1
|
Chen Y, Du Y. The Application of Deuteration Strategy in Drug Design. ChemMedChem 2025; 20:e202400836. [PMID: 39715028 DOI: 10.1002/cmdc.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Deuterated drugs, which are derived from the subtle exchange of a protium atom with a deuterium atom in drug molecules, exhibit significant differences in pharmaceutical characteristics compared to their parent drugs. With the advantages of improving pharmacokinetic properties, reducing toxicity, inhibiting the interconversion between chiral drugs and restricting drug interactions, deuterated drugs have attracted widespread attention from medicinal chemists. This review highlights the application of deuteration strategies in drug design, summarizing the progress of all deuterated drugs available in the market or still under investigation to provide a reference for all researchers engaged deuterated drug development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| | - Yunfei Du
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| |
Collapse
|
2
|
Ghosh AK, Lee D, Sharma A, Johnson ME, Ghosh AK, Wang YF, Agniswamy J, Amano M, Hattori SI, Weber IT, Mitsuya H. Design of substituted tetrahydrofuran derivatives for HIV-1 protease inhibitors: synthesis, biological evaluation, and X-ray structural studies. Org Biomol Chem 2024; 22:7354-7372. [PMID: 38973505 PMCID: PMC11957373 DOI: 10.1039/d4ob00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Substituted tetrahydrofuran derivatives were designed and synthesized to serve as the P2 ligand for a series of potent HIV-1 protease inhibitors. Both enantiomers of the tetrahydrofuran derivatives were synthesized stereoselectivity in optically active forms using lipase-PS catalyzed enzymatic resolution as the key step. These tetrahydrofuran derivatives are designed to promote hydrogen bonding and van der Waals interactions with the backbone atoms in the S2 subsite of the HIV-1 protease active site. Several inhibitors displayed very potent HIV-1 protease inhibitory activity. A high-resolution X-ray crystal structure of an inhibitor-bound HIV-1 protease provided important insight into the ligand binding site interactions in the active site.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Daniel Lee
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Ashish Sharma
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Megan E Johnson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Ajay K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
| | - Shin-Ichiro Hattori
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hiroaki Mitsuya
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Meng S, Gao Y, Qiang G, Hu Z, Shan Q, Wang J, Wang Y, Mou J. Rational design, synthesis and biological evaluation of novel HIV-1 protease inhibitors containing 2-phenylacetamide derivatives as P2 ligands with potent activity against DRV-Resistant HIV-1 variants. Bioorg Med Chem Lett 2024; 101:129651. [PMID: 38342391 DOI: 10.1016/j.bmcl.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.
Collapse
Affiliation(s)
- Sihan Meng
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guowei Qiang
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China
| | - Zhiwei Hu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou 221006, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
4
|
Outteridge M, Nunn CM, Devine K, Patel B, McLean GR. Antivirals for Broader Coverage against Human Coronaviruses. Viruses 2024; 16:156. [PMID: 38275966 PMCID: PMC10820748 DOI: 10.3390/v16010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Coronaviruses (CoVs) are enveloped positive-sense single-stranded RNA viruses with a genome that is 27-31 kbases in length. Critical genes include the spike (S), envelope (E), membrane (M), nucleocapsid (N) and nine accessory open reading frames encoding for non-structural proteins (NSPs) that have multiple roles in the replication cycle and immune evasion (1). There are seven known human CoVs that most likely appeared after zoonotic transfer, the most recent being SARS-CoV-2, responsible for the COVID-19 pandemic. Antivirals that have been approved by the FDA for use against COVID-19 such as Paxlovid can target and successfully inhibit the main protease (MPro) activity of multiple human CoVs; however, alternative proteomes encoded by CoV genomes have a closer genetic similarity to each other, suggesting that antivirals could be developed now that target future CoVs. New zoonotic introductions of CoVs to humans are inevitable and unpredictable. Therefore, new antivirals are required to control not only the next human CoV outbreak but also the four common human CoVs (229E, OC43, NL63, HKU1) that circulate frequently and to contain sporadic outbreaks of the severe human CoVs (SARS-CoV, MERS and SARS-CoV-2). The current study found that emerging antiviral drugs, such as Paxlovid, could target other CoVs, but only SARS-CoV-2 is known to be targeted in vivo. Other drugs which have the potential to target other human CoVs are still within clinical trials and are not yet available for public use. Monoclonal antibody (mAb) treatment and vaccines for SARS-CoV-2 can reduce mortality and hospitalisation rates; however, they target the Spike protein whose sequence mutates frequently and drifts. Spike is also not applicable for targeting other HCoVs as these are not well-conserved sequences among human CoVs. Thus, there is a need for readily available treatments globally that target all seven human CoVs and improve the preparedness for inevitable future outbreaks. Here, we discuss antiviral research, contributing to the control of common and severe CoV replication and transmission, including the current SARS-CoV-2 outbreak. The aim was to identify common features of CoVs for antivirals, biologics and vaccines that could reduce the scientific, political, economic and public health strain caused by CoV outbreaks now and in the future.
