1
|
Cai W, Wu A, Lin Z, Cao W, Pathak JL, Jaspers RT, Li R, Li X, Zheng K, Lin Y, Zhou N, Zhang X, Zhu Y, Zhang Q. S-propargyl-cysteine attenuates temporomandibular joint osteoarthritis by regulating macrophage polarization via Inhibition of JAK/STAT signaling. Mol Med 2025; 31:128. [PMID: 40197110 PMCID: PMC11974036 DOI: 10.1186/s10020-025-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) is a disease characterized by cartilage degradation and synovial inflammation, with limited effective treatment currently. Synovial macrophage polarization is pivotal in TMJ-OA progression, making it a promising therapeutic aspect. This study investigated the effects of S-propargyl-cysteine (SPRC), an endogenous H2S donor, on macrophage polarization and its therapeutic potential in alleviating TMJ-OA. METHODS A MIA-induced TMJ-OA rat model and LPS-stimulated RAW264.7 macrophages were employed to evaluate the effects of SPRC in vivo and in vitro. TMJ bone and cartilage were analyzed via micro-CT and histological methods, while macrophage polarization markers expression were assessed via RT-qPCR, western blot, and immunofluorescence. RNA sequencing was performed on macrophages, and the JAK2/STAT3 signaling pathway was validated using the JAK2-specific inhibitor AG490. The direct effects of SPRC on rat primary condylar chondrocytes were examined by evaluating ECM synthesis and degradation. Co-culture experiments further assessed macrophage-chondrocyte interactions. RESULTS SPRC significantly alleviated cartilage and bone damage in the TMJ-OA rat model, as demonstrated by improved bone volume and cartilage structure. SPRC reduced pro-inflammatory M1 macrophage infiltration and enhanced anti-inflammatory M2 macrophage polarization. SPRC effectively inhibited the JAK2/STAT3, leading to reduction of inflammatory markers, including TNF-α, IL-6, and iNOS. Co-culture experiments revealed that SPRC-treated macrophage-conditioned medium improved chondrocyte metabolic activity and restored ECM integrity. CONCLUSIONS SPRC-modulated macrophage polarization alleviates TMJ-OA via JAK/STAT downregulation, thereby reducing synovial inflammation and cartilage degradation. These findings position SPRC as a promising therapeutic candidate for TMJ-OA and provide insights into novel strategies targeting macrophage polarization and synovium-cartilage crosstalk.
Collapse
Affiliation(s)
- Wenyi Cai
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Antong Wu
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Zhongxiao Lin
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Cao
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Janak L Pathak
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Richard T Jaspers
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Rui Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Xin Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Kaihan Zheng
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Yufu Lin
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China
| | - Na Zhou
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
| | - Xin Zhang
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Room 210, Block E, Avenida Wai Long, Taipa, Macau, China.
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, 195 Dongfeng Road (West), Yuexiu District, Guangzhou, Guangdong, 510140, China.
| |
Collapse
|
2
|
Jacob J, Aggarwal A, Bhattacharyya S, Sahni D, Sharma V, Aggarwal A. Fisetin and resveratrol exhibit senotherapeutic effects and suppress cellular senescence in osteoarthritic cartilage-derived chondrogenic progenitor cells. Eur J Pharmacol 2025; 997:177573. [PMID: 40189080 DOI: 10.1016/j.ejphar.2025.177573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Chondrogenic progenitor cells (CPCs) in the articular cartilage of knee osteoarthritis (OA) patients exhibit cellular senescence and its associated secretory phenotype (SASP). We hypothesized that the senescence of CPCs can be suppressed using natural compounds. This study aimed to evaluate the senotherapeutic effects of fisetin and resveratrol to suppress the cellular senescence in CPCs. In vitro, pre-treatment of CPCs with increasing doses of fisetin and resveratrol (5μM-100μM) were non-cytotoxic, decreased the senescence index and dampened the expression of cellular senescence markers, p53 and p38MAPK. Additionally, SASP-related genes and proteins (MMP-9, MMP13) and inflammatory mediators (IL-1β, TGF-β, and IL-6) were downregulated. Further, in silico analysis confirmed the high binding affinity of these natural drugs to OA-related proteins. Overall, fisetin and resveratrol dampened the senescence of CPCs by downregulating the p53 effector protein and effectively reducing the SASP. From this study, natural compound candidates proved to be potential drug candidates that suppress senescence via p53.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Aditya Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Kim H, Kim J, Park SH, Kim J, Gwon Y, Lee M, Park SJ. Porcine-Derived Chondroitin Sulfate Sodium Alleviates Osteoarthritis in HTB-94 Cells and MIA-Induced SD Rat Models. Int J Mol Sci 2025; 26:521. [PMID: 39859238 PMCID: PMC11764645 DOI: 10.3390/ijms26020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. In vitro study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation. In vivo study, an MIA-induced OA rat model was used, and CS (62, 124, and 248 mg/kg b.w.) was orally administered for 4 weeks. Key parameters, such as exercise capacity, micro-CT, histological evaluation of joint tissues, serum inflammatory markers, and the expression of mRNA and proteins (inflammatory, cartilage synthesis and degradation, and apoptosis markers), were analyzed. Porcine-derived CS significantly reduced PGE2, NO, and extracellular matrix degradation marker (COMP and CTX-II) levels and increased the expression of cartilage synthesis-related genes and proteins in both HTB-94 cells and the MIA-induced rats. Additionally, CS modulated cartilage degradation pathways and notably inhibited apoptosis in vivo. The effects of porcine CS were comparable to the NSAID ibuprofen, demonstrating its potential as an anti-inflammatory and chondroprotective agent for OA management and dietary supplementation.
Collapse
Affiliation(s)
- Hyelim Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Hoo Park
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea
| | - Yuri Gwon
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea
| | - Minhee Lee
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Park YM, Shin DY, Lee HY, Hwang HM, Kim JG, Kim BS, Lee SH, Lee SC, Kim MJ, Yang HJ, Kim MS, Bae JS. Pinus densiflora Root Extract Attenuates Osteoarthritis Progression by Inhibiting Inflammation and Cartilage Degradation in Interleukin-1β and Monosodium Iodoacetate-Induced Osteoarthritis Models. Nutrients 2024; 16:3882. [PMID: 39599668 PMCID: PMC11597245 DOI: 10.3390/nu16223882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in vivo OA models. METHODS/RESULTS In an in vitro OA model, in which SW1353 human chondrosarcoma cells were treated with interleukin (IL)-1β, PDREP treatment significantly reduced the mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 while enhancing collagen type II alpha 1 (Col2a1) mRNA level, and decreased IL-6 and prostaglandin E2 (PGE2) levels. In addition, PDREP inhibited the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), p38, nuclear factor-kappa B (NF-κB), and the expression of inducible nitric oxide synthase (iNOS). In a monosodium iodoacetate (MIA)-induced OA rat model, the administration of PDREP resulted in decreased OA clinical indices, improved weight-bearing indices and gait patterns, reduced histological damage, and lowered serum inflammatory cytokine and MMPs expression. Furthermore, PDREP downregulated the phosphorylation of ERK, JNK, p38, and NF-κB, as well as the expression of iNOS, consistent with the in vitro findings. CONCLUSIONS These results suggest that PDREP exhibits anti-inflammatory and joint-improving effects and has potential as a therapeutic strategy or functional food for the treatment of OA.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dong Yeop Shin
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Hak Yong Lee
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Hai Min Hwang
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Jae Gon Kim
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Sang Ho Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Sang Choon Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Min Jung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Hye Jeong Yang
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Myung-Sunny Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
5
|
Yuan Y, Zeng W. An Overview of Multifaceted Applications and the Future Prospects of Glyceroglycolipids in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373652 DOI: 10.1021/acs.jafc.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glyceroglycolipids (GGLs) are a class of lipid molecules that contain a glycerol backbone and one or more carbohydrate moieties, giving them amphipathic properties with both hydrophilic and hydrophobic regions. This amphipathic nature is fundamental for composing cell membrane lipid bilayers. These compounds are primarily distributed on the inner chloroplast membranes of plants and exhibit a unique structure with numerous biological activities. Moreover, GGLs play a pivotal role in photosynthesis and energy conversion in plants and effectively respond to environmental stressors. This Review discusses the distribution, synthesis pathways, and functions of GGLs in plants and describes the recent updates on various methods for extracting, isolating, and identifying GGLs. Finally, this Review discusses the biological activities of plant GGLs, including their anti-inflammatory, antiviral, and anticancer properties, and highlights their potential applications in the fields of pharmaceuticals, food, and cosmetics. This Review provides insights into GGLs, offering research support for the application of these natural molecules in the realm of holistic health.
