1
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
2
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
3
|
Kistenev YV, Borisov AV, Zasedatel VS, Spirina LV. Diabetes noninvasive diagnostics and monitoring through volatile biomarkers analysis in the exhaled breath using optical absorption spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202300198. [PMID: 37643222 DOI: 10.1002/jbio.202300198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The review is aimed on the analysis the abilities of noninvasive diagnostics and monitoring of diabetes mellitus (DM) and DM-associated complications through volatile molecular biomarkers detection in the exhaled breath. The specific biochemical reactions in the body of DM patients and their associations with volatile molecular biomarkers in the breath are considered. The applications of optical spectroscopy methods, including UV, IR, and terahertz spectroscopy for DM-associated volatile molecular biomarkers measurements, are described. The applications of similar technique combined with machine learning methods in DM diagnostics using the profile of DM-associated volatile molecular biomarkers in exhaled air or "pattern-recognition" approach are discussed.
Collapse
Affiliation(s)
- Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory for Remote Sensing of the Environment, V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
| | - Alexey V Borisov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Vyacheslav S Zasedatel
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Liudmila V Spirina
- Division of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk, Russia
- Laboratory of Tumor Biochemistry, Cancer Research Institute, National Research Medical Center, Tomsk, Russia
| |
Collapse
|
4
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
5
|
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2022; 13:8. [PMID: 36676933 PMCID: PMC9866406 DOI: 10.3390/metabo13010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.
Collapse
Affiliation(s)
- Kinga Westphal
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Małgorzata Waszczuk-Jankowska
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
6
|
Hwang CH, Lee S, Lee S, Kim H, Kang T, Lee D, Jeong KH. Highly Adsorptive Au-TiO 2 Nanocomposites for the SERS Face Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54550-54557. [PMID: 36448483 PMCID: PMC9718102 DOI: 10.1021/acsami.2c16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Human respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols.
Collapse
Affiliation(s)
- Charles
S. H. Hwang
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Sangyeon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sejin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Hanjin Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Taejoon Kang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Doheon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Hun Jeong
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
7
|
Han D, Han X, Liu L, Li D, Liu Y, Liu Z, Liu D, Chen Y, Zhuo K, Sang S. Sub-ppb-Level Detection of Nitrogen Dioxide Based on High-Quality Black Phosphorus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13942-13951. [PMID: 35275490 DOI: 10.1021/acsami.2c00407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of gas sensors based on two-dimensional (2D) layered materials has received lots of focus attributing to their excellent gas sensitivity. Here, a black phosphorus (BP) gas sensor device is fabricated based on high-quality few-layered BP microribbons using a facile route. Although BP is well known to oxidize in ambient conditions, energy dispersive spectroscopy (EDS) mapping manifests that the few-layered BP microribbons undergo slight oxidation and contamination during the grinding process. It is interesting that the surface and side of BP microribbons have nanoscale thin films and step-like nanoscale thin films, respectively, owing to the in-plane slip of the few-layered BP microribbons in the process of grinding, which are different from the conventional BP bulk crystals. The layered BP microribbon gas sensor demonstrated a high response to low-concentration NO2 and a very low limit of detection (LOD) of 0.4 ppb of NO2 under N2 and air conditions, which is the lowest LOD for NO2 detection reported so far. The mechanisms for excellently sensitive detection of NO2 for the BP microribbons have been investigated by first-principles calculations combined with experiment results, revealing that the sensitization mechanisms of the BP microribbon sensor are abundant nanoscale thin films, an optimum bandgap range with optimal carrier concentration, a hierarchical homojunction structure, and strong adsorption energy to NO2. In addition, the BP microribbon sensor demonstrated high selectivity to NO2, a low LOD under a high relative humidity, and good repeatability. The reported results of the BP sensor may provide great promise for improving the performance of other 2D material-based gas sensors and may expand sensing applications.
Collapse
Affiliation(s)
- Dan Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaomei Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lulu Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Donghui Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhihua Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dongming Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Chen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Zhuo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
8
|
Tereshchenko SY, Malinchik MA, Smolnikova MV. Inflammatory markers in exhaled breath condensate in bronchial asthma. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021:212-223. [DOI: 10.21518/2079-701x-2021-16-212-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic respiratory diseases are among the most common non- infection diseases. In particular, it is bronchial asthma (BA), characterized by bronchial hyperreactivity and varying degrees of airway obstruction that is the cause of morbidity and mortality. The methods available for the information about the presence of inflammation in the airways, such as bronchoscopy and bronchial biopsy to be obtained have currently been invasive and difficult in everyday clinical practice, especially for children and seriously ill patients. In this regard, recently there has been an increase in the development of non-invasive methods for diagnosing the respiratory system, being comfortable and painless for trial subjects, especially children, also providing the inflammatory process control in the lungs, the severity assessment and monitoring the treatment process. The exhaled breath condensate (EBC) is of great attention, which is a source of various biomolecules, including nitric oxide (NO), leukotrienes, 8-isoprostane, prostaglandins, etc., being locally or systemically associated with disease processes in the body. Of particular interest is the presence of cytokines in EBC, namely the specific proteins produced by various cells of the body that play a key role in inflammatory processes in AD and provide cell communication (cytokine network). Thereby, it becomes possible for the severity and control level of childhood bronchial asthma using only the EBC analysis to be assessed. In addition, the non-invasiveness of this method allows it to be reused for monitoring lung diseases of even the smallest patients, including infants. Thus, the field of metabolite analysis in EBC has been developing and, in the near future, the given method is likely to be the most common for diagnosing the respiratory system diseases in both children and adults.
Collapse
Affiliation(s)
- S. Yu. Tereshchenko
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. A. Malinchik
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. V. Smolnikova
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
9
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
10
|
Drera G, Freddi S, Emelianov AV, Bobrinetskiy II, Chiesa M, Zanotti M, Pagliara S, Fedorov FS, Nasibulin AG, Montuschi P, Sangaletti L. Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC Adv 2021; 11:30270-30282. [PMID: 35480252 PMCID: PMC9041100 DOI: 10.1039/d1ra03337a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6). Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.![]()
Collapse
Affiliation(s)
- Giovanni Drera
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Sonia Freddi
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy.,Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Aleksei V Emelianov
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia.,P. N. Lebedev Physical Institute of the Russian Academy of Sciences Moscow 119991 Russia
| | - Ivan I Bobrinetskiy
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia.,BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad Dr Zorana Djindjica 1a 21000 Novi Sad Serbia
| | - Maria Chiesa
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy
| | - Michele Zanotti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Stefania Pagliara
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Moscow 121205 Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Moscow 121205 Russia.,Aalto University, Department of Chemistry and Materials Science FI-00076 Espoo Finland
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart Largo Francesco Vito, 1 00168 Roma Italy
| | - Luigi Sangaletti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| |
Collapse
|
11
|
Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1927. [PMID: 34443755 PMCID: PMC8398721 DOI: 10.3390/nano11081927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.