Collapse
Affiliation(s)
- Mia Outteridge
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Christine M. Nunn
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Kevin Devine
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Gary R. McLean
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| |
Collapse
|
5
|
A M Subbaiah M, Subramani L, Ramar T, Desai S, Sinha S, Mandlekar S, Kadow JF, Jenkins S, Krystal M, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Meanwell NA. Improving Drug Delivery While Tailoring Prodrug Activation to Modulate Cmax and Cmin by Optimization of (Carbonyl)oxyalkyl Linker-Based Prodrugs of Atazanavir. J Med Chem 2022; 65:11150-11176. [PMID: 35952307 DOI: 10.1021/acs.jmedchem.2c00632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-property relationships associated with a series of (carbonyl)oxyalkyl amino acid ester prodrugs of the marketed HIV-1 protease inhibitor atazanavir (1), designed to enhance the systemic drug delivery, were examined. Compared to previously reported prodrugs, optimized candidates delivered significantly enhanced plasma exposure and trough concentration (Cmin at 24 h) of 1 in rats while revealing differentiated PK paradigms based on the kinetics of prodrug activation and drug release. Prodrugs incorporating primary amine-containing amino acid promoieties offered the benefit of rapid bioactivation that translated into low circulating levels of the prodrug while delivering a high Cmax value of 1. Interestingly, the kinetic profile of prodrug cleavage could be tailored for slower activation by structural modification of the amino terminus to either a tertiary amine or a dipeptide motif, which conferred a circulating depot of the prodrug that orchestrated a sustained release of 1 along with substantially reduced Cmax and a further enhanced Cmin.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Lakshumanan Subramani
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Thangeswaran Ramar
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Salil Desai
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Sarmistha Sinha
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Sandhya Mandlekar
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - John F Kadow
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murali Subramanian
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Srikanth Sridhar
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Shweta Padmanabhan
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Priyadeep Bhutani
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Rambabu Arla
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
6
|
Kojima E, Iimuro A, Nakajima M, Kinuta H, Asada N, Sako Y, Nakata Z, Uemura K, Arita S, Miki S, Wakasa-Morimoto C, Tachibana Y. Pocket-to-Lead: Structure-Based De Novo Design of Novel Non-peptidic HIV-1 Protease Inhibitors Using the Ligand Binding Pocket as a Template. J Med Chem 2022; 65:6157-6170. [PMID: 35416651 DOI: 10.1021/acs.jmedchem.1c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel strategy for lead identification that we have dubbed the "Pocket-to-Lead" strategy is demonstrated using HIV-1 protease as a model target. Sometimes, it is difficult to obtain hit compounds because of the difficulties in satisfying the complex pharmacophoric features. In this study, a virtual fragment hit which does not match all of the pharmacophore features but has key interactions and vectors that could grow into remaining pharmacophore features was optimized in silico. The designed compound 9 demonstrated weak but evident inhibitory activity (IC50 = 54 μM), and the design concept was proven by the co-crystal structure. Then, structure-based drug design promptly gave compound 14 (IC50 = 0.0071 μM, EC50 = 0.86 μM), an almost 10,000-fold improvement in activity from 9. The structure of the designed molecules proved to be novel with high synthetic feasibility, indicating the usefulness of this strategy to tackle tough targets with complex pharmacophore.