Collapse
|
6
|
Korsten SGPJ, Hartog M, Berends AJ, Koenders MI, Popa CD, Vromans H, Garssen J, van de Ende CHM, Vermeiden JPW, Willemsen LEM. A Sustained-Release Butyrate Tablet Suppresses Ex Vivo T Helper Cell Activation of Osteoarthritis Patients in a Double-Blind Placebo-Controlled Randomized Trial. Nutrients 2024; 16:3384. [PMID: 39408351 PMCID: PMC11478393 DOI: 10.3390/nu16193384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Degenerative joint disease osteoarthritis (OA) is characterized by the degeneration of cartilage, synovial inflammation and low-grade systemic inflammation in association with microbial dysbiosis and intestinal barrier defects. Butyrate is known for its anti-inflammatory and barrier protective effects and might benefit OA patients. In a double-blind placebo-controlled randomized trial, the effects of four to five weeks of oral treatment with sustained-release (SR) butyrate tablets (600 mg/day) on systemic inflammation and immune function were studied in hand OA patients. Serum markers for systemic inflammation and lipopolysaccharide (LPS) leakage were measured and ex vivo stimulation of whole blood or peripheral blood mononuclear cells (PBMCs) was performed at baseline and after treatment. Butyrate treatment did not affect the serum markers nor the cytokine release of ex vivo LPS-stimulated whole blood or PBMCs nor the phenotype of restimulated monocytes. By contrast, butyrate treatment reduced the percentage of activated T helper (Th) cells and the Th17/Treg ratio in αCD3/CD28-activated PBMCs, though cytokine release upon stimulation remained unaffected. Nevertheless, the percentage of CD4+IL9+ cells was reduced by butyrate as compared to the placebo. In both groups, the frequency of Th1, Treg, Th17, activated Th17, CD4+IFNγ+ and CD4+TNFα+ cells was reduced. This study shows a proof of principle of some immunomodulatory effects using a SR butyrate treatment in hand OA patients. The inflammatory phenotype of Th cells was reduced, as indicated by a reduced percentage of Th9 cells, activated Th cells and improved Th17/Treg balance in ex vivo αCD3/CD28-activated PBMCs. Future studies are warranted to further optimize the butyrate dose regime to ameliorate inflammation in OA patients.
Collapse
Affiliation(s)
- Sandra G. P. J. Korsten
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
| | - Merel Hartog
- Department of Research, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands; (M.H.); (C.H.M.v.d.E.)
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
| | - Alinda J. Berends
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Calin D. Popa
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
- Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Herman Vromans
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
- Danone/Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Cornelia H. M. van de Ende
- Department of Research, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands; (M.H.); (C.H.M.v.d.E.)
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
| | | | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
| |
Collapse
|
7
|
Xu L, Ma J, Zhou C, Shen Z, Zhu K, Wu X, Chen Y, Chen T, Lin X. Identification of key hub genes in knee osteoarthritis through integrated bioinformatics analysis. Sci Rep 2024; 14:22437. [PMID: 39341952 PMCID: PMC11439059 DOI: 10.1038/s41598-024-73188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic joint disease globally. Synovial inflammation plays a pivotal role in its pathogenesis, preceding cartilage damage. Identifying biomarkers in osteoarthritic synovial tissues holds promise for early diagnosis and targeted interventions. Gene expression profiles were obtained from the Gene Expression Omnibus database. Subsequent analyses included differential expression gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) on the combined datasets. We performed functional enrichment analysis on the overlapping genes between DEGs and module genes and constructed a protein-protein interaction network. Using Cytoscape software, we identified hub genes related to the disease and conducted gene set enrichment analysis on these hub genes. The CIBERSORT algorithm was employed to evaluate the correlation between hub genes and the abundance of immune cells within tissues. Finally, Mendelian randomization analysis was utilized to assess the potential of these hub genes as biomarkers. We identified 46 differentially expressed genes (DEGs), comprising 20 upregulated and 26 downregulated genes. Using WGCNA, we constructed a gene co-expression network and selected the most relevant modules, resulting in 24 intersecting genes with the DEGs. KEGG enrichment analysis of the intersecting genes identified the IL-17 signaling pathway, associated with inflammation, as the most significant pathway. Cytoscape software was utilized to rank the candidate genes, with JUN, ATF3, FOSB, NR4A2, and IL6 emerging as the top five based on the Degree algorithm. A nomogram model incorporating these five genes, supported by ROC curve analysis, validated their diagnostic efficacy. Immune infiltration and correlation analysis revealed that macrophages were significantly associated with JUN (p < 0.01), FOSB (p < 0.01), and NR4A2 (p < 0.05). Additionally, T follicular helper cells showed significant associations with ATF3 (p < 0.05), FOSB (p < 0.05), and JUN (p < 0.05). Mendelian randomization analysis provided strong evidence linking JUN (IVW: OR = 0.910, p = 0.005) and IL6 (IVW: OR = 1.024, p = 0.026) with KOA. Through the utilization of various bioinformatics analysis methods, we have pinpointed key hub genes relevant to knee osteoarthritis. These findings hold promise for advancing pre-symptomatic diagnostic strategies and enhancing our understanding of the biological underpinnings behind knee osteoarthritis susceptibility genes.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhe Shen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Chen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Chen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Xue H, Zhou H, Lou Q, Yuan P, Feng Z, Qiao L, Zhang J, Xie H, Shen Y, Ma Q, Wang S, Zhang B, Ye H, Cheng J, Sun X, Shi P. Urolithin B reduces cartilage degeneration and alleviates osteoarthritis by inhibiting inflammation. Food Funct 2024; 15:3552-3565. [PMID: 38465899 DOI: 10.1039/d3fo03793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Osteoarthritis is the most prevalent degenerative joint disease reported worldwide. Conventional treatment strategies mainly focus on medication and involve surgical joint replacement. The use of these therapies is limited by gastrointestinal complications and the lifespan of joint prostheses. Hence, safe and efficacious drugs are urgently needed to impede the osteoarthritis progression. Urolithin B, a metabolite of ellagic acid in the gut, exhibits anti-inflammatory and antioxidant properties; however, its role in osteoarthritis remains unclear. In this study, we demonstrated that urolithin B efficiently inhibits the inflammatory factor-induced production of matrix metalloproteinases (MMP3 and MMP13) in vitro and upregulates the expression of type II collagen and aggrecan. Urolithin B alleviates cartilage erosion and osteophyte formation induced by anterior cruciate ligament transections. Moreover, urolithin B inhibits the activation of the NF-κB pathway by reducing the phosphorylation of Iκb-α and the nuclear translocation of P65. In summary, urolithin B significantly inhibits inflammation and alleviates osteoarthritis. Hence, urolithin B can be considered a potential agent suitable for the effective treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongyu Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiateng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongwei Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Wang M, Gao Z, Zhang Y, Zhao Q, Tan X, Wu S, Ding L, Liu Y, Qin S, Gu J, Xu L. Syringic acid promotes cartilage extracellular matrix generation and attenuates osteoarthritic cartilage degradation by activating TGF-β/Smad and inhibiting NF-κB signaling pathway. Phytother Res 2024; 38:1000-1012. [PMID: 38126609 DOI: 10.1002/ptr.8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported. Therefore, the purpose of our study was to investigate the effect and mechanism of SA on OA in a mouse model of medial meniscal destabilization. The expressions of genes were evaluated by qPCR or western blot or immunofluorescence. RNA-seq analysis was performed to examine gene transcription alterations in chondrocytes treated with SA. The effect of SA on OA was evaluated using destabilization of the medial meniscus model of mice. We found that SA had no obvious toxic effect on chondrocytes, while promoting the expressions of chondrogenesis-related marker genes. The results of RNA-seq analysis showed that extracellular matrix-receptor interaction and transforming growth factor-β (TGF-β) signaling pathways were enriched among the up-regulated genes by SA. Mechanistically, we demonstrated that SA transcriptionally activated Smad3. In addition, we found that SA inhibited the overproduction of lipopolysaccharide-induced inflammation-related cytokines including tumor necrosis factor-α and interleukin-1β, as well as matrix metalloproteinase 3 and matrix metalloproteinase 13. The cell apoptosis and nuclear factor-kappa B (NF-κB) signaling were also inhibited by SA treatment. Most importantly, SA attenuated cartilage degradation in a mouse OA model. Taken together, our study demonstrated that SA could alleviate cartilage degradation in OA by activating the TGF-β/Smad and inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiangqiang Zhao
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Tan
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- School of Biomedical Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiangyong Gu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Kamiab Z, Khorramdelazad H, Kafi M, Jafarzadeh A, Mohammadi-Shahrokhi V, Bagheri-Hosseinabadi Z, Saeed Askari P, Abbasifard M. Role of Interleukin-17 family cytokines in disease severity of patients with knee osteoarthritis. Adv Rheumatol 2024; 64:11. [PMID: 38268022 DOI: 10.1186/s42358-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. METHODS In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. RESULTS Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. CONCLUSIONS The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.