Collapse
Affiliation(s)
- Xiaohu Chen
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Michelle Leishman
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Darren Bagnall
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
12
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, Trudeau JB, Cook-Mills JM, Wenzel S, Milstien S, Spiegel S. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol 2021; 147:1936-1948.e9. [PMID: 33130063 PMCID: PMC8081742 DOI: 10.1016/j.jaci.2020.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Briana N James
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Ky
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Ky
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Joseph C Lownik
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - John B Trudeau
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana School of Medicine, Indianapolis, Ind
| | - Sally Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
13
|
Bodini A, Pecoraro L, Tenero L, Pezzella V, Pradal U, Piacentini G. Isoprostane-8 in the exhaled breath condensate: Could it represent a noninvasive strategic tool for primary ciliary dyskinesia diagnosis and management? Lung India 2021; 38:241-244. [PMID: 33942748 PMCID: PMC8194433 DOI: 10.4103/lungindia.lungindia_617_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Exhaled breath condensate (EBC) represents a potential diagnostic tool for Primary Ciliary Diskinesia (PCD). An increased oxidative stress is present in the airways of children affected and many neutrophil chemoattractants and markers of oxidative stress can be involved. The aim of the study is to evaluate leukotriene B4 (LTB-4), interleukin 8 (IL-8), 8-isoprostane (8-IP) concentration in PCD subjects, investigating their potential role as non-invasive markers of inflammation for the diagnosis and management of PCD. Methods: Cross-sectional study. 43 patients were enrolled in the study and divided in two groups: PCD (27) and healthy subjects (16). Physical examination, lung function test, nFeNO measurement and EBC collection were performed in all subjects. Results: PCD subjects showed an EBC 8-IP concentration significantly higher than the control group (median value: 11.9 pg/ml; IQR, 5.5–24.0 vs. median, 6.7 pg/ml; IQR, 2.5–11.3, p-value of Wilcoxon rank-sum test 0.0436). LTB4 EBC concentration did not differ between the two group (median, 4.3 pg/ml; IQR, 3.0–8.8 vs. 7.5 pg/ml; IQR, 3.0–9.5; P=0.4901). No significant correlation was found between FEV1 and EBC 8-IP (r=-0.10, P=0.6314) or LTB4 concentration (r=0.03, P=0.8888) in PCD subjects. No significant correlation was found between nFeNO and EBC 8-IP (r=-0.31, P=0.1385) or LTB4 (r=0.04, P=0.8565) in PCD subjects. Conclusions: EBC 8-IP levels are significantly increased in PCD subjects, highlighting the role of oxidative stress in airway inflammation. It could have a potential role as a non-invasive marker of inflammation for the diagnosis and management of PCD, although a therapeutic application of this evidence seems far.
Collapse
Affiliation(s)
- Alessandro Bodini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Unit, University of Verona, Verona, Italy
| | - Luca Pecoraro
- Pediatric Clinic, ASST Mantova, Mantova; Department of Medicine, University of Verona, Verona, Italy
| | - Laura Tenero
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Unit, University of Verona, Verona, Italy
| | - Vincenza Pezzella
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ugo Pradal
- Pediatric Clinic, Santa Maria del Carmine Hospital, Rovereto (TN), Italy
| | - Giorgio Piacentini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Unit, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Vajhadin F, Mazloum-Ardakani M, Amini A. Metal oxide-based gas sensors for detection of exhaled breath markers. MEDICAL DEVICES & SENSORS 2020; 4:e10161. [PMID: 33615149 PMCID: PMC7883254 DOI: 10.1002/mds3.10161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exhaled breath test is a typical disease monitoring method for replacing blood and urine samples that may create discomfort for patients. To monitor exhaled breath markers, gas biomedical sensors have undergone rapid progress for non‐invasive and point‐of‐care diagnostic devices. Among gas sensors, metal oxide‐based biomedical gas sensors have received remarkable attention owing to their unique properties, such as high sensitivity, simple fabrication, miniaturization, portability and real‐time monitoring. Herein, we reviewed the recent advances in chemoresistive metal oxide‐based gas sensors with ZnO, SnO2 and In2O3 as sensing materials for monitoring a range of exhaled breath markers (i.e., NO, H2, H2S, acetone, isoprene and formaldehyde). We focused on the strategies that improve the sensitivity and selectivity of metal oxide‐based gas sensors. The challenges to fabricate a functional gas sensor with high sensing performance along with suggestions are outlined.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry Faculty of Science Yazd University Yazd 89195-741 Iran
| | | | - Abass Amini
- Department of Mechanical Engineering Australian College of Kuwait Safat 13015 Kuwait
| |
Collapse
|
15
|
The State of the Nitric Oxide Cycle in Respiratory Tract Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4859260. [PMID: 33133346 PMCID: PMC7591941 DOI: 10.1155/2020/4859260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
This review describes the unique links of the functioning of the nitric oxide cycle in the respiratory tract in normal and pathological conditions. The concept of a nitric oxide cycle has been expanded to include the NO-synthase and NO-synthase-independent component of its synthesis and the accompanying redox cascades in varying degrees of reversible reactions. The role of non-NO-synthase cycle components has been shown. Detailed characteristics of substrates for the synthesis of nitric oxide (NO) in the human body, which can be nitrogen oxides, nitrite and nitrate anions, and organic nitrates, as well as nitrates and nitrites of food products, are given. The importance of the human microbiota in the nitric oxide cycle has been shown. The role of significant components of nitrite and nitrate reductase systems in the nitric oxide cycle and the mechanisms of their activation and deactivation (participation of enzymes, cofactors, homeostatic indicators, etc.) under various conditions have been determined. Consideration of these factors allows for a detailed understanding of the mechanisms underlying pathological conditions of the respiratory system and the targeting of therapeutic agents. The complexity of the NO cycle with multidirectional cascades could be best understood using dynamic modeling.