Collapse
Affiliation(s)
- Eiichi Kojima
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Atsuhiro Iimuro
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Mado Nakajima
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirotaka Kinuta
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Naoya Asada
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Sako
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Zenzaburo Nakata
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kentaro Uemura
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shuhei Arita
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shinobu Miki
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Chiaki Wakasa-Morimoto
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yuki Tachibana
- Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
7
|
Miao J, Yuan H, Rao J, Zou J, Yang K, Peng G, Cao S, Chen H, Song Y. Identification of a small compound that specifically inhibits Zika virus in vitro and in vivo by targeting the NS2B-NS3 protease. Antiviral Res 2022; 199:105255. [PMID: 35143853 DOI: 10.1016/j.antiviral.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
Zika virus (ZIKV) has rapid become a global threat, but no ZIKV-specific vaccines or drugs are currently available. In this study, inhibitors of ZIKV NS2B-NS3 protease were screened from a library containing 4,452 compound fragments. One of the compounds, 6-bromo-1,2-naphthalenedione, exhibited high specific inhibition against ZIKV NS2B-NS3 protease, but had no inhibitory effects against other viral proteases. A microscale thermophoresis (MST) assay confirmed that the compound bound to ZIKV NS2B-NS3 protein with a binding constant (Kd) of 12.26 μM. Indirect immunofluorescence assays, Western blots, and plaque assays indicated that the compound inhibited virus replication in cells. Virus titer was reduced by more than 75% when the compound was present at 1 μM. A time-of-addition assay showed that inhibition occurred at the virus replication stage, but not at the adsorption or invasion stages. The half cytotoxicity concentration (CC50) of the compound on HeLa, Vero, and BHK-21 cells were 445.44 μM, 123.87 μM, and 123.64 μM, respectively. In vivo tests using infected AG129 mice demonstrated that treatment with the compound reduced mortality by up to 60%. Mice treated with the compound showed a reduction in histopathological lesions in brain, testis, and ovary. Viral RNA, IL-1β, and IL-6 mRNA levels decreased significantly in these tissues. In summary, this study has identified a small compound with high and specific inhibitory effects on ZIKV. The compound can be used as a therapeutic agent and is also an ideal starting point for drug optimization.
Collapse
Affiliation(s)
- Juan Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwei Rao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kelu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Swain SS, Paidesetty SK, Padhy RN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev Res 2020; 82:149-166. [PMID: 33025605 DOI: 10.1002/ddr.21746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
The emergence and reemergence of multidrug-resistant (MDR) bacteria and mycobacteria in community and hospital periphery have directly enhanced the hospitalization costs, morbidity and mortality, globally. The appearance of MDR pathogens, the currently used antibiotics, remains insufficient, and the development of potent antibacterial(s) is merely slow. Thus, the development of active antibacterials is the call of the day. The sulfonamides class of antibacterials was the most successful synthesized drug in the 19th century. Mechanically, sulfonamides were targeting bacterial folic acid biosynthesis and today, those are obsolete or clinically inactive. Nevertheless, the magic sulfonamide pharmacophore has been used continuously in several mainstream antibacterial, antidiabetic, antiviral drugs. Concomitantly, thousands of phytochemicals with antimicrobial potencies have been recorded and were commanded as alternate antibacterials toward control of MDR pathogens. However, none/very few isolated phytochemicals have gone up to the pure-drug stage due to the lack of the desired drug-likeness values and the required pharmacokinetic properties. Thus, chemical modification of parent drug remains as the versatile approach in antibacterial drug development. Improvement of clinically inactive sulfa drugs with suitable phytochemicals to develop active, low-toxic drug molecules followed by medicinal chemistry could be prudent. This review highlights such "sulfonamide-phytochemical" hybrid drug development research works for utilizing inactive sulfonamides and phytochemicals; the ingenious cost-effective and resource-saving hybrid drug concept could be a new trend in current antibacterial drug discovery to reactive the obsolete antibacterials.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Subbaiah MAM, Ramar T, Subramani L, Desai SD, Sinha S, Mandlekar S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Kadow JF, Meanwell NA. (Carbonyl)oxyalkyl linker-based amino acid prodrugs of the HIV-1 protease inhibitor atazanavir that enhance oral bioavailability and plasma trough concentration. Eur J Med Chem 2020; 207:112749. [PMID: 33065417 DOI: 10.1016/j.ejmech.2020.112749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023]
Abstract
We describe the design, synthesis and pharmacokinetic (PK) evaluation of a series of amino acid-based prodrugs of the HIV-1 protease inhibitor atazanavir (1) derivatized on the pharmacophoric secondary alcohol using a (carbonyl)oxyalkyl linker. Prodrugs of 1 incorporating simple (carbonyl)oxyalkyl-based linkers and a primary amine in the promoiety were found to exhibit low chemical stability. However, chemical stability was improved by modifying the primary amine moiety to a tertiary amine, resulting in a 2-fold enhancement of exposure in rats following oral dosing compared to dosing of the parent drug 1. Further refinement of the linker resulted in the discovery of 22 as a prodrug that delivered the parent 1 to rat plasma with a 5-fold higher AUC and 67-fold higher C24 when compared to oral administration of the parent drug. The PK profile of 22 indicated that plasma levels of this prodrug were higher than that of the parent, providing a more sustained release of 1 in vivo.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India.