Collapse
Affiliation(s)
- Zahra Kamiab
- Department of Community Medicine, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Mehdi Kafi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Tehran, Iran
| | - Vahid Mohammadi-Shahrokhi
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Pooya Saeed Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Kerman, Iran
- Department of Internal Medicine,, Faculty of Medicine, Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran.
| |
Collapse
|
12
|
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, Mantella L, Agarwal V, Sharma A, Singh IM, Tsoulfas G, Laird JR, Faa G, Teji J, Turk M, Viskovic K, Ruzsa Z, Mavrogeni S, Rathore V, Miner M, Kalra MK, Isenovic ER, Saba L, Fouda MM, Suri JS. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 2023; 43:1965-1982. [PMID: 37648884 DOI: 10.1007/s00296-023-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™-aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
Collapse
Affiliation(s)
- Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Asia Pacific Vascular Society, New Delhi, 110001, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13 9PL, UK
| | - Narendra N Khanna
- Asia Pacific Vascular Society, New Delhi, 110001, India
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | | | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Aman Sharma
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124, Thessaloniki, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753, Delmenhorst, Germany
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, UHID, 10 000, Zagreb, Croatia
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Martin Miner
- Men's Health Centre, Miriam Hospital Providence, Providence, RI, 02906, USA
| | - Manudeep K Kalra
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
13
|
Tay ML, Bolam SM, Monk AP, McGlashan SR, Young SW, Matthews BG. Better post-operative outcomes at 1-year follow-up are associated with lower levels of pre-operative synovitis and higher levels of IL-6 and VEGFA in unicompartmental knee arthroplasty patients. Knee Surg Sports Traumatol Arthrosc 2023; 31:4109-4116. [PMID: 37449990 PMCID: PMC10471720 DOI: 10.1007/s00167-023-07503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Osteoarthritis (OA) is associated with inflammation, and residual inflammation may influence outcomes following knee arthroplasty. This may be more relevant for patients undergoing unicompartmental knee arthroplasty (UKA) due to larger remaining areas of native tissue. This study aimed to: (1) characterise inflammatory profiles for medial UKA patients and (2) investigate whether inflammation markers are associated with post-operative outcomes. METHODS This prospective, observational study has national ethics approval. Bloods, synovial fluid, tibial plateaus and synovium were collected from medial UKA patients in between 1 January 2021 and 31 December 2021. Cytokine and chemokine concentrations in serum and synovial fluid (SF) were measured with multiplexed assays. Disease severity of cartilage and synovium was assessed using validated histological scores. Post-operative outcomes were measured with Oxford Knee Score (OKS), Forgotten Joint Score (FJS-12) and pain scores. RESULTS The study included 35 patients. SF VEGFA was negatively correlated with pre-operative pain at rest (r - 0.5, p = 0.007), and FJS-12 at six-week (r 0.44, p = 0.02), six-month (r 0.61, p < 0.01) and one-year follow-up (r 0.63, p = 0.03). Serum and SF IL-6 were positively correlated with OKS at early follow-up (serum 6 weeks, r 0.39, p = 0.03; 6 months, r 0.48, p < 0.01; SF 6 weeks, r 0.35, p = 0.04). At six weeks, increased synovitis was negatively correlated with improvements in pain at rest (r - 0.41, p = 0.03) and with mobilisation (r - 0.37, p = 0.047). CONCLUSION Lower levels of synovitis and higher levels of IL-6 and VEGFA were associated with better post-operative outcomes after UKA, which could be helpful for identifying UKA patients in clinical practice. LEVEL OF EVIDENCE Level IV case series.
Collapse
Affiliation(s)
- Mei Lin Tay
- Department of Surgery, Faculty of Medical and Health Sciences (FMHS), University of Auckland, Private Bag 92-019, Auckland, 1023, New Zealand.
- Department of Orthopaedic Surgery, North Shore Hospital, Private Bag 93-503, Auckland, 0620, New Zealand.
| | - Scott M Bolam
- Department of Surgery, Faculty of Medical and Health Sciences (FMHS), University of Auckland, Private Bag 92-019, Auckland, 1023, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Private Bag 92-024, Auckland, New Zealand
| | - A Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Private Bag 92-024, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92-019, Auckland, 0620, New Zealand
| | - Sue R McGlashan
- Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92-019, Auckland, 0620, New Zealand
| | - Simon W Young
- Department of Surgery, Faculty of Medical and Health Sciences (FMHS), University of Auckland, Private Bag 92-019, Auckland, 1023, New Zealand
- Department of Orthopaedic Surgery, North Shore Hospital, Private Bag 93-503, Auckland, 0620, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 0620, New Zealand
| |
Collapse
|
14
|
Okuyan HM, Yurtal Z, Karaboğa İ, Kaçmaz F, Kalacı A. Ebselen, an Active Seleno-Organic Compound, Alleviates Articular Cartilage Degeneration in a Rat Model of Knee Osteoarthritis. Biol Trace Elem Res 2023; 201:3919-3927. [PMID: 36357655 DOI: 10.1007/s12011-022-03472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Osteoarthritis (OA) is a prevalent articular disease mainly characterized by extracellular matrix degradation, apoptosis, and inflammation, which lead to cartilage destruction and abnormal bone metabolism. With undesirable side effects, current limited symptomatic treatments are aimed at relieving pain and improving joint mobility in patients with OA. Intra-articular (IA) hyaluronic acid (HA) injection, as a nonsurgical therapy, is commonly used in the clinical management of knee OA, but the efficacy of this therapeutic option remains controversial. Ebselen has tremendous pharmacological importance for some diseases due to its antioxidant, antiapoptotic, and anti-inflammatory features. However, there is no research examining the therapeutic effect of Ebselen in OA using the rat OA model. Therefore, we aimed to investigate the therapeutic effect of Ebselen on cartilage degeneration and its role in bone morphogenetic protein 2 (BMP2) and nuclear factor kappa B (NF-κB) signaling in the molecular pathogenesis of OA. We induced a knee OA model in rats with an IA injection of monosodium-iodoacetate (MIA). After the treatment of Ebselen, we evaluated its chondroprotective effects by morphological, histopathological, and immunohistochemical methods and an enzyme-linked immunosorbent assay. We report for the first time that Ebselen treatment alleviated articular cartilage degeneration in the rat knee OA model and reduced MIA-induced BMP2 and NF-κB expressions. In addition, our results unveiled that Ebselen decreased IL-β and IL-6 levels but did not affect COMP levels in the rat serum. Ebselen could be a promising therapeutic drug for the prevention and treatment of OA by alleviating cartilage degeneration and regulating BMP2 and NF-κB expressions.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Biomedical Engineering, Department of Physiotherapy and Rehabilitation-Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey.