Collapse
|
16
|
Freddi S, Emelianov AV, Bobrinetskiy II, Drera G, Pagliara S, Kopylova DS, Chiesa M, Santini G, Mores N, Moscato U, Nasibulin AG, Montuschi P, Sangaletti L. Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Adv Healthc Mater 2020; 9:e2000377. [PMID: 32378358 DOI: 10.1002/adhm.202000377] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Indexed: 02/04/2023]
Abstract
A sensor array based on heterojunctions between semiconducting organic layers and single walled carbon nanotube (SWCNT) films is produced to explore applications in breathomics, the molecular analysis of exhaled breath. The array is exposed to gas/volatiles relevant to specific diseases (ammonia, ethanol, acetone, 2-propanol, sodium hypochlorite, benzene, hydrogen sulfide, and nitrogen dioxide). Then, to evaluate its capability to operate with real relevant biological samples the array is exposed to human breath exhaled from healthy subjects. Finally, to provide a proof of concept of its diagnostic potential, the array is exposed to exhaled breath samples collected from subjects with chronic obstructive pulmonary disease (COPD), an airway chronic inflammatory disease not yet investigated with CNT-based sensor arrays, and breathprints are compared with those obtained from of healthy subjects. Principal component analysis shows that the sensor array is able to detect various target gas/volatiles with a clear fingerprint on a 2D subspace, is suitable for breath profiling in exhaled human breath, and is able to distinguish subjects with COPD from healthy subjects based on their breathprints. This classification ability is further improved by selecting the most responsive sensors to nitrogen dioxide, a potential biomarker of COPD.
Collapse
Affiliation(s)
- Sonia Freddi
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
- Department of ChemistryDivision of Molecular Imaging and PhotonicsKU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Aleksei V. Emelianov
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences Moscow 119991 Russia
| | - Ivan I. Bobrinetskiy
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia
- BioSense Institute – Research and Development Institute for Information Technologies in BiosystemsUniversity of Novi Sad Dr Zorana Djindjica 1a Novi Sad 21000 Serbia
| | - Giovanni Drera
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| | - Stefania Pagliara
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| | | | - Maria Chiesa
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
| | - Giuseppe Santini
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Nadia Mores
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Umberto Moscato
- Occupational MedicineFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Albert G. Nasibulin
- Skolkovo Institute of Science and Technology Moscow 121205 Russia
- Aalto University P. O. Box 16100 Aalto FI‐00076 Finland
| | - Paolo Montuschi
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Luigi Sangaletti
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| |
Collapse
|
17
|
Selvaraj R, Vasa NJ, Nagendra SMS, Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020; 25:molecules25092227. [PMID: 32397389 PMCID: PMC7249025 DOI: 10.3390/molecules25092227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.
Collapse
Affiliation(s)
- Ramya Selvaraj
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
- Correspondence:
| | - Nilesh J. Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
18
|
Nasriddinov A, Rumyantseva M, Shatalova T, Tokarev S, Yaltseva P, Fedorova O, Khmelevsky N, Gaskov A. Organic-Inorganic Hybrid Materials for Room Temperature Light-Activated Sub-ppm NO Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E70. [PMID: 31905665 PMCID: PMC7023258 DOI: 10.3390/nano10010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is one of the main environmental pollutants and one of the biomarkers noninvasive diagnosis of respiratory diseases. Organic-inorganic hybrids based on heterocyclic Ru (II) complex and nanocrystalline semiconductor oxides SnO2 and In2O3 were studied as sensitive materials for NO detection at room temperature under periodic blue light (λmax = 470 nm) illumination. The semiconductor matrixes were obtained by chemical precipitation with subsequent thermal annealing and characterized by XRD, Raman spectroscopy, and single-point BET methods. The heterocyclic Ru (II) complex was synthesized for the first time and characterized by 1H NMR, 13C NMR, MALDI-TOF mass spectrometry and elemental analysis. The HOMO and LUMO energies of the Ru (II) complex are calculated from cyclic voltammetry data. The thermal stability of hybrids was investigated by thermogravimetric analysis (TGA)-MS analysis. The optical properties of Ru (II) complex, nanocrystalline oxides and hybrids were studied by UV-Vis spectroscopy in transmission and diffuse reflectance modes. DRIFT spectroscopy was performed to investigate the interaction between NO and the surface of the synthesized materials. Sensor measurements demonstrate that hybrid materials are able to detect NO at room temperature in the concentration range of 0.25-4.0 ppm with the detection limit of 69-88 ppb.
Collapse
Affiliation(s)
- Abulkosim Nasriddinov
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
- Faculty of Materials Science, Moscow State University, Moscow 119991, Russia
| | - Marina Rumyantseva
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
| | - Tatyana Shatalova
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
| | - Sergey Tokarev
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Polina Yaltseva
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
| | - Olga Fedorova
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Nikolay Khmelevsky
- LISM, Moscow State Technological University Stankin, Moscow 127055, Russia;
| | - Alexander Gaskov
- Chemistry Department, Moscow State University, Moscow 119991, Russia; (A.N.); (T.S.); (S.T.); (P.Y.); (O.F.); (A.G.)
| |
Collapse
|
19
|
Itoh T, Sato T, Akamatsu T, Shin W. Breath analysis using a spirometer and volatile organic compound sensor on driving simulator. J Breath Res 2019; 14:016003. [PMID: 31292283 DOI: 10.1088/1752-7163/ab30ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study the correlation between the condition of drivers and their expiration was evaluated by analyzing the exhalation of car drivers in a simulation setting using a spirometer and a volatile organic compound (VOC) gas sensor. Participants wore exhalation masks and their expiration was monitored for fluctuations in breath measurements, including VOC concentration, oxygen intake, carbon dioxide excretion, and respiration rate. Participants used a driving simulator on four different courses of varying difficulty for approximately five min each, with the mean and standard deviation (SD) being calculated for each parameter during the cruising section of the course. After driving each course, participants assessed the 'enjoyment' and 'difficulty' of their experience. It was verified whether the state of the participants during driving can be determined from exhalation by comparing the questionnaire results. The mean and SD of all exhalation parameters were analyzed using box-and-whisker plots and any statistical significance between these parameters and driver experience was tested using the analysis of variance. There was no significant difference in the correlation between the questionnaire result of 'difficulty' and each exhalation parameter. By contrast, the low assessment group of 'enjoyment' showed large SDs in all parameters from both the VOC gas sensor and spirometer.
Collapse
Affiliation(s)
- Toshio Itoh
- National Institute of Advanced Industrial Science and Technology (AIST), Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan
| | | | | | | |
Collapse
|
20
|
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, Gómez-Gómez A, Van-Brussel E, Díaz-Barriga F, Medellín-Garibay S, Flores-Ramírez R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33:e4684. [PMID: 31423612 DOI: 10.1002/bmc.4684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.