| | - Thangeswaran Ramar
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Lakshumanan Subramani
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Salil D Desai
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Sarmistha Sinha
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Sandhya Mandlekar
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Susan M Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Mark R Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Murali Subramanian
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Srikanth Sridhar
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Shweta Padmanabhan
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Priyadeep Bhutani
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Rambabu Arla
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - John F Kadow
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States
| |
Collapse
|
10
|
Zhou H, Zhu M, Ma L, Zhou J, Dong B, Zhang G, Cen S, Wang Y, Wang J. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study. PLoS One 2020; 15:e0235483. [PMID: 32697773 PMCID: PMC7375528 DOI: 10.1371/journal.pone.0235483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022] Open
Abstract
A series of potent HIV-1 protease inhibitors, containing diverse piperidine analogues as the P2-ligands, 4-substituted phenylsulfonamides as the P2'-ligands and a hydrophobic cyclopropyl group as the P1'-ligand, were designed, synthesized and evaluated in this work. Among these twenty-four target compounds, many of them exhibited excellent activity against HIV-1 protease with half maximal inhibitory concentration (IC50) values below 20 nM. Particularly, compound 22a containing a (R)-piperidine-3-carboxamide as the P2-ligand and a 4-methoxylphenylsulfonamide as the P2'-ligand exhibited the most effective inhibitory activity with an IC50 value of 3.61 nM. More importantly, 22a exhibited activity with inhibition of 42% and 26% against wild-type and Darunavir (DRV)-resistant HIV-1 variants, respectively. Additionally, the molecular docking of 22a with HIV-1 protease provided insight into the ligand-binding properties, which was of great value for further study.
Collapse
Affiliation(s)
- Huiyu Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Panwar U, Chandra I, Selvaraj C, Singh SK. Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview. Curr Pharm Des 2020; 25:3390-3405. [PMID: 31538884 DOI: 10.2174/1381612825666190911160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
Collapse
Affiliation(s)
- Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Sanjeev K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| |
Collapse
|
12
|
Trindade GG, Caxito SMC, Xavier AREO, Xavier MAS, BrandÃo F. COVID-19: therapeutic approaches description and discussion. AN ACAD BRAS CIENC 2020; 92:e20200466. [PMID: 32556054 DOI: 10.1590/0001-3765202020200466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in December 2019 in China, and since then, has disrupted global public health and changed economic paradigms. In dealing with the new Coronavirus, SARS-CoV-2, the world has not faced such extreme global fragility since the "Spanish flu" pandemic in 1918. Researchers globally are dedicating efforts to the search for an effective treatment for COVID-19. Drugs already used in a clinical setting for other pathologies have been tested as a new therapeutic approach against SARS-CoV-2, setting off a frenzy over the preliminary data of different studies. This work aims to compile and discuss the data published thus far. Despite the potential effects of some antivirals and antiparasitic against COVID-19, clinical studies must confirm real effectiveness. However, non-pharmacological approaches have proven to be the most efficient strategy to date.