| | - Ziya Yurtal
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İhsan Karaboğa
- Department of Emergency and Disaster Management, School of Health, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Filiz Kaçmaz
- Department of Molecular Biochemistry and Genetics, Graduate School of Health Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Aydıner Kalacı
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
15
|
Rocchetti MT, Bizzoca D, Moretti L, Ragni E, Moretti FL, Vicenti G, Solarino G, Rizzello A, Petruzzella V, Palese LL, Scacco S, Banfi G, Moretti B, Gnoni A. A Gel-Based Proteomic Analysis Reveals Synovial α-Enolase and Fibrinogen β-Chain Dysregulation in Knee Osteoarthritis: A Controlled Trial. J Pers Med 2023; 13:916. [PMID: 37373906 PMCID: PMC10305339 DOI: 10.3390/jpm13060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The identification of synovial fluid (SF) biomarkers that could anticipate the diagnosis of osteoarthritis (OA) is gaining increasing importance in orthopaedic clinical practice. This controlled trial aims to assess the differences between the SF proteome of patients affected by severe OA undergoing Total Knee Replacement (TKR) compared to control subjects (i.e., subjects younger than 35, undergoing knee arthroscopy for acute meniscus injury). METHODS The synovial samples were collected from patients with Kellgren Lawrence grade 3 and 4 knee osteoarthritis undergoing THR (study group) and young patients with meniscal tears and no OA signs undergoing arthroscopic surgery (control group). The samples were processed and analyzed following the protocol defined in our previous study. All of the patients underwent clinical evaluation using the International Knee Documentation Committee (IKDC) subjective knee evaluation (main outcome), Knee Society Clinical Rating System (KSS), Knee injury and Osteoarthritis Outcome Score (KOOS), and Visual Analogue Scale (VAS) for pain. The drugs' assumptions and comorbidities were recorded. All patients underwent preoperative serial blood tests, including complete blood count and C-Reactive Protein (CRP). RESULTS The synovial samples' analysis showed a significantly different fibrinogen beta chain (FBG) and alpha-enolase 1 (ENO1) concentration in OA compared to the control samples. A significant correlation between clinical scores, FBG, and ENO1 concentration was observed in osteoarthritic patients. CONCLUSIONS Synovial fluid FBG and ENO1 concentrations are significantly different in patients affected by knee OA compared with non-OA subjects.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Davide Bizzoca
- Orthopaedics Unit—UOSD Vertebral Surgery, DAI Neuroscience, Sense Organs and Locomotor System, AOU Consorziale Policlinico, 70124 Bari, Italy (G.V.); (G.S.)
- PhD Course in Public Health, Clinical Medicine and Oncology, DiMePre-J, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Lorenzo Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, DAI Neuroscience, Sense Organs and Locomotor System, AOU Consorziale Policlinico, 70124 Bari, Italy (G.V.); (G.S.)
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, 20161 Milano, Italy; (E.R.)
| | - Francesco Luca Moretti
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, 20161 Milano, Italy; (E.R.)
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Giovanni Vicenti
- Orthopaedics Unit—UOSD Vertebral Surgery, DAI Neuroscience, Sense Organs and Locomotor System, AOU Consorziale Policlinico, 70124 Bari, Italy (G.V.); (G.S.)
| | - Giuseppe Solarino
- Orthopaedics Unit—UOSD Vertebral Surgery, DAI Neuroscience, Sense Organs and Locomotor System, AOU Consorziale Policlinico, 70124 Bari, Italy (G.V.); (G.S.)
| | - Alessandro Rizzello
- Clinical Biochemistry, DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.R.); (S.S.)
| | - Vittoria Petruzzella
- Clinical Biochemistry, DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.R.); (S.S.)
| | - Luigi Leonardo Palese
- Clinical Biochemistry, DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.R.); (S.S.)
| | - Salvatore Scacco
- Clinical Biochemistry, DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.R.); (S.S.)
| | - Giuseppe Banfi
- IRCCS Galeazzi-Sant’Ambrogio, Via Cristina Belgioioso 173, 20157 Milano, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Biagio Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, DAI Neuroscience, Sense Organs and Locomotor System, AOU Consorziale Policlinico, 70124 Bari, Italy (G.V.); (G.S.)
| | - Antonio Gnoni
- Clinical Biochemistry, DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.R.); (S.S.)
| |
Collapse
|
16
|
Pezzanite LM, Chow L, Griffenhagen GM, Bass L, Goodrich LR, Impastato R, Dow S. Distinct differences in immunological properties of equine orthobiologics revealed by functional and transcriptomic analysis using an activated macrophage readout system. Front Vet Sci 2023; 10:1109473. [PMID: 36876001 PMCID: PMC9978772 DOI: 10.3389/fvets.2023.1109473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Multiple biological therapies for orthopedic injuries are marketed to veterinarians, despite a lack of rigorous comparative biological activity data to guide informed decisions in selecting a most effective compound. Therefore, the goal of this study was to use relevant bioassay systems to directly compare the anti-inflammatory and immunomodulatory activity of three commonly used orthobiological therapies (OTs): mesenchymal stromal cells (MSC), autologous conditioned serum (ACS), and platelet rich plasma (PRP). Methods Equine monocyte-derived macrophages were used as the readout system to compare therapies, including cytokine production and transcriptomic responses. Macrophages were stimulated with IL-1ß and treated 24 h with OTs, washed and cultured an additional 24 h to generate supernatants. Secreted cytokines were measured by multiplex immunoassay and ELISA. To assess global transcriptomic responses to treatments, RNA was extracted from macrophages and subjected to full RNA sequencing, using an Illumina-based platform. Data analysis included comparison of differentially expressed genes and pathway analysis in treated vs. untreated macrophages. Results All treatments reduced production of IL-1ß by macrophages. Secretion of IL-10 was highest in MSC-CM treated macrophages, while PRP lysate and ACS resulted in greater downregulation of IL-6 and IP-10. Transcriptomic analysis revealed that ACS triggered multiple inflammatory response pathways in macrophages based on GSEA, while MSC generated significant downregulation of inflammatory pathways, and PRP lysate induced a mixed immune response profile. Key downregulated genes in MSC-treated cultures included type 1 and type 2 interferon response, TNF-α and IL-6. PRP lysate cultures demonstrated downregulation of inflammation-related genes IL-1RA, SLAMF9, ENSECAG00000022247 but concurrent upregulation of TNF-α, IL-2 signaling, and Myc targets. ACS induced upregulation of inflammatory IL-2 signaling, TNFα and KRAS signaling and hypoxia, but downregulation of MTOR signaling and type 1 interferon signaling. Discussion These findings, representing the first comprehensive look at immune response pathways for popular equine OTs, reveal distinct differences between therapies. These studies address a critical gap in our understanding of the relative immunomodulatory properties of regenerative therapies commonly used in equine practice to treat musculoskeletal disease and will serve as a platform from which further in vivo comparisons may build.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Gregg M. Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Renata Impastato
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|
18
|
Sekelova T, Danisovic L, Cehakova M. Rejuvenation of Senescent Mesenchymal Stem Cells to Prevent Age-Related Changes in Synovial Joints. Cell Transplant 2023; 32:9636897231200065. [PMID: 37766590 PMCID: PMC10540599 DOI: 10.1177/09636897231200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal/medicinal stem/signaling cells (MSCs), well known for regenerative potential, have been involved in hundreds of clinical trials. Even if equipped with reparative properties, aging significantly decreases their biological activity, representing a major challenge for MSC-based therapies. Age-related joint diseases, such as osteoarthritis, are associated with the accumulation of senescent cells, including synovial MSCs. An impaired ability of MSCs to self-renew and differentiate is one of the main contributors to the human aging process. Moreover, senescent MSCs (sMSCs) are characterized by the senescence-messaging secretome (SMS), which is typically manifested by the release of molecules with an adverse effect. Many factors, from genetic and metabolic pathways to environmental stressors, participate in the regulation of the senescent phenotype of MSCs. To better understand cellular senescence in MSCs, this review discusses the characteristics of sMSCs, their role in cartilage and synovial joint aging, and current rejuvenation approaches to delay/reverse age-related pathological changes, providing evidence from in vivo experiments as well.