Collapse
Affiliation(s)
- Maribel Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Sofía Ramírez-García
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Cesar Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Alejandro Gómez-Gómez
- Pulmonology Service, Hospital Central "Dr. Ignacio Morones Prieto" San Luis Potosí, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Susanna Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.,Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
21
|
Moon KA, Rule AM, Magid HS, Ferguson JM, Susan J, Sun Z, Torrey C, Abubaker S, Levshin V, Çarkoglu A, Radwan GN, El-Rabbat M, Cohen JE, Strickland P, Breysse PN, Navas-Acien A. Biomarkers of Secondhand Smoke Exposure in Waterpipe Tobacco Venue Employees in Istanbul, Moscow, and Cairo. Nicotine Tob Res 2019; 20:482-491. [PMID: 28582531 DOI: 10.1093/ntr/ntx125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 05/30/2017] [Indexed: 11/12/2022]
Abstract
Background Most smoke-free legislation to reduce secondhand smoke (SHS) exposure exempts waterpipe (hookah) smoking venues. Few studies have examined SHS exposure in waterpipe venues and their employees. Methods We surveyed 276 employees of 46 waterpipe tobacco venues in Istanbul, Moscow, and Cairo. We interviewed venue managers and employees and collected biological samples from employees to measure exhaled carbon monoxide (CO), hair nicotine, saliva cotinine, urine cotinine, urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and urine 1-hydroxypyrene glucuronide (1-OHPG). We estimated adjusted geometric mean ratios (GMR) of each SHS biomarker by employee characteristics and indoor air SHS measures. Results There were 73 nonsmoking employees and 203 current smokers of cigarettes or waterpipe. In nonsmokers, the median (interquartile) range concentrations of SHS biomarkers were 1.1 (0.2, 40.9) µg/g creatinine urine cotinine, 5.5 (2, 15) ng/mL saliva cotinine, 0.95 (0.36, 5.02) ng/mg hair nicotine, 1.48 (0.98, 3.97) pg/mg creatinine urine NNAL, 0.54 (0.25, 0.97) pmol/mg creatinine urine 1-OHPG, and 1.67 (1.33, 2.33) ppm exhaled CO. An 8-hour increase in work hours was associated with higher urine cotinine (GMR: 1.68, 95% CI: 1.20, 2.37) and hair nicotine (GMR: 1.22, 95% CI: 1.05, 1.43). Lighting waterpipes was associated with higher saliva cotinine (GMR: 2.83, 95% CI: 1.05, 7.62). Conclusions Nonsmoking employees of waterpipe tobacco venues were exposed to high levels of SHS, including measurable levels of carcinogenic biomarkers (tobacco-specific nitrosamines and PAHs). Implications Smoke-free regulation should be extended to waterpipe venues to protect nonsmoking employees and patrons from the adverse health effects of SHS.
Collapse
Affiliation(s)
- Katherine A Moon
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Hoda S Magid
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jacqueline M Ferguson
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jolie Susan
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Zhuolu Sun
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Christine Torrey
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Salahaddin Abubaker
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | | | - Asli Çarkoglu
- Department of Psychology, Kadir Has University, Istanbul, Turkey
| | - Ghada Nasr Radwan
- Department of Public Health, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Rabbat
- Department of Psychology, Kadir Has University, Istanbul, Turkey
- Department of Public Health, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Joanna E Cohen
- Institute for Global Tobacco Control, Department of Health, Behavior, and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Paul Strickland
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Patrick N Breysse
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ana Navas-Acien
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
22
|
YAMAMOTO S, FUJIWARA H, MARUYAMA K, TANAKA Y, KINOSHITA M, SUZUKI S. Simultaneous Determination of Inorganic Anions and Cations in Water and Biological Samples by Capillary Electrophoresis with a Capacitive Coupled Contactless Conductivity Detector Using Capillary Filling Method. ANAL SCI 2019; 35:295-300. [DOI: 10.2116/analsci.18p422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | | | - Mitsuhiro KINOSHITA
- Faculty of Pharmaceutical Sciences, Kindai University
- Antiaging Center, Kindai University
| | - Shigeo SUZUKI
- Faculty of Pharmaceutical Sciences, Kindai University
- Antiaging Center, Kindai University
| |
Collapse
|
23
|
Güntner AT, Abegg S, Königstein K, Gerber PA, Schmidt-Trucksäss A, Pratsinis SE. Breath Sensors for Health Monitoring. ACS Sens 2019; 4:268-280. [PMID: 30623644 DOI: 10.1021/acssensors.8b00937] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breath sensors can revolutionize medical diagnostics by on-demand detection and monitoring of health parameters in a noninvasive and personalized fashion. Despite extensive research for more than two decades, however, only a few breath sensors have been translated into clinical practice. Actually, most never even left the scientific laboratories. Here, we describe key challenges that currently impede realization of breath sensors and highlight strategies to overcome them. Specifically, we start with breath marker selection (with emphasis on metabolic and inflammatory markers) and breath sampling. Next, the sensitivity, stability, and selectivity requirements for breath sensors are described. Concepts are elaborated to systematically address these requirements by material design (focusing on chemoresistive metal oxides), orthogonal arrays, and filters. Finally, aspects of portable device integration, user communication, and clinical applicability are discussed.
Collapse
Affiliation(s)
- Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Sebastian Abegg
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Karsten Königstein
- Division Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, CH-4052 Basel, Switzerland
| | - Philipp A. Gerber
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Arno Schmidt-Trucksäss
- Division Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, CH-4052 Basel, Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
24
|
Freddi S, Drera G, Pagliara S, Goldoni A, Sangaletti L. Enhanced selectivity of target gas molecules through a minimal array of gas sensors based on nanoparticle-decorated SWCNTs. Analyst 2019; 144:4100-4110. [DOI: 10.1039/c9an00551j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layers of CNTs decorated with metal and metal–oxide nanoparticles can be used to develop highly selective gas sensor arrays.
Collapse
Affiliation(s)
- Sonia Freddi
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | - Giovanni Drera
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | - Stefania Pagliara
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | | | - Luigi Sangaletti
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| |
Collapse
|
25
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
26
|
Yoon JW, Lee JH. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. LAB ON A CHIP 2017; 17:3537-3557. [PMID: 28971204 DOI: 10.1039/c7lc00810d] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Semiconductor gas sensors using metal oxides, carbon nanotubes, graphene-based materials, and metal chalcogenides have been reviewed from the viewpoint of the sensitive, selective, and reliable detection of exhaled biomarker gases, and perspectives/strategies to realize breath analysis on a chip for disease diagnosis are discussed based on the concurrent design of high-performance sensing materials and miniaturized pretreatment components. Carbon-based sensing materials that show relatively high responses to NO and NH3 at low or mildly raised temperatures can be applied to the diagnosis of asthma and renal disease. Halitosis can be diagnosed by employing sensing or additive materials such as CuO and Mo that have high chemical affinities for H2S, while catalyst-loaded metal oxide nanostructure sensors or their arrays have been used to diagnose diabetes via the selective detection of acetone or by pattern recognition of sensor signals. For the ultimate miniaturization of a breath-analysis system into a tiny chip, preconditioning that includes preconcentration, dehumidification, and flow sensing needs to be either improved through the design of gas/moisture adsorbents or removed/simplified through the design of highly sensitive sensing materials that are less impervious to interference from humidity and temperature. Moreover, an abundant sensing library needs to be provided for the diagnosis of diseases (e.g. lung cancer) that are associated with multiple biomarker gases and for finding new methods to diagnose other diseases. For this aim, p-type oxide semiconductors with high catalytic activities, as well as combinatorial approaches, can be considered for the development of sensing materials that detect less-reactive large molecules, and high-throughput screening, respectively. Selectivity for a specific biomarker gas will simplify the system further. Breath analysis on a tiny chip using semiconductor chemiresistors with ultralow power consumption that is connected to the 'Internet of Things' will pave new roads for disease diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Ji-Wook Yoon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | |
Collapse
|
27
|
Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. SENSORS 2017; 17:s17020287. [PMID: 28165388 PMCID: PMC5335963 DOI: 10.3390/s17020287] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022]
Abstract
Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.