Collapse
Affiliation(s)
- Guilherme G Trindade
- University of Brasília, Laboratory of Clinical Microbiology and Immunology, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Samyra M C Caxito
- AMIL/United Health Group (UHG), 6580, SMAS Trecho 1, Guará, 70211-970 Brasília, DF, Brazil.,Institute of Management and Health of the Federal District (IGES-DF), Department of Nursing, Quadra 400-600, s/n, Área Especial, Recanto das Emas, 72630-250 Brasília, DF, Brazil
| | - Alessandra Rejane E O Xavier
- State University of Montes Claros, Center of Biological and Health Sciences, Microbiology Laboratory, Av. Prof. Rui Braga, 39401-089 Montes Claros, MG, Brazil
| | - Mauro A S Xavier
- State University of Montes Claros, Center of Biological and Health Sciences, Microbiology Laboratory, Av. Prof. Rui Braga, 39401-089 Montes Claros, MG, Brazil
| | - Fabiana BrandÃo
- University of Brasília, Department of Pharmacy, Laboratory of Clinical Microbiology and Immunology. Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil.,University of Brasília, Nucleus of Tropical Medicine, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of HIV-1 protease inhibitors with morpholine derivatives as P2 ligands in combination with cyclopropyl as P1' ligand. Bioorg Med Chem Lett 2020; 30:127019. [PMID: 32057582 DOI: 10.1016/j.bmcl.2020.127019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
A series of novel HIV-1 protease inhibitors has been designed and synthesized, which contained morpholine derivatives as the P2 ligands and hydrophobic cyclopropyl as the P1' ligand at the meantime in this study, with the aim of improving the interactions between the active sites of HIV-1 protease and the inhibitors. Twenty-eight compounds were synthesized and assessed, among which inhibitors m18 and m1 exhibited excellent inhibitory effect on the activity of HIV-1 protease with IC50 value of 47 nM and 53 nM, respectively. The molecular modeling of m1 revealed possible hydrogen bondings or van der Waals between the inhibitor and the protease, worthy of in-depth study.
Collapse
|
14
|
Waldman G, Rawlings SA, Kerr J, Vodkin I, Aslam S, Logan C, Dan J, Mehta S, Hill L, Karris MY. Successful optimization of antiretroviral regimens in treatment-experienced people living with HIV undergoing liver transplantation. Transpl Infect Dis 2019; 21:e13174. [PMID: 31520554 PMCID: PMC7510623 DOI: 10.1111/tid.13174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 01/13/2023]
Abstract
Modern antiretroviral therapy (ART) extends life expectancy for people living with HIV (PLWH). However, most older PLWH (≥50 years) "aged" with HIV and were exposed to historical HIV care practices and older, more toxic ART. In PLWH with exposure to older and multiple ART regimens, the drug interactions between ART frequently used in treatment-experienced persons and commonly used immunosuppressants remain a significant challenge. However, the advent of newer ART classes (eg, integrase non-strand transfer inhibitors) and more advanced HIV genetic resistance testing may allow optimization of ART regimens with minimal drug interactions. Here, we present a case series of three PLWH whose complicated ART interacted (or was at risk for interacting) with their post-liver transplant immunosuppression. After a review of their proviral DNA resistance testing, they successfully transitioned onto safer integrase non-strand transfer inhibitor-containing ART regimens without viral blips or evidence of organ rejection.
Collapse
Affiliation(s)
- Georgina Waldman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA
| | - Stephen A Rawlings
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| | - Janice Kerr
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA
| | - Irine Vodkin
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| | - Saima Aslam
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| | - Cathy Logan
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| | - Jennifer Dan
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| | - Sanjay Mehta
- Department of Medicine, School of Medicine, University of California, San Diego, CA
- Department of Pathology, School of Medicine, University of California, San Diego, CA
- Department of Medicine, San Diego Veterans Affairs Medical Center, San Diego, CA
| | - Lucas Hill
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA
| | - Maile Y Karris
- Department of Medicine, School of Medicine, University of California, San Diego, CA
| |
Collapse
|
15
|
A. M. Subbaiah M, Mandlekar S, Desikan S, Ramar T, Subramani L, Annadurai M, Desai SD, Sinha S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Singh S, Sinha J, Thakur M, Kadow JF, Meanwell NA. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2019; 62:3553-3574. [DOI: 10.1021/acs.jmedchem.9b00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
17
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
18
|
Leishmanicidal therapy targeted to parasite proteases. Life Sci 2019; 219:163-181. [PMID: 30641084 DOI: 10.1016/j.lfs.2019.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.