Collapse
Affiliation(s)
- Tatiana Sekelova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
20
|
Bizzoca D, Moretti L, Gnoni A, Moretti FL, Scacco S, Banfi G, Piazzolla A, Solarino G, Moretti B. The Usefulness of Synovial Fluid Proteome Analysis in Orthopaedics: Focus on Osteoarthritis and Periprosthetic Joint Infections. J Funct Morphol Kinesiol 2022; 7:97. [PMID: 36412759 PMCID: PMC9680387 DOI: 10.3390/jfmk7040097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Synovial fluid (SF) is a viscous and mucinous substance produced by the synovium, a specialized connective tissue that lines diarthrodial joints. SF represents a source of disease-related proteins that could be used as potential biomarkers in several articular diseases. Based on these findings the study of SF has been gaining increasing importance, in recent years. This review aims to summarize the usefulness of synovial fluid in orthopaedics research and clinical practice, mainly focusing on osteoarthritis (OA) and periprosthetic joint infections (PJIs). Proteomics of the SF has shown the up-regulation of several components of the classic complement pathway in OA samples, including C1, C2, C3, C4A, C4B, C5, and C4 C4BPA, thus depicting that complement is involved in the pathogenesis of OA. Moreover, proteomics has demonstrated that some pro-inflammatory cytokines, namely IL-6, IL-8, and IL-18, have a role in OA. Several SF proteins have been studied to improve the diagnosis of PJIs, including alpha-defensin (Alpha-D), leukocyte esterase (LE), c-reactive protein (CRP), interleukin-6 (IL-6), calprotectin and presepsin. The limits and potentials of these SF biomarkers will be discussed.
Collapse
Affiliation(s)
- Davide Bizzoca
- UOSD Spinal Surgery, Orthopaedics and Trauma Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, AOU Consorziale Policlinico di Bari, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Lorenzo Moretti
- UOSD Spinal Surgery, Orthopaedics and Trauma Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, AOU Consorziale Policlinico di Bari, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Clinical Biochemistry, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Francesco Luca Moretti
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Clinical Biochemistry, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | | | - Andrea Piazzolla
- UOSD Spinal Surgery, Orthopaedics and Trauma Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, AOU Consorziale Policlinico di Bari, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Giuseppe Solarino
- UOSD Spinal Surgery, Orthopaedics and Trauma Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, AOU Consorziale Policlinico di Bari, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Biagio Moretti
- UOSD Spinal Surgery, Orthopaedics and Trauma Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, AOU Consorziale Policlinico di Bari, University of Bari “Aldo Moro”, 70121 Bari, Italy
| |
Collapse
|
21
|
Christoforakis Z, Dermitzaki E, Paflioti E, Katrinaki M, Deiktakis M, H Tosounidis T, Ballalis K, Tsatsanis C, Venihaki M, Kontakis G. Correlation of systemic metabolic inflammation with knee osteoarthritis. Hormones (Athens) 2022; 21:457-466. [PMID: 35764781 DOI: 10.1007/s42000-022-00381-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE The aim of this study was to analyze local and systematic inflammatory status in knee osteoarthritis (KOA), focusing on intra-articular and remote adipose tissue depots, and to explore its potential association with metabolic syndrome (MetS). METHODS Patients (n = 27) with end-stage KOA were enrolled in the study and samples from infrapatellar fat pad (IFP), synovium, subcutaneous adipose tissue (SAT), synovial fluid (SF), and serum were collected. In homogenates from the tissues, mRNA expression of developmental endothelial locus-1 (DEL-1) was determined. Interleukin 6 (IL-6) and interleukin 8 (IL-8) were measured in tissues and SF and serum samples by enzyme-linked immunosorbent assay. RESULTS Fifteen patients fulfilled MetS criteria (w-MetS group) and 12 did not (non-MetS). In the entire population, IL-6 levels were significantly higher in IFP compared to synovium (median (interquartile range), 26.05 (26.16) vs. 15.75 (14.8) pg/mg of total protein, p = 0.043), but not to SAT (17.89 (17.9) pg/mg); IL-8 levels were significantly higher in IFP (17.3 (19.3) pg/mg) and SAT (24.2 (26) pg/mg) when compared to synovium (8.45 (6.17) pg/mg) (p = 0.029 and < 0.001, respectively). Significantly higher IL-6 concentrations in SF were detected in w-MetS patients compared to non-MetS (194.8 (299) vs. 64.1 (86.9) pg/ml, p = 0.027). Finally, DEL-1 mRNA expression was higher in IFP compared to synovium (eightfold, p = 0.019). CONCLUSIONS Our findings support the critical role of IFP in knee joint homeostasis and progression of KOA. Furthermore, in KOA patients w-MetS, SAT is thought to play an important role in intra-knee inflammation via secretion of soluble inflammatory mediators, such as IL-6.
Collapse
Affiliation(s)
- Zacharias Christoforakis
- Department of Orthopaedics and Traumatology, University Hospital of Heraklion, Crete, Greece
- Department of Orthopaedics, General Hospital of Agios Nikolaos, Crete, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eirini Dermitzaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eleni Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Marianna Katrinaki
- Department of Clinical Chemistry-Biochemistry, University Hospital of Heraklion, Crete, Greece
| | - Michail Deiktakis
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Theodoros H Tosounidis
- Department of Orthopaedics and Traumatology, University Hospital of Heraklion, Crete, Greece
| | - Konstantine Ballalis
- Department of Orthopaedics and Traumatology, University Hospital of Heraklion, Crete, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - George Kontakis
- Department of Orthopaedics and Traumatology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
22
|
Terzi MY, Okuyan HM, Karaboğa İ, Gökdemir CE, Tap D, Kalacı A. Urotensin-II Prevents Cartilage Degeneration in a Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yigit S, Tekcan A, Inanir A, Nursal AF, Akkanat S, Tural E. Effect of IL-6 -174G/C and -572G/C variants on susceptibility to osteoarthritis in Turkish population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:65-76. [PMID: 35924736 DOI: 10.1080/15257770.2022.2107219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage in which inflammatory mechanisms play a major role in the pathogenesis. Interleukin-6 (IL6), a multifunctional cytokine, can trigger osteoclast differentiation and bone resorption. Our purpose in this study was to evaluate the association of IL-6 -174 G/C (rs1800795) and -572 G/C (rs1800796) variants with the susceptibility to OA. One hundred fifty OA patients and 150 healthy individuals were enrolled in the study. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the IL-6 gene variants. The results of analyses were evaluated for statistical significance. The pain intensity was assessed using the Visual Analogue Scale (VAS). There was a statistically significant difference in the genotype and allele frequencies of the IL-6 -174 G/C variant between patients with OA and control groups (p = 0.001, p = 0.002, respectively). IL-6 -174 G/C GG genotype and G allele were more prevalent in patients with OA. We found that the IL-6 -572 G/C variant was not different between patients and controls in either genotype distribution and allele frequency. IL-6 174 G/C and -572 G/C loci GG-GG combined genotype was significantly higher in OA patients (p = 0.00). Our study suggests that there was a strong association between the IL-6 -174 G/C variant and OA in the Turkish population. Further studies on populations of different ethnic background are necessary to prove the association of IL-6 variants with OA.
Collapse
Affiliation(s)
- Serbulent Yigit
- Faculty of Veterinary, Department of Genetics, Ondokuz Mayıs University, Samsun, Turkey.,Faculty of Medicine, Department of Medical Biology, Gaziosmanpasa University, Tokat, Turkey
| | - Akin Tekcan
- Faculty of Medicine, Departments of Medical Biology, Amasya University, Amasya, Turkey
| | - Ahmet Inanir
- Dr. Ahmet Inanir Clinic, Kecioren, Ankara, Turkey
| | - Ayse Feyda Nursal
- Faculty of Medicine, Departments of Medical Genetics, Hitit University, Corum, Turkey
| | - Songul Akkanat
- Faculty of Medicine, Department of Medical Biology, Gaziosmanpasa University, Tokat, Turkey
| | - Ercan Tural
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
24
|
Aberrant Expression of COX-2 and FOXG1 in Infrapatellar Fat Pad-Derived ASCs from Pre-Diabetic Donors. Cells 2022; 11:cells11152367. [PMID: 35954211 PMCID: PMC9367583 DOI: 10.3390/cells11152367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease resulting in limited mobility and severe disability. Type II diabetes mellitus (T2D) is a weight-independent risk factor for OA, but a link between the two diseases has not been elucidated. Adipose stem cells (ASCs) isolated from the infrapatellar fat pad (IPFP) may be a viable regenerative cell for OA treatment. This study analyzed the expression profiles of inflammatory and adipokine-related genes in IPFP-ASCs of non-diabetic (Non-T2D), pre-diabetic (Pre-T2D), and T2D donors. Pre-T2D ASCs exhibited a substantial decrease in levels of mesenchymal markers CD90 and CD105 with no change in adipogenic differentiation compared to Non-T2D and T2D IPFP-ASCs. In addition, Cyclooxygenase-2 (COX-2), Forkhead box G1 (FOXG1) expression and prostaglandin E2 (PGE2) secretion were significantly increased in Pre-T2D IPFP-ASCs upon stimulation by interleukin-1 beta (IL-1β). Interestingly, M1 macrophages exhibited a significant reduction in expression of pro-inflammatory markers TNFα and IL-6 when co-cultured with Pre-T2D IPFP-ASCs. These data suggest that the heightened systemic inflammation associated with untreated T2D may prime the IPFP-ASCs to exhibit enhanced anti-inflammatory characteristics via suppressing the IL-6/COX-2 signaling pathway. In addition, the elevated production of PGE2 by the Pre-T2D IPFP-ASCs may also suggest the contribution of pre-diabetic conditions to the onset and progression of OA.