Collapse
|
28
|
Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns. SENSORS 2016; 16:s16111891. [PMID: 27834896 PMCID: PMC5134550 DOI: 10.3390/s16111891] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.
Collapse
|
29
|
Vento DA, Silveira APC, Arcencio L, Albuquerque AAS, Bottura C, Jordão A, Evora PRB, Rodrigues AJ. An adaptation for exhaled breath condensate collection in rabbits. Exp Lung Res 2016; 42:232-6. [PMID: 27362815 DOI: 10.1080/01902148.2016.1196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To set up and test the feasibility of a handmade apparatus adapted for exhaled breath condensate (EBC) collection in medium-sized animals. MATERIALS AND METHODS The apparatus was produced using an 18-mm thick u-shaped borosilicate glass. The u-shaped tube body is 25 cm in diameter, and the horizontal portions are 12 cm in diameter. The base consists of a tube joint 14/20 or 14 mm thick by 20 cm in diameter, and has a length of 5 cm. This has a hole that is plugged for condensate flow to a 1.5 mL polypropylene microtube that stores the condensate during collection. Was placed inside a styrofoam box and immersed in crushed ice and salt to ensure cooling. The temperature was monitored and maintained throughout the collection at -10°C. One of the outputs of the u-shaped tube was connected to the expiratory limb of the ventilator. RESULTS An experimental model of ALI, induced by oleic acid (OA) was adopted to determine the concentration of biomarkers of oxidative stress: malondialdehyde (MDA), glutathione (GSH), and nitrite/nitrate (NOx). The proposed model allows measurement of NOx, MDA, and GSH. However, the NOx and MDA levels in the EBC were not significant. It was only possible to observe an upward trend, which suggests a temporal evolution of the presence of these markers in the EBC. CONCLUSION The EBC collection method adapted is effective to generate sufficient content that allows to determine the levels of different biomarkers, such as NOx, MDA, and GSH, that are involved in oxidative and inflammatory stress processes during respiratory diseases.
Collapse
Affiliation(s)
- Daniella Alves Vento
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Ana Paula Cassiano Silveira
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Livia Arcencio
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Agnes A S Albuquerque
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Camila Bottura
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Alceu Jordão
- b Department of Metabolism and Nutrition , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Paulo Roberto Barbosa Evora
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Alfredo José Rodrigues
- a Department of Surgery and Anatomy , Ribeirão Preto School of Medicine, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
30
|
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy 2016; 71:741-57. [PMID: 26896172 DOI: 10.1111/all.12865] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.
Collapse
Affiliation(s)
- F. M. Aldakheel
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Department of Clinical Laboratory Sciences; College of Applied Medical Sciences; King Saud University; Riyadh Saudi Arabia
| | - P. S. Thomas
- Department of Respiratory Medicine and Prince of Wales Hospital Clinical School; University of New South Wales; Sydney Australia
| | - J. E. Bourke
- Biomedicine Discovery Institute; Department of Pharmacology; Monash University; Clayton Australia
| | - M. C. Matheson
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - A. J. Lowe
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| |
Collapse
|
31
|
Crowley J, Po E, Celi P, Muscatello G. Systemic and respiratory oxidative stress in the pathogenesis and diagnosis of Rhodococcus equi pneumonia. Equine Vet J 2016:20-5. [PMID: 24304399 DOI: 10.1111/evj.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Oxidative stress (OS) is most simply defined as an imbalance between oxidants and antioxidants. Oxidative stress has been suggested to play roles in various equine respiratory diseases and the significance of OS in the pathogenesis of Rhodococcus equi pneumonia is unknown. OBJECTIVES To measure and relate biomarkers of OS to lesions consistent with R. equi pneumonia. STUDY DESIGN Case-control study. METHODS Various OS biomarkers were measured from blood and exhaled breath condensate (EBC) samples collected from 26 foals between 1 and 2 months of age (n = 12 cases and n = 14 controls) on 2 Thoroughbred farms endemically affected by R. equi pneumonia. Foals were defined as cases (positive) or controls (negative) based on ultrasonographic evidence of pulmonary abscessation (>15 mm in diameter). Haematology and biochemistry testing was also performed on blood samples collected from the foals. Comparison of biomarkers and key haematological and biochemical markers of inflammation between the groups was performed using 2 sample t tests. RESULTS Derivatives of reactive oxygen metabolites (d-ROMs) were significantly greater in case foals than in control foals (P = 0.027) and the oxidative stress index (OSI) was higher in case foals (P = 0.014). Hydrogen peroxide (H2 O2 ) concentrations in EBC were significantly greater in case foals than in control foals (P = 0.002). Meanwhile, there were no significant differences in traditional measures of inflammation between the 2 groups. CONCLUSIONS Measuring OS in both blood and EBC provided useful information in the early diagnosis of R. equi pneumonia.
Collapse
Affiliation(s)
- J Crowley
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
32
|
Malerba M, Damiani G, Carpagnano GE, Olivini A, Radaeli A, Ragnoli B, Foschino MP, Olivieri M. Values in Elderly People for Exhaled Nitric Oxide Study. Rejuvenation Res 2016; 19:233-8. [PMID: 26414479 DOI: 10.1089/rej.2015.1706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ageing population is constantly increasing due to rising life expectancy; consequently, the percentage of the elderly patients with asthma is increasing, as well. Fractional exhaled nitric oxide (FeNO) is a biomarker of lung inflammation, and currently it is widely used in clinical practice for asthma diagnosis and monitoring. Yet, there are no data about normal values of FeNO in patients of more than 65 years of age with normal lung function. The aim of this study was to establish adult FeNO reference values for subjects older than 65 years, according to the international guidelines. FeNO was measured in 303 healthy, nonsmoking adults more than 65 years of age, with normal spirometry values measured using the online single-breath technique. The results were analyzed by chemiluminescent detection. The FeNO levels obtained range from 5.00 to 29.9 ppb, with a mean value of 12.48 ± 2.80 ppb. A significant association of FeNO levels with age (p < 0.05) was observed. There was no difference in FeNO values between men and women unlike what was observed in younger patients. FeNO levels in healthy controls over 65 years of age are influenced by age as in younger adults. However, there is no difference in FeNO values in male and female seniors, in contrast with what was found in younger adults in other studies. These data can be useful for the clinician to interpret the values of FeNO assessed during clinical practice.