Collapse
|
19
|
Applications of Click Chemistry in the Development of HIV Protease Inhibitors. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:2946730. [PMID: 30112207 PMCID: PMC6077553 DOI: 10.1155/2018/2946730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) has been devastating for millions of people around the world. Inhibition of the human immunodeficiency virus (HIV) protease is among the most important approaches for the therapeutic intervention in HIV infection. Since the discovery of the HIV-1 protease, this enzyme has been considered as a key target for the inhibition of viral replication. A large body of research has been done to develop an effective HIV-1 protease inhibitor. There are to date 10 HIV-1 protease inhibitor drugs approved by the Food and Drug Administration (FDA) that have improved the survival and quality of life of HIV infected people. These drugs are prescribed in combination with the reverse transcriptase inhibitors, which is referred to as highly active antiretroviral therapy (HAART). The HIV-1 protease inhibitors play a vital role in HAART. The applications of click chemistry are dispersing in the field of drug discovery. Recently, click chemistry has captured a lot of attention and has become a powerful tool for the synthesis of medicinal skeletons in the discovery of anti-HIV drugs. Click reaction is a well-known method for making carbon-heteroatom-carbon bonds. Click reactions are popular because they are wide in scope, of high yielding, quick to perform, and easy to purify. In this review, we outlined current approaches towards the development of HIV-1 protease inhibitors employing click chemistry.
Collapse
|
20
|
Affiliation(s)
- İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
21
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
22
|
Amin SA, Adhikari N, Bhargava S, Jha T, Gayen S. Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: new features identified. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:385-408. [PMID: 29566580 DOI: 10.1080/1062936x.2018.1447511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The current study deals with chemometric modelling strategies (Naïve Bayes classification, hologram-based quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)) to explore the important features of hydroxylamine derivatives for exerting potent human immunodeficiency virus-1 (HIV-1) protease inhibition. Depending on the statistically validated reliable and robust quantitative structure-activity relationship (QSAR) models, important and crucial structural features have been identified that may be responsible for enhancing the activity profile of these hydroxylamine compounds. Arylsulfonamide function along with methoxy or fluoro substitution is important for enhancing activity. Bulky steric substitution at the sulfonamide nitrogen disfavours activity whereas smaller hydrophobic substitution at the same position is found to be favourable. Apart from the crucial oxazolidinone moiety, pyrrolidine, cyclic urea and methyl ester functions are also responsible for increasing the HIV-1 protease inhibitory profile. Observations derived from these modelling studies may be utilized further in designing promising HIV-1 protease inhibitors of this class.
Collapse
Affiliation(s)
- S A Amin
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - N Adhikari
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - S Bhargava
- b Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Hari Singh Gour University , Sagar 470003 , Madhya Pradesh , India
| | - T Jha
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - S Gayen
- b Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Hari Singh Gour University , Sagar 470003 , Madhya Pradesh , India
| |
Collapse
|
23
|
Subbaiah MAM, Meanwell NA, Kadow JF, Subramani L, Annadurai M, Ramar T, Desai SD, Sinha S, Subramanian M, Mandlekar S, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Jenkins SM, Krystal MR, Wang C, Sarabu R. Coupling of an Acyl Migration Prodrug Strategy with Bio-activation To Improve Oral Delivery of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2018; 61:4176-4188. [PMID: 29693401 DOI: 10.1021/acs.jmedchem.8b00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HIV-1 protease inhibitors (PIs), which include atazanavir (ATV, 1), remain important medicines to treat HIV-1 infection. However, they are characterized by poor oral bioavailability and a need for boosting with a pharmacokinetic enhancer, which results in additional drug-drug interactions that are sometimes difficult to manage. We investigated a chemo-activated, acyl migration-based prodrug design approach to improve the pharmacokinetic profile of 1 but failed to obtain improved oral bioavailability over dosing the parent drug in rats. This strategy was refined by conjugating the amine with a promoiety designed to undergo bio-activation, as a means of modulating the subsequent chemo-activation. This culminated in a lead prodrug that (1) yielded substantially better oral drug delivery of 1 when compared to the parent itself, the simple acyl migration-based prodrug, and the corresponding simple l-Val prodrug, (2) acted as a depot which resulted in a sustained release of the parent drug in vivo, and (3) offered the benefit of mitigating the pH-dependent absorption associated with 1, thereby potentially reducing the risk of decreased bioavailability with concurrent use of stomach-acid-reducing drugs.
Collapse
|
24
|
Bungard CJ, Williams PD, Schulz J, Wiscount CM, Holloway MK, Loughran HM, Manikowski JJ, Su HP, Bennett DJ, Chang L, Chu XJ, Crespo A, Dwyer MP, Keertikar K, Morriello GJ, Stamford AW, Waddell ST, Zhong B, Hu B, Ji T, Diamond TL, Bahnck-Teets C, Carroll SS, Fay JF, Min X, Morris W, Ballard JE, Miller MD, McCauley JA. Design and Synthesis of Piperazine Sulfonamide Cores Leading to Highly Potent HIV-1 Protease Inhibitors. ACS Med Chem Lett 2017; 8:1292-1297. [PMID: 29259750 DOI: 10.1021/acsmedchemlett.7b00386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.
Collapse
Affiliation(s)
- Christopher J. Bungard
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Peter D. Williams
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jurgen Schulz
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Catherine M. Wiscount
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - M. Katharine Holloway
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - H. Marie Loughran
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jesse J. Manikowski
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Hua-Poo Su
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - David J. Bennett
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Lehua Chang
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xin-Jie Chu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Alejandro Crespo
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael P. Dwyer
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Kartik Keertikar
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gregori J. Morriello
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew W. Stamford
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sherman T. Waddell
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Bin Zhong
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Bin Hu
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Tao Ji
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Tracy L. Diamond
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Carolyn Bahnck-Teets
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Steven S. Carroll
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - John F. Fay
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Xu Min
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - William Morris
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeanine E. Ballard
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Michael D. Miller
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - John A. McCauley
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
25
|
Leonel CA, Lima WG, dos Santos M, Ferraz AC, Taranto AG, de Magalhães JC, dos Santos LL, Ferreira JMS. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch Virol 2017; 163:575-586. [DOI: 10.1007/s00705-017-3641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
|
26
|
Subbaiah MAM, Meanwell NA, Kadow JF. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties. Eur J Med Chem 2017; 139:865-883. [PMID: 28865281 DOI: 10.1016/j.ejmech.2017.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
Combination antiretroviral therapy (cART) is currently the most effective treatment for HIV-1 infection. HIV-1 protease inhibitors (PIs) are an important component of some regimens of cART. However, PIs are known for sub-optimal ADME properties, resulting in poor oral bioavailability. This often necessitates high drug doses, combination with pharmacokinetic enhancers and/or special formulations in order to effectively deliver PIs, which may lead to a high pill burden and reduced patient compliance. As a remedy, improving the ADME properties of existing drugs via prodrug and other approaches has been pursued in addition to the development of next generation PIs with improved pharmacokinetic, resistance and side effect profiles. Phosphate prodrugs have been explored to address the solubility-limiting absorption and high excipient load. Prodrug design to target carrier-mediated drug delivery has also been explored. Amino acid prodrugs have been shown to improve permeability by engaging active transport mechanisms, reduce efflux and mitigate first pass metabolism while acyl migration prodrugs have been shown to improve solubility. Prodrug design efforts have led to the identification of one marketed agent, fosamprenavir, and clinical studies with two other prodrugs. Several of the reported approaches lack detailed in vivo characterization and hence the potential preclinical or clinical benefits of these approaches are yet to be fully determined.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Prodrug Group, Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560009, India.
| | - Nicholas A Meanwell
- Department of Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - John F Kadow
- Department of Medicinal Chemistry, ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| |
Collapse
|