Collapse
|
25
|
Alturaiki W, Alhamad A, Alturaiqy M, Mir SA, Iqbal D, Bin Dukhyil AA, Alaidarous M, Alshehri B, Alsagaby SA, Almalki SG, Alghofaili F, Choudhary RK, Almutairi S, Banawas S, Alosaimi B, Mubarak A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis 2022; 25:1013-1019. [PMID: 35748059 DOI: 10.1111/1756-185x.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1β, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION Overall, the findings suggested that IL-1β, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Main Laboratory and blood bank, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Marsh S, Constantin-Teodosiu T, Chapman V, Sottile V. In vitro Exposure to Inflammatory Mediators Affects the Differentiation of Mesenchymal Progenitors. Front Bioeng Biotechnol 2022; 10:908507. [PMID: 35813997 PMCID: PMC9257013 DOI: 10.3389/fbioe.2022.908507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of joint disease, and in particular osteoarthritis (OA), calls for novel treatment strategies to prevent disease progression in addition to existing approaches focusing mainly on the relief of pain symptoms. The inherent properties of mesenchymal stem cells (MSCs) make them an attractive candidate for novel tissue repair strategies, as these progenitors have the potential to differentiate into chondrocytes needed to replace degraded cartilage and can exert a modulating effect on the inflammatory environment of the diseased joint. However, the inflammatory environment of the joint may affect the ability of these cells to functionally integrate into the host tissue and exert beneficial effects, as hinted by a lack of success seen in clinical trials. Identification of factors and cell signalling pathways that influence MSC function is therefore critical for ensuring their success in the clinic, and here the effects of inflammatory mediators on bone marrow-derived MSCs were evaluated. Human MSCs were cultured in the presence of inflammatory mediators typically associated with OA pathology (IL-1β, IL-8, IL-10). While exposure to these factors did not produce marked effects on MSC proliferation, changes were observed when the mediators were added under differentiating conditions. Results collected over 21 days showed that exposure to IL-1β significantly affected the differentiation response of these cells exposed to chondrogenic and osteogenic conditions, with gene expression analysis indicating changes in MAPK, Wnt and TLR signalling pathways, alongside an increased expression of pro-inflammatory cytokines and cartilage degrading enzymes. These results highlight the value of MSCs as a preclinical model to study OA and provide a basis to define the impact of factors driving OA pathology on the therapeutic potential of MSCs for novel OA treatments.
Collapse
Affiliation(s)
- S. Marsh
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - T. Constantin-Teodosiu
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Sottile
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: V. Sottile,
| |
Collapse
|
27
|
Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies. Curr Rheumatol Rep 2022; 24:96-110. [PMID: 35404006 DOI: 10.1007/s11926-022-01061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Genetic engineering offers the possibility to simultaneously target multiple cellular pathways in the joints affected by osteoarthritis (OA). The purpose of this review is to summarize the ongoing efforts to develop disease-modifying osteoarthritis drugs (DMOADs) using genetic engineering, including targeting approaches, genome editing techniques, and delivery methods. RECENT FINDINGS Several gene circuits have been developed that reprogram cells to autonomously target inflammation, and their efficacy has been demonstrated in chondrocytes and stem cells. Gene circuits developed for metabolic disorders, such as those targeting insulin resistance and obesity, also have the potential to mitigate the impact of these conditions on OA onset and/or progression. Despite the strides made in characterizing the inflammatory environment of the OA joint, our incomplete understanding of how the multiple regulators interact to control signal transduction, gene transcription, and translation to protein limits the development of targeted disease-modifying therapeutics. Continuous advances in targeted genome editing, combined with online toolkits that simplify the design and production of gene circuits, have the potential to accelerate the discovery and clinical application of multi-target gene circuits with disease-modifying properties for the treatment of OA.
Collapse
|
28
|
Huang SUS, O’Sullivan KM. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs. Int J Mol Sci 2022; 23:ijms23073793. [PMID: 35409152 PMCID: PMC8998317 DOI: 10.3390/ijms23073793] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.
Collapse
|
29
|
Yu JS, Dare DM, Edon D, Sinatro AL, Sarver DC, Rodeo S, Dines JS, Mendias CL. Shoulder Lesions Do Not Increase Inflammatory Biomarkers in Patients Undergoing Surgery for Glenohumeral Instability: An Exploratory Study. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:4220356. [PMID: 38655158 PMCID: PMC11022782 DOI: 10.1155/2022/4220356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/10/2022] [Indexed: 04/26/2024]
Abstract
Circulating protein biomarkers have demonstrated utility as a diagnostic tool in predicting musculoskeletal disease severity, but their utility in the evaluation of shoulder lesions associated with shoulder instability is unknown. Thus, the purpose of this exploratory study was to determine whether preoperative biomarkers of cartilage turnover and inflammation are associated with specific shoulder lesions in shoulder instability. Thirty-three patients (29.9 ± 9.4 years of age, 4.5 ± 4.7 dislocations) undergoing surgical treatment for shoulder instability were assessed for the presence or absence of associated shoulder lesions. Biomarkers including cartilage oligomeric matrix protein (COMP), C-reactive protein (HS-CRP), interleukin-8 (IL-8), and macrophage inflammatory protein-1β (MIP-1b) were collected at the time of surgery. Patients with Hill-Sachs lesions had a 31% increase in COMP plasma levels (p=0.046). No other significant differences were observed for COMP, HS-CRP, IL-8, and MIP-1b with any shoulder lesion including Hill-Sachs lesions, capsular injuries, bony Bankart lesions, and SLAP lesions. In conclusion, inflammatory biomarkers including HS-CRP, IL-8, and MIP-1b were not associated with specific shoulder lesions, while biomarkers of cartilage turnover (COMP) were only elevated in Hill-Sachs lesions. These findings suggest that these biomarkers may have limited utility as prognostic indicators in patients with shoulder instability, though large-scale and longitudinal studies are still necessary.
Collapse
Affiliation(s)
- Jonathan S. Yu
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - David M. Dare
- Hospital for Special Surgery, New York, NY, USA
- Raleigh Orthopedic Clinic, Raleigh, NC, USA
| | - Daniel Edon
- Hospital for Special Surgery, New York, NY, USA
| | - Alec L. Sinatro
- Hospital for Special Surgery, New York, NY, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Dylan C. Sarver
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Scott Rodeo
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joshua S. Dines
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Christopher L. Mendias
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
31
|
Ngarmukos S, Tanavalee C, Amarase C, Phakham S, Mingsiritham W, Reantragoon R, Leearamwat N, Kongkaew T, Tharakhet K, Honsawek S, Dechsupa S, Tanavalee A. Two or four injections of platelet-rich plasma for osteoarthritic knee did not change synovial biomarkers but similarly improved clinical outcomes. Sci Rep 2021; 11:23603. [PMID: 34880370 PMCID: PMC8654822 DOI: 10.1038/s41598-021-03081-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
We compared two and four intra-articular injections of platelet-rich plasma (PRP) in terms of changes of synovial cytokines and clinical outcomes. One hundred twenty-five patients having knee osteoarthritis (OA) underwent PRP injections at a 6-week interval. Before each PRP injection, synovial fluid aspiration was collected for investigation. Patients were divided into two or four intra-articular PRP injections (group A and B, respectively). Changes in synovial biomarkers were compared with the baseline levels of both groups, and clinical outcomes were evaluated until one year. Ninety-four patients who had completed synovial fluid collection were included for final evaluation, 51 in group A and 43 in group B. There were no differences in mean age, gender, body mass index (BMI), and radiographic OA grading. The average platelet count and white blood cell count in PRP were 430,000/µL and 200/ µL, respectively. There were no changes of synovial inflammatory cytokines (IL-1β, IL-6, IA-17A, and TNF-alpha), anti-inflammatory cytokines (IL-4, IL-10, IL-13, and IL-1RA), and growth factors (TGF-B1, VEGF, PDGF-AA, and PDGF-BB) between baseline levels and six weeks in group A, and 18 weeks in group B. Both groups had significantly improved clinical outcomes from six weeks including visual analog scale (VAS), patient-reported outcome measures [PROMs; Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index and Short Form-12 (SF-12)], with a significant delayed improvement of performance-based measures [PBMs; time up and go (TUG), 5-time sit to stand test (5 × SST), and 3-min walk test (3-min WT)]. In conclusion, two- or four-PRP intra-articular injection at a 6-week interval for knee OA demonstrated no changes of synovial cytokines and growth factors but similarly improved clinical outcomes from 6 weeks until 1 year.
Collapse
Affiliation(s)
- Srihatach Ngarmukos
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok, 10330, Thailand
| | - Chotetawan Tanavalee
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Department of Orthopaedics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chavarin Amarase
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok, 10330, Thailand
| | - Suphattra Phakham
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Warayapa Mingsiritham
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok, 10330, Thailand
| | - Rangsima Reantragoon
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nitigorn Leearamwat
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thidarat Kongkaew
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittipan Tharakhet
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sittisak Honsawek
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sinsuda Dechsupa
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aree Tanavalee
- Study Group of Biologics for Treatment of Knee Osteoarthritis, Chulalongkorn University, Bangkok, Thailand. .,Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Boffa A, Merli G, Andriolo L, Lattermann C, Salzmann GM, Filardo G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021; 13:82S-103S. [PMID: 32713185 PMCID: PMC8808867 DOI: 10.1177/1947603520942941] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this systematic review was to analyze the evidence about the efficacy of the several synovial fluid (SF) biomarkers proposed for knee osteoarthritis (OA), categorizing them by both molecular characteristics and clinical use according to the BIPEDs criteria, to provide a comprehensive and structured overview of the current literature. DESIGN A systematic review was performed in May 2020 on PubMed, Cochrane Library, and Embase databases about SF biomarkers in patients with knee OA. The search was limited to articles in the last 20 years on human studies, involving patients with knee OA, reporting SF biomarkers. The evidence for each selected SF biomarker was quantified according to the 6 categories of BIPEDs classification. RESULTS A total of 159 articles were included in the qualitative data synthesis and 201 different SF biomarkers were identified. Among these, several were investigated multiple times in different articles, for a total of 373 analyses. The studies included 13,557 patients with knee OA. The most promising SF biomarkers were C4S, IL-6, IL-8, Leptin, MMP-1/3, TIMP-1, TNF-α, and VEGF. The "burden of disease" and "diagnostic" categories were the most represented with 132 and 106 different biomarkers, respectively. CONCLUSIONS The systematic review identified numerous SF biomarkers. However, despite the high number of studies on the plethora of identified molecules, the evidence about the efficacy of each biomarker is supported by limited and often conflicting findings. Further research efforts are needed to improve the understanding of SF biomarkers for a better management of patients with knee OA.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Merli
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Center for Cartilage Repair and Sports Medicine, Brigham and Women’s Hospital,
Harvard Medical School, Chestnut Hill, MA, USA
| | - Gian M. Salzmann
- Department of Orthopaedic Surgery, Hip
and Knee Department, Schulthess Clinic, Zürich, Switzerland
| | - Giuseppe Filardo
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
33
|
Plsikova Matejova J, Spakova T, Harvanova D, Lacko M, Filip V, Sepitka R, Mitro I, Rosocha J. A Preliminary Study of Combined Detection of COMP, TIMP-1, and MMP-3 in Synovial Fluid: Potential Indicators of Osteoarthritis Progression. Cartilage 2021; 13:1421S-1430S. [PMID: 32748631 PMCID: PMC8804792 DOI: 10.1177/1947603520946385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) commonly affects weight-bearing joints and is characterized by articular cartilage breakdown combined with osteophyte formation at the joint margins and chronic nonspecific inflammation of synovium. Understanding the profile of inflammation in a patient population is an essential starting point to predict or prevent OA progression. The aim of this study was to identify the profile of selected biomolecules in synovial fluid (SF) and investigate the correlation according to gender, age, and severity of the disease within patients from among the general knee OA population. DESIGN In our study SF samples were aspirated from the knees of 65 OA patients (46 patients with early knee OA and 19 patients with end-stage knee OA according to the Kellgren-Lawrence grading scale). The concentration of interleukins (IL-6, IL-8), matrix metalloproteinases (MMP-1, MMP-3, MMP-13), MMPs inhibitors (TIMP-1, TIMP-2), cartilage oligomeric matrix protein (COMP), and adiponectin was analyzed using a multiplex ELISA-based approach. CONCLUSIONS Our results indicate significant linear correlation of MMP-13 and COMP concentration with age (P < 0.05), but not with OA severity. In fact, 3 of the examined biomolecules, MMP-3 (P < 0.01), TIMP-1 (P < 0.01), and COMP (P < 0.05) significantly correlate with the grade of knee OA and might be associated with OA severity.
Collapse
Affiliation(s)
- Jana Plsikova Matejova
- Associated Tissue Bank, Faculty of
Medicine, P. J. Safarik University, L. Pasteur University Hospital, Kosice,
Slovakia
| | - Timea Spakova
- Associated Tissue Bank, Faculty of
Medicine, P. J. Safarik University, L. Pasteur University Hospital, Kosice,
Slovakia,Timea Spakova, Associated Tissue Bank,
Faculty of Medicine, P. J. Safarik University, L. Pasteur University Hospital,
Trieda SNP 1, Kosice SK-040 11, Slovakia.
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of
Medicine, P. J. Safarik University, L. Pasteur University Hospital, Kosice,
Slovakia
| | - Marek Lacko
- Department of Orthopaedics and
Traumatology, Faculty of Medicine, P. J. Safarik University, L. Pasteur University
Hospital, Kosice, Slovakia
| | - Vladimir Filip
- Department of Orthopaedics and
Traumatology, Faculty of Medicine, P. J. Safarik University, L. Pasteur University
Hospital, Kosice, Slovakia
| | - Rastislav Sepitka
- Department of Orthopaedics and
Traumatology, Faculty of Medicine, P. J. Safarik University, L. Pasteur University
Hospital, Kosice, Slovakia
| | - Istvan Mitro
- Department of Orthopaedics and
Traumatology, Faculty of Medicine, P. J. Safarik University, L. Pasteur University
Hospital, Kosice, Slovakia
| | - Jan Rosocha
- Associated Tissue Bank, Faculty of
Medicine, P. J. Safarik University, L. Pasteur University Hospital, Kosice,
Slovakia
| |
Collapse
|
34
|
Hagemans FJ, Larsson S, Reijman M, Frobell RB, Struglics A, Meuffels DE. An Anterior Cruciate Ligament Rupture Increases Levels of Urine N-terminal Cross-linked Telopeptide of Type I Collagen, Urine C-terminal Cross-linked Telopeptide of Type II Collagen, Serum Aggrecan ARGS Neoepitope, and Serum Tumor Necrosis Factor-α. Am J Sports Med 2021; 49:3534-3543. [PMID: 34591687 PMCID: PMC8573615 DOI: 10.1177/03635465211042310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND An anterior cruciate ligament (ACL) rupture results in an increased risk of developing knee osteoarthritis (OA) at an early age. Before clinical signs become apparent, the OA process has already been initiated. Therefore, it is important to look at the cascade of changes, such as the activity of cytokines and proteases, which might be associated with the later development of OA. PURPOSE To compare biomarker levels in patients with a recent ACL rupture with those in controls with a healthy knee and to monitor biomarker levels over 2 years after an ACL rupture. STUDY DESIGN Descriptive laboratory study. METHODS Patients were enrolled after an ACL tear was identified. Serum and urine samples were collected at the time of enrollment in the study (3-25 weeks after the injury) and then at 14 and 27 months after the injury between January 2009 and November 2010. Reference samples were obtained from participants with healthy knees. The following biomarkers were measured with immunological assays: aggrecan ARGS neoepitope (ARGS-aggrecan), tumor necrosis factor-α (TNF-α), interferon-γ, interleukin (IL)-8, IL-10, IL-13, N-terminal cross-linked telopeptide of type I collagen (NTX-I), and C-terminal cross-linked telopeptide of type II collagen (CTX-II). RESULTS Samples were collected from 152 patients with an acute ACL rupture, who had a median age of 25 years (interquartile range [IQR], 21-32 years). There were 62 urine reference samples (median age, 25 years [IQR, 22-36 years]) and 26 serum reference samples (median age, 35 years [IQR, 24-39 years]). At a median of 11 weeks (IQR, 7-17 weeks) after trauma, serum levels of both ARGS-aggrecan and TNF-α were elevated 1.5-fold (P < .001) compared with reference samples and showed a time-dependent decrease during follow-up. Urine NTX-I and CTX-II concentrations were elevated in an early phase after trauma (1.3-fold [P < .001] and 3.7-fold [P < .001], respectively) compared with reference samples, and CTX-II levels remained elevated compared with reference samples at 2-year follow-up. Strong correlations were found between serum ARGS-aggrecan, urinary NTX-I, and urinary CTX-II (rs = 0.57-0.68). CONCLUSION In the first few months after an ACL injury, there was a measurable increase in serum levels of ARGS-aggrecan and TNF-α as well as urine levels of NTX-I and CTX-II. These markers remained high compared with those of controls with healthy knees at 2-year follow-up.
Collapse
Affiliation(s)
- Frans J.A. Hagemans
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Orthopaedics, Center for Orthopaedic Research Alkmaar, Noordwest Ziekenhuisgroep, Alkmaar, the Netherlands
| | - Staffan Larsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Max Reijman
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Richard B. Frobell
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Andre Struglics
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Duncan E. Meuffels
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands,Duncan E. Meuffels, MD, PhD, Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, the Netherlands ()
| |
Collapse
|
35
|
Jacob-Nascimento LC, Carvalho CX, Silva MMO, Kikuti M, Anjos RO, Fradico JRB, Campi-Azevedo AC, Tauro LB, Campos GS, Moreira PSDS, Portilho MM, Martins-Filho OA, Ribeiro GS, Reis MG. Acute-Phase Levels of CXCL8 as Risk Factor for Chronic Arthralgia Following Chikungunya Virus Infection. Front Immunol 2021; 12:744183. [PMID: 34659240 PMCID: PMC8517435 DOI: 10.3389/fimmu.2021.744183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The immunopathogenesis of chikungunya virus (CHIKV) infection and the role of acute-phase immune response on joint pain persistence is not fully understood. We investigated the profile of serum chemokine and cytokine in CHIKV-infected patients with acute disease, compared the levels of these biomarkers to those of patients with other acute febrile diseases (OAFD) and healthy controls (HC), and evaluated their role as predictors of chronic arthralgia development. Chemokines and cytokines were measured by flow Cytometric Bead Array. Patients with CHIKV infection were further categorized according to duration of arthralgia (≤ 3 months vs >3 months), presence of anti-CHIKV IgM at acute-phase sample, and number of days of symptoms at sample collection (1 vs 2-3 vs ≥4). Patients with acute CHIKV infection had significantly higher levels of CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1β, IL-6, IL-12, and IL-10 as compared to HC. CCL2, CCL5, and CXCL10 levels were also significantly higher in patients with CHIKV infection compared to patients with OAFD. Patients whose arthralgia lasted > 3 months had increased CXCL8 levels compared to patients whose arthralgia did not (p<0.05). Multivariable analyses further indicated that high levels of CXCL8 and female sex were associated with arthralgia lasting >3 months. Patients with chikungunya and OAFD had similar cytokine kinetics for IL-1β, IL-12, TNF, IFN-γ, IL-2, and IL-4, although the levels were lower for CHIKV patients. This study suggests that chemokines may have an important role in the immunopathogenesis of chronic chikungunya-related arthralgia.
Collapse
Affiliation(s)
| | | | | | - Mariana Kikuti
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Laura Beatriz Tauro
- Instituto de Biologia Subtropical, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Misiones, Puerto Iguazú, Argentina
| | - Gúbio Soares Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Mitermayer Galvão Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Ji MJ, Ryu HJ, Hong JH. Synovial Fluid of Patient With Rheumatoid Arthritis Enhanced Osmotic Sensitivity Through the Cytotoxic Edema Module in Synoviocytes. Front Cell Dev Biol 2021; 9:700879. [PMID: 34532317 PMCID: PMC8438158 DOI: 10.3389/fcell.2021.700879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the synovial membrane ultimately leading to permanent damage in the affected joints. For this study, synovial fluids from 16 patients diagnosed with either RA or osteoarthritis (OA) were used to examine volume regulation and cooperative water channels, both of which are involved in the cytotoxic edema identified in RA-fibroblast-like synoviocytes (FLS). The osmolarity and inflammatory cytokine interleukin (IL)-6 of synovial fluids from RA patients were mildly enhanced compared to that from OA patients. RA-FLS demonstrated the enhanced property of regulatory volume increase in response to IL-6 and synovial fluids from RA patients. Although there was no difference in the protein expression of the volume-associated protein sodium–potassium–chloride cotransporter1 (NKCC1), its activity was increased by treatment with IL-6. Membrane localization of NKCC1 was also increased by IL-6 treatment. Additionally, both the protein and membrane expressions of aquaporin-1 were increased in RA-FLS by IL-6 stimulation. The IL-6-mediated enhanced osmotic sensitivity of RA-FLS likely involves NKCC1 and aquaporin-1, which mainly constitute the volume-associated ion transporter and water channel elements. These results suggest that RA-FLS provide enhanced electrolytes and concomitant water movement through NKCC1 and aquaporin-1, thereby inducing cellular swelling ultimately resulting in cytotoxic edema. Attenuation of cytotoxic edema and verification of its related mechanism will provide novel therapeutic approaches to RA treatment within the scope of cytotoxic edema.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
37
|
Rydberg M, Dahlin LB, Gottsäter A, Nilsson PM, Melander O, Zimmerman M. High body mass index is associated with increased risk for osteoarthritis of the first carpometacarpal joint during more than 30 years of follow-up. RMD Open 2021; 6:rmdopen-2020-001368. [PMID: 33109634 PMCID: PMC7722378 DOI: 10.1136/rmdopen-2020-001368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Osteoarthritis (OA) of the first carpometacarpal (CMC-1) joint is a common hand disorder with symptoms including pain and weakness of the thumb. Previous studies have associated high BMI with OA of weight-bearing joints, whereas studies regarding non-weight-bearing joints have shown conflicting results. Thus, the aim of this study was to investigate the influence of overweight and obesity on incident OA of the CMC-1 joint. Method During 1974 to 1992, 33 346 participants aged 26–61 years were included in the population-based cohort Malmö Preventive Project. Endpoint data were retrieved from Swedish national registers until end of 2018. Sex-stratified Cox regression models adjusted for potential confounders were calculated using BMI as a continuous variable and stratified for normal weight, overweight and obesity. Results Median follow-up was 36 years for men and 32 years for women. A one-unit increment of BMI was independently associated with incident OA of the CMC-1 joint in men (HR 1.12; 95% CI 1.09 to 1.15, p<0.001) and women (HR 1.05; 95% CI 1.03 to 1.08, p<0.001). Stratifying for BMI groups, obesity was independently associated with OA of the CMC-1 joint in men (HR 3.57; 95% CI 2.68 to 4.77, p<0.001) and women (HR 1.98; 95% CI 1.44 to 2.73, p<0.001). Conclusion High BMI and obesity are major risk factors for OA of the CMC-1 joint. The association was stronger among men but could be demonstrated also among women. Future studies are warranted to clarify underlying pathophysiological mechanisms for this association, enabling identification of potential therapeutic targets related to obesity in order to prevent the development of OA of the CMC-1 joint.
Collapse
Affiliation(s)
- Mattias Rydberg
- Department of