Collapse
Affiliation(s)
- Mario Malerba
- 1 Department of Internal Medicine, University of Brescia and ASST Spedali Civili , Brescia, Italy
| | - Giovanni Damiani
- 1 Department of Internal Medicine, University of Brescia and ASST Spedali Civili , Brescia, Italy
| | - Giovanna E Carpagnano
- 2 Department of Medical and Surgical Sciences, Institute of Respiratory Disease, University of Foggia , Foggia, Italy
| | - Alessia Olivini
- 1 Department of Internal Medicine, University of Brescia and ASST Spedali Civili , Brescia, Italy
| | | | | | - Maria Pia Foschino
- 2 Department of Medical and Surgical Sciences, Institute of Respiratory Disease, University of Foggia , Foggia, Italy
| | - Mario Olivieri
- 4 Unit of Occupational Medicine, University Hospital of Verona , Verona, Italy
| |
Collapse
|
33
|
Chauhan SS, Celi P, Leury B, Liu F, Dunshea FR. Exhaled breath condensate hydrogen peroxide concentration, a novel biomarker for assessment of oxidative stress in sheep during heat stress. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to measure hydrogen peroxide (H2O2) in exhaled breath condensate (EBC) as an index of oxidative stress induced by heat stress (HS) and to evaluate the antioxidant potential of supranutritional levels of selenium (Se) and vitamin E under HS conditions in sheep. Thirty-two Merino × Poll Dorset ewes (in two replicates) were acclimated to indoor individual pen feeding of a pelleted control diet (0.24 g Se and 10 IU of vitamin E/kg DM) for 1 week. Sheep were then randomly allocated to a 2 × 2 factorial design with the respective factors being dietary Se (0.24 and 1.20 mg/kg DM as Sel-Plex) and vitamin E (10 and 100 IU/kg DM) for 2 weeks. After 1 week acclimation to the diets the sheep were placed in metabolism cages in one of two climatic chambers set to either thermoneutral (18−21°C and 40–50% relative humidity) or HS (28−40°C and 30–40% relative humidity) conditions for 1 week. Average respiration rate and rectal temperature were increased (P < 0.001) during HS. Similarly, H2O2 concentration in EBC and plasma reactive oxygen metabolites were increased significantly (P = 0.041 and P = 0.002, respectively), in sheep exposed to HS. The EBC H2O2 concentration was reduced (P < 0.05) in sheep fed the diet supplemented with supranutritional levels of both Se and vitamin E. Sheep supplemented with antioxidants also had lower respiration rates (191 vs 232 breaths/min, P = 0.012) and rectal temperature (40.33 vs 40.58°C, P = 0.039) under peak HS (1300 hours and 1700 hours) compared with those on the control diet indicating an improved capacity to handle HS. These data suggest that the H2O2 concentration in EBC can be utilised as a novel biomarker to demonstrate oxidative stress induced by HS in sheep.
Collapse
|
34
|
Chang A, Peng Y, Li Z, Yu X, Hong K, Zhou S, Wu W. Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas. Polym Chem 2016. [DOI: 10.1039/c5py02014j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel material that allows highly selective ammonia-to-conductance signal transduction is prepared by the assembly of polythiophenes on responsive polymer microgels.
Collapse
Affiliation(s)
- Aiping Chang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Yahui Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Zezhou Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xiang Yu
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Center for Nanophase Materials Sciences
| | - Kunlun Hong
- Center for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Shuiqin Zhou
- Department of Chemistry and The Center for Engineered Polymeric Materials of College of Staten Island
- and The Graduate Center
- The City University of New York
- Staten Island
- USA
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
35
|
Zhang Z, Zhang X, Luo W, Yang H, He Y, Liu Y, Zhang X, Peng G. Study on adsorption and desorption of ammonia on graphene. NANOSCALE RESEARCH LETTERS 2015; 10:359. [PMID: 26377212 PMCID: PMC4573087 DOI: 10.1186/s11671-015-1060-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/27/2015] [Indexed: 05/31/2023]
Abstract
The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.
Collapse
Affiliation(s)
- Zhengwei Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Xinfang Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Wei Luo
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Hang Yang
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Yanlan He
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Yixing Liu
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Xueao Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Gang Peng
- College of Science, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
36
|
Peng Y, Jiang X, Chen S, Wu Q, Shen J, Wu W. Synthesis and characterization of ammonia-responsive polymer microgels. Polym Chem 2015. [DOI: 10.1039/c5py01531f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a polymer microgel that can undergo rapid, reversible, and highly-sensitive volume phase transitions upon varying ammonia concentrations in milieu.
Collapse
Affiliation(s)
- Yahui Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaomei Jiang
- Clinical Laboratory
- Huli Center for Maternal and Child Health
- Xiamen 361009
- China
| | - Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Qingshi Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jing Shen
- Department of Applied Chemistry
- College of Vocational Education
- Yunnan Normal University
- Kunming 650092
- China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
37
|
Hengerics Szabó A, Podolec P, Ferenczy V, Kubinec R, Blaško J, Soják L, Górová R, Addová G, Ostrovský I, Višňovský J, Bierhanzl V, Čabala R, Amann A. The analysis of linear and monomethylalkanes in exhaled breath samples by GC×GC-FID and GC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 978-979:62-9. [DOI: 10.1016/j.jchromb.2014.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/28/2014] [Accepted: 11/24/2014] [Indexed: 12/25/2022]
|
38
|
Moscato U, Poscia A, Gargaruti R, Capelli G, Cavaliere F. Normal values of exhaled carbon monoxide in healthy subjects: comparison between two methods of assessment. BMC Pulm Med 2014; 14:204. [PMID: 25515007 PMCID: PMC4275957 DOI: 10.1186/1471-2466-14-204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background In a previous study, exhaled carbon monoxide (eCO) has been assessed in healthy non-smokers with a photo acoustic spectrometer Brüel&Kjær 1312. Unexpectedly, values were higher than those reported in literature, which were mostly obtained with electrochemical analysers. This study was aimed to compare eCO values obtained with Brüel&Kjær 1312 and PiCO + Smokerlyzer, a largely utilized electrochemical analyser. Methods Thirty-four healthy subjects, 15 non-smokers and 19 smokers, underwent eCO assessment with Brüel&Kjær 1312 and PiCO + Smokerlyzer during a prolonged expiration (15 seconds). Brüel&Kjær 1312 assessed CO concentration 7 and 12 seconds after the beginning of expiration and displayed the mean value. PiCO + Smokerlyzer was utilized according to the manufacturer’s recommendations. In vitro, the two devices were tested with standard concentrations of CO in nitrogen (5, 9.9, 20, and 50 ppm), and the time needed by PiCO + Smokerlyzer readings to stabilize was assessed at different gas flows. Results Both Brüel&Kjær 1312 and PiCO + Smokerlyzer presented very good internal consistency. The values provided were strictly correlated, but at low test concentrations, the Brüel&Kjær 1312 readings were greater than the PiCO + Smokerlyzer, and vice versa. PiCO + Smokerlyzer overestimated the CO standard concentrations at 5 and 9.9 ppm by 20%, while Brüel&Kjær 1312 measures were correct. PiCO + Smokerlyzer readings stabilized in 12 seconds during in vitro tests and in 15 seconds during in vivo measurements, suggesting that the values displayed corresponded to the initial phase of expiration. Conclusions Differences between Brüel&Kjær 1312 and PiCO + Smokerlyzer may be explained because Brüel&Kjær 1312 measured CO levels in the middle and at the end of expiration while PiCO + Smokerlyzer assessed them in the initial part of expiration.
Collapse
Affiliation(s)
- Umberto Moscato
- Institute of Public Health, Hygiene Division, Catholic University "Sacro Cuore", Largo Francesco Vito, 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
Hospach I, Joseph Y, Mai MK, Krasteva N, Nelles G. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection. MICROARRAYS 2014; 3:282-301. [PMID: 27600349 PMCID: PMC4979058 DOI: 10.3390/microarrays3040282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/15/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established.
Collapse
Affiliation(s)
- Ingeborg Hospach
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Strasse 3, 09599 Freiberg, Germany.
| | - Michaela Kathrin Mai
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Nadejda Krasteva
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| |
Collapse
|
40
|
Rosa MJ, Yan B, Chillrud SN, Acosta LM, Divjan A, Jacobson JS, Miller RL, Goldstein IF, Perzanowski MS. Domestic airborne black carbon levels and 8-isoprostane in exhaled breath condensate among children in New York City. ENVIRONMENTAL RESEARCH 2014; 135:105-10. [PMID: 25262082 PMCID: PMC4346209 DOI: 10.1016/j.envres.2014.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Exposure to airborne black carbon (BC) has been associated with asthma development, respiratory symptoms and decrements in lung function. However, the mechanism through which BC may lead to respiratory symptoms has not been completely elucidated. Oxidative stress has been suggested as a potential mechanism through which BC might lead to adverse health outcomes. Exhaled breath condensate (EBC) allows for the non-invasive collection of airway lining fluid containing biomarkers of oxidative stress like 8-isoprostane, a stable by-product of lipid peroxidation. Therefore, we sought to characterize the association between domestic airborne BC concentrations and 8-isoprostane in EBC. MATERIALS AND METHODS Seven- and eight-year-old children participated in an asthma case-control study in New York City. During home visits, air samples and EBC were collected. Seven day averages of domestic levels of particulate matter <2.5μm (PM2.5), BC and environmental tobacco smoke (ETS) were measured. Urea and 8-isoprostane were measured by liquid chromatography tandem mass spectrometry (LC/MS/MS) in EBC. RESULTS In univariate models, PM2.5 and BC, but not ETS, were significantly associated with increases in 8-isoprostane in the EBC (β=0.006 and β=0.106 respectively, p<0.05 for both). These associations remained statistically significant for both PM2.5 and BC after adjustment for covariates. In a co-pollutant model including PM2.5, BC and ETS, only BC remained a statistically significant predictor of 8-isoprostane (p<0.05). CONCLUSIONS Our findings suggest the BC fraction of PM might contain exposure relevant to increased oxidative stress in the airways.
Collapse
Affiliation(s)
- Maria Jose Rosa
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th Street, 11th floor, New York, NY 10032, United States.
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, Comer Building, Rm 203, Palisades, NY 10964, United States.
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, Comer Building, Rm 203, Palisades, NY 10964, United States.
| | - Luis M Acosta
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th Street, 11th floor, New York, NY 10032, United States.
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th Street, 11th floor, New York, NY 10032, United States.
| | - Judith S Jacobson
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th Street, R732, New York, NY 10032, United States.
| | - Rachel L Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th Street, 11th floor, New York, NY 10032, United States; Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia, University College of Physicians and Surgeons, 630 W 168th Street, PHE-101, New York, NY 10032, United States.
| | - Inge F Goldstein
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th Street, R732, New York, NY 10032, United States.
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th Street, 11th floor, New York, NY 10032, United States.
| |
Collapse
|
41
|
Cumeras R, Cheung WHK, Gulland F, Goley D, Davis CE. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals. Metabolites 2014; 4:790-806. [PMID: 25222833 PMCID: PMC4192693 DOI: 10.3390/metabo4030790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.
Collapse
Affiliation(s)
- Raquel Cumeras
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| | - William H K Cheung
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| | - Frances Gulland
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito 94965-2619, CA, USA.
| | - Dawn Goley
- Marine Mammal Education and Research Program, Marine Mammal Stranding Network, Humboldt State University, 1 Harpst Street, Arcata 95521, CA, USA.
| | - Cristina E Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| |
Collapse
|
42
|
|
43
|
Ross BM, Glen I. Breath ethane concentrations in healthy volunteers correlate with a systemic marker of lipid peroxidation but not with omega-3 Fatty Acid availability. Metabolites 2014; 4:572-9. [PMID: 25257995 PMCID: PMC4192680 DOI: 10.3390/metabo4030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022] Open
Abstract
Ethane in human breath derives from lipid peroxidation, specifically the reaction between omega-3 fatty acids and reactive oxygen species. It has been proposed to be a non-invasive marker of oxidative stress, a deleterious process which may play an important role in the pathophysiology of several common diseases. It is unclear, however, whether ethane concentration actually correlates with systemic oxidative stress or whether it is primarily a marker of airway biochemistry. To investigate this possibility the breath ethane concentrations in 24 healthy volunteers were compared to that of a systemic measure of oxidative stress, plasma hydroperoxides, as well as to blood concentrations of the lipophilic anti-oxidant vitamin E, and the abundance of omega-3 fatty acids. Breath ethane concentrations were significantly (p < 0.05) positively correlated with blood hydroperoxide concentrations (rp = 0.60) and negatively with that of vitamin E (rp = -0.65), but were not correlated with either the total omega-3 fatty acid concentration (rp = -0.22) or that of any individual species of this fatty acid class. This data supports the hypothesis that breath ethane is a marker of systemic lipid peroxidation, as opposed to that of omega-3 fatty acid abundance.
Collapse
Affiliation(s)
- Brian M Ross
- Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada.
| | - Iain Glen
- Highland Psychiatric Research Foundation, University of the Highlands and Islands, Inverness IV3 5SQ, UK
| |
Collapse
|
44
|
Metters JP, Kampouris DK, Banks CE. Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. Analyst 2014; 139:3999-4004. [DOI: 10.1039/c4an00675e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Lee JS, Shin JH, Hwang JH, Baek JE, Choi BS. Malondialdehyde and 3-nitrotyrosine in exhaled breath condensate in retired elderly coal miners with chronic obstructive pulmonary disease. Saf Health Work 2014; 5:91-6. [PMID: 25180140 PMCID: PMC4147217 DOI: 10.1016/j.shaw.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 11/17/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an important cause of occupational mortality in miners exposed to coal mine dust. Although the inflammatory mediators involved in COPD have not been defined, many studies have shown that inflammatory mediators such as reactive oxygen and nitrogen species are involved in orchestrating the complex inflammatory process in COPD. Methods To investigate the relevance of exhaled biomarkers of oxidative and nitrosative stress in participants with COPD, we determined the levels of hydrogen peroxide, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) in exhaled breath condensate (EBC) in 90 retired elderly coal miners (53 non-COPD and 37 COPD participants). Results Mean levels of MDA (4.64 nM vs. 6.46 nM, p = 0.005) and 3-NT (3.51 nM vs. 5.50 nM, p = 0.039) in EBC were significantly higher in participants with COPD. The median level of MDA did show statistical difference among the COPD severities (p = 0.017), and the area under the receiver operating characteristic curve for MDA (0.67) for the diagnostic discrimination of COPD indicated the biomarker. The optimal cutoff values were 5.34 nM (64.9% sensitivity and 64.2% specificity) and 5.58 nM (62.2% sensitivity and 62.3% specificity) for MDA and 3-NT, respectively. The results suggest that high levels of MDA and 3-NT in EBC are associated with COPD in retired elderly miners. Conclusion These results showed that the elevated levels of EBC MDA and EBC 3-NT in individuals with COPD are biomarkers of oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Jong Seong Lee
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, Korea
| | - Jae Hoon Shin
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, Korea
| | - Ju-Hwan Hwang
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, Korea
| | - Jin Ee Baek
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, Korea
| | - Byung-Soon Choi
- Occupational Lung Diseases Institute, Korea Workers' Compensation and Welfare Service, Ansan, Korea
| |
Collapse
|
46
|
|
47
|
Unmyelinated white matter loss in the preterm brain is associated with early increased levels of end-tidal carbon monoxide. PLoS One 2014; 9:e89061. [PMID: 24622422 PMCID: PMC3951188 DOI: 10.1371/journal.pone.0089061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022] Open
Abstract
Objective Increased levels of end-tidal carbon monoxide (ETCOc) in preterm infants during the first day of life are associated with oxidative stress, inflammatory processes and adverse neurodevelopmental outcome at 2 years of age. Therefore, we hypothesized that early ETCOc levels may also be associated with impaired growth of unmyelinated cerebral white matter. Methods From a cohort of 156 extremely and very preterm infants in which ETCOc was determined within 24 h after birth, in 36 infants 3D-MRI was performed at term-equivalent age to assess cerebral tissue volumes of important brain regions. Results Linear regression analysis between cerebral ventricular volume, unmyelinated white matter/total brain volume-, and cortical grey matter/total brain volume-ratio and ETCOc showed a positive, negative and positive correlation, respectively. Multivariable analyses showed that solely ETCOc was positively related to cerebral ventricular volume and cortical grey matter/total brain volume ratio, and that solely ETCOc was inversely related to the unmyelinated white matter/total brain volume ratio, suggesting that increased levels of ETCOc, associated with oxidative stress and inflammation, were related with impaired growth of unmyelinated white matter. Conclusion Increased values of ETCOc, measured within the first 24 hours of life may be indicative of oxidative stress and inflammation in the immediate perinatal period, resulting in impaired growth of the vulnerable unmyelinated white matter of the preterm brain.
Collapse
|
48
|
Vogt B, Falkenberg C, Weiler N, Frerichs I. Pulmonary function testing in children and infants. Physiol Meas 2014; 35:R59-90. [PMID: 24557323 DOI: 10.1088/0967-3334/35/3/r59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pulmonary function testing is performed in children and infants with the aim of documenting lung development with age and making diagnoses of lung diseases. In children and infants with an established lung disease, pulmonary function is tested to assess the disease progression and the efficacy of therapy. It is difficult to carry out the measurements in this age group without disturbances, so obtaining results of good quality and reproducibility is challenging. Young children are often uncooperative during the examinations. This is partly related to their young age but also due to the long testing duration and the unpopular equipment. We address a variety of examination techniques for lung function assessment in children and infants in this review. We describe the measuring principles, examination procedures, clinical findings and their interpretation, as well as advantages and limitations of these methods. The comparability between devices and centres as well as the availability of reference values are still considered a challenge in many of these techniques. In recent years, new technologies have emerged allowing the assessment of lung function not only on the global level but also on the regional level. This opens new possibilities for detecting regional lung function heterogeneity that might lead to a better understanding of respiratory pathophysiology in children.
Collapse
Affiliation(s)
- B Vogt
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
49
|
Ahmadzai H, Huang S, Hettiarachchi R, Lin JL, Thomas PS, Zhang Q. Exhaled breath condensate: a comprehensive update. Clin Chem Lab Med 2014; 51:1343-61. [PMID: 23420285 DOI: 10.1515/cclm-2012-0593] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/28/2013] [Indexed: 01/07/2023]
Abstract
Since the late 1990s, a surge in interest in the analysis of exhaled breath condensate (EBC) resulted in the American Thoracic Society and European Respiratory Society (ATS/ERS) organising a Task Force in 2001 to develop guidelines on EBC collection and measurement of biomarkers. This Task Force published their guidelines in 2005 based on literature and expert opinions at that time, and multiple shortcomings and knowledge deficits were also identified. The clinical application of EBC collection and its biomarkers are currently still limited by several of these knowledge gaps, hence further guidelines for standardisation are required to ensure external validity. Using related articles produced since the publication of the ATS/ERS Task Force report, this paper attempts to provide a comprehensive update to the original guideline and review the methodological shortcomings identified. This review can hopefully serve as a yardstick for future studies involving this emerging clinical tool.
Collapse
Affiliation(s)
- Hasib Ahmadzai
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Choi KI, Hwang SJ, Dai Z, Chan Kang Y, Lee JH. Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics. RSC Adv 2014. [DOI: 10.1039/c4ra06654e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An anomalous humidity dependence of gas sensing characteristics is found for a Rh-loaded WO3 sensor, where the resistance and gas response increased in humid atmospheres.
Collapse
Affiliation(s)
- Kwon-Il Choi
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Su-Jin Hwang
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Zhengfei Dai
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| |
Collapse
|