazole derivatives, a class of Nrf2-ARE activators, exert an extensive therapeutic effect on inflammation, cancer, neurodegeneration, and microbial infection. Among these analogues, DDO-7263 is the most potent Nrf2 activator and used as the core structure for bioactive probes to explore the precise mechanism. In this work, we obtained compound 7, a mimic of DDO-7263, and biotin-labeled and fluorescein-based probes, which exhibited homologous biological activities to DDO-7263, including activating Nrf2 and its downstream target genes, anti-oxidative stress, and anti-inflammatory effects. Affinity chromatography and mass analysis techniques revealed Rpn6 as the potential target protein regulating the Nrf2 signaling pathway. In vitro affinity experiments further confirmed that DDO-7263 upregulated Nrf2 through binding to Rpn6 to block the assembly of 26S proteasome and the subsequent degradation of ubiquitinated Nrf2. These results indicated that Rpn6 is a promising candidate target to activate the Nrf2 pathway for protecting cells and tissues from oxidative, electrophilic, and exogenous microbial stimulation.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Yan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022; 13:814889. [PMID: 35370777 PMCID: PMC8969602 DOI: 10.3389/fphys.2022.814889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients.
Collapse
Affiliation(s)
- David S. Bouvier
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- *Correspondence: David S. Bouvier,
| | - Sonja Fixemer
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Systems Biology Group, Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Félicia Jeannelle
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Katrin B. M. Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Institute of Neuropathology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology, and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Michel Mittelbronn,
| |
Collapse
|
26
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
27
|
Hou Y, Li J, Wu JC, Wu QX, Fang J. Activation of Cellular Antioxidant Defense System by Naturally Occurring Dibenzopyrone Derivatives Confers Neuroprotection against Oxidative Insults. ACS Chem Neurosci 2021; 12:2798-2809. [PMID: 34297534 DOI: 10.1021/acschemneuro.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seven dibenzopyrone phenolic derivatives, i.e., alternariol (1), alternariol 5-O-methyl ether (2), altenusin B (3), dehydroaltenusin (4), altenuene (5), altenusin (6), and alterlactone (7), were isolated from endophytic fungi Alternaria alternata extract, and these compounds' structures were elucidated based on various spectroscopic data. Compound 3, a diphenic acid derivative, was determined as a new compound. In this study, compounds 3, 4, 6, and 7 displayed remarkable neuroprotective effects against oxidative injuries by acting as potent activators of nuclear factor-erythroid derived 2-like 2 (Nrf2) in PC12 cells. A mechanistic study indicated that these compounds induced the nuclear accumulation of Nrf2, promoted the expression of Nrf2-governed cytoprotective genes, and increased the cellular antioxidant capacity. More importantly, genetic silence of Nrf2 expression deprived the observed cytoprotection, highlighting the important role of Nrf2 in the protection of these compounds.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun-Chen Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Hou Y, Peng S, Song Z, Bai F, Li X, Fang J. Oat polyphenol avenanthramide-2c confers protection from oxidative stress by regulating the Nrf2-ARE signaling pathway in PC12 cells. Arch Biochem Biophys 2021; 706:108857. [PMID: 33781769 DOI: 10.1016/j.abb.2021.108857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has demonstrated that cellular antioxidant systems play essential roles in retarding oxidative stress-related diseases, such as Parkinson's disease. Because nuclear factor erythroid 2-related factor 2 (Nrf2) is a chief regulator of cellular antioxidant systems, small molecules with Nrf2-activating ability may be promising neuroprotective agents. Avenanthramide-2c (Aven-2c), avenanthramide-2f (Aven-2f) and avenanthramide-2p (Aven-2p) are the most abundant avenanthramides in oats, and they have been documented to possess multiple pharmacological benefits. In this work, we synthesized these three compounds and evaluated their cytoprotective effect against oxidative stress-induced PC12 cell injuries. Aven-2c displayed the best protective potency among them. Aven-2c conferred protection on PC12 cells by scavenging free radicals and activating the Nrf2-ARE signaling pathway. Pretreatment of PC12 cells with Aven-2c efficiently enhanced Nrf2 nuclear accumulation and evoked the expression of a set of cytoprotective molecules. The mechanistic study also supports that Nrf2 activation is the molecular basis for the cellular action of Aven-2c. Collectively, this study demonstrates that Aven-2c is a potent Nrf2 agonist, shedding light on the potential usage of Aven-2c in the treatment of neuroprotective diseases.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zilong Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nat Commun 2021; 12:2621. [PMID: 33976147 PMCID: PMC8113459 DOI: 10.1038/s41467-021-22924-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
Cullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2-3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.
Collapse
|
30
|
Ayoup MS, Abu-Serie MM, Abdel-Hamid H, Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur J Med Chem 2021; 220:113475. [PMID: 33901898 DOI: 10.1016/j.ejmech.2021.113475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
Harnessing the antioxidant cellular machinery has sparked considerable interest as an efficient anticancer strategy. Activating Nrf2, the master switch of the cellular redox system, suppresses ROS, alleviates oxidative stress, and halts cancer progression. 1,2,4-oxadiazoles are iconic direct Nrf2 activators that disrupt Nrf2 interaction with its endogenous repressor Keap1. This study introduces rationally designed 1,2,4-oxadiazole derivatives that inhibit other Nrf2 suppressors (TrxR1, IKKα, and NF-kB) thus enhancing Nrf2 activation for preventing oxidative stress and carcinogenesis. Preliminary screening showed that the phenolic oxadiazoles 11, 15, and 19 were comparable to ascorbic acid (ROS scavenging) and EDTA (iron chelation), and superior to doxorubicin against HepG-2, MDA-MB231, and Caco-2 cells. They suppressed ROS by 3 folds and activated Nrf2 by 2 folds in HepG-2 cells. Mechanistically, they inhibited TrxR1 (IC50; 13.19, 17.89, and 9.21 nM) and IKKα (IC50; 11.0, 15.94, and 19.58 nM), and downregulated NF-κB (7.6, 1.4 and 1.9 folds in HepG-2), respectively. They inhibited NADPH oxidase (IC50; 16.4, 21.94, and 10.71 nM, respectively) that potentiates their antioxidant activities. Docking studies predicted their important structural features. Finally, they recorded drug-like in silico physicochemical properties, ADMET, and ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, SRTA-City, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
31
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
32
|
Portelli SS, Hambly BD, Jeremy RW, Robertson EN. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities. Redox Rep 2021; 26:45-52. [PMID: 33715602 PMCID: PMC7971305 DOI: 10.1080/13510002.2021.1899473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The primary objective of this review was to explore the contribution of oxidative stress to the pathogenesis of genetically-triggered thoracic aortic aneurysm (TAA). Genetically-triggered TAAs manifest substantial variability in onset, progression, and risk of aortic dissection, posing a significant clinical management challenge. There is a need for non-invasive biomarkers that predict the natural course of TAA and therapeutics that prevent aneurysm progression. Methods: An online systematic search was conducted within PubMed, MEDLINE, Scopus and ScienceDirect databases using keywords including: oxidative stress, ROS, nitrosative stress, genetically triggered thoracic aortic aneurysm, aortic dilatation, aortic dissection, Marfan syndrome, Bicuspid Aortic Valve, familial TAAD, Loeys Dietz syndrome, and Ehlers Danlos syndrome. Results: There is extensive evidence of oxidative stress and ROS imbalance in genetically triggered TAA. Sources of ROS imbalance are variable but include dysregulation of redox mediators leading to either insufficient ROS removal or increased ROS production. Therapeutic exploitation of redox mediators is being explored in other cardiovascular conditions, with potential application to TAA warranting further investigation. Conclusion: Oxidative stress occurs in genetically triggered TAA, but the precise contribution of ROS to pathogenesis remains incompletely understood. Further research is required to define causative pathological relationships in order to develop therapeutic options.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Brett D Hambly
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Richmond W Jeremy
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
33
|
Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J Inflamm Res 2020; 13:1057-1073. [PMID: 33293849 PMCID: PMC7719303 DOI: 10.2147/jir.s275595] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism’s lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
Collapse
Affiliation(s)
- Javier Checa
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
34
|
Chartoumpekis DV, Fu CY, Ziros PG, Sykiotis GP. Patent Review (2017-2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants (Basel) 2020; 9:antiox9111138. [PMID: 33212784 PMCID: PMC7697445 DOI: 10.3390/antiox9111138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Research on the antioxidant pathway comprising the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) is ever increasing. As modulators of this pathway have started to be used in clinical trials and clinical practice, Nrf2 has become the subject of several patents. To assess the patent landscape of the last three years on Nrf2 and evaluate the main fields they refer to, we used the web-based tool PatSeer Pro to identify patents mentioning the Nrf2 pathway between January 2017 and May 2020. This search resulted in 509 unique patents that focus on topics such as autoimmune, neurodegenerative, liver, kidney, and lung diseases and refer to modulators (mainly activators) of the Nrf2 pathway as potential treatments. Autoimmunity emerged as the main theme among the topics of Nrf2 patents, including a broad range of diseases, such as systemic sclerosis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, Hashimoto's thyroiditis, etc.; however, there was a dearth of experimental support for the respective patents' claims. Given that chronic inflammation is the main element of the pathophysiology of most autoimmune diseases, the majority of patents referring to activation of Nrf2 as a method to treat autoimmune diseases base their claims on the well-established anti-inflammatory role of Nrf2. In conclusion, there is strong interest in securing intellectual property rights relating to the potential use of Nrf2 pathway activators in a variety of diseases, and this trend parallels the rise in related research publications. However, in the case of autoimmunity, more research is warranted to support the potential beneficial effects of Nrf2 modulation in each disease.
Collapse
Affiliation(s)
- Dionysios V. Chartoumpekis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Division of Endocrinology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Chun-Yan Fu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Panos G. Ziros
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
| | - Gerasimos P. Sykiotis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Correspondence: ; Tel.: +41-21-314-0606
| |
Collapse
|
35
|
Zhou HS, Hu LB, Zhang H, Shan WX, Wang Y, Li X, Liu T, Zhao J, You QD, Jiang ZY. Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors. J Med Chem 2020; 63:11149-11168. [DOI: 10.1021/acs.jmedchem.0c01116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hai-Shan Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lv-Bin Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Xin Shan
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Zhao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
36
|
Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur J Med Chem 2020; 207:112734. [PMID: 32866756 DOI: 10.1016/j.ejmech.2020.112734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor which regulates the constitutive and inducible transcription of a wide array of genes and confers protection against a variety of pathologies. Directly disrupting Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 protein-protein interaction (PPI) has been explored as a promising strategy to activate NRF2. We reported here the first identification of a series of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 inhibitors. Our efforts led to the potent small molecule KEAP1-NRF2 inhibitor, 20c, which exhibited a Kd of 24 nM to KEAP1 and an IC50 of 75 nM in disrupting KEAP1-NRF2 interaction. Subsequent biological studies provided consistent evidence across mouse macrophage cell-based and in vivo models that 20c induced NRF2 target gene expression and enhanced downstream antioxidant and anti-inflammatory activities. Our study not only demonstrated that small molecule KEAP1-NRF2 PPI inhibitors can be potential preventive and therapeutic agents for diseases and conditions involving oxidative stress and inflammation but also enriched the chemical diversity of the KEAP1-NRF2 inhibitors.
Collapse
|
37
|
Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020; 202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic targeting the protein-protein interaction (PPI) of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its main regulator, Kelch-like ECH-Associating protein 1 (Keap1) has been emerged as a feasible way to combat oxidative stress related diseases, due to the key role of Nrf2 in oxidative stress regulation. In recent years, many efforts have been made to develop potent Keap1-Nrf2 inhibitors with new chemical structures. Various molecules with diverse chemical structures have been reported and some compounds exhibit high potency. This review summarizes peptide and small molecule Keap1-Nrf2 inhibitors reported recently. We also highlight the pharmacological effects and discuss the possible therapeutic application of Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yu-Xiu Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin-Xing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin Zhang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Lu M, Zhang X, Zhao J, You Q, Jiang Z. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 2020; 34:101565. [PMID: 32422540 PMCID: PMC7231841 DOI: 10.1016/j.redox.2020.101565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), control the redox and metabolic homeostasis and oxidative stress. Inhibitors of Keap1-Nrf2 interaction are promising in oxidative stress related inflammatory diseases but now hit hurdles. By utilizing thiazolidinone moiety to shield the key carboxyl pharmacophore in Keap1-Nrf2 inhibitor, a hydrogen peroxide (H2O2)-responsive prodrug pro2 was developed. The prodrug modification improved the physicochemical properties and cell membrane permeability of the parent drug. Pro2 was stable and stayed inactive under various physiological conditions, while became active by stimulation of H2O2 or inflammation derived reactive oxygen species. Moreover, pro2 exhibited proper pharmacokinetic profile suitable for oral administration and enhanced anti-inflammatory efficiency in vivo. Thus, this novel prodrug approach may not only provide an important advance in the therapy of chronic inflammatory diseases with high level of H2O2, but also offer a fresh solution to improve the drug-like and selectivity issues of Keap1-Nrf2 inhibitors. Pro2 was developed by utilizing H2O2-responsive thiazolidinone moiety to shield carboxyl group in Keap1-Nrf2 inhibitor. Pro2 was stable and inactive under various physiological conditions, while became active under inflammatory conditions. Pro2 exhibited proper pharmacokinetic profile for oral administration and enhanced anti-inflammatory efficiency in vivo.
Collapse
Affiliation(s)
- Mengchen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein–Protein Interaction. J Med Chem 2020; 63:7986-8002. [DOI: 10.1021/acs.jmedchem.9b01865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Zeyu Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| |
Collapse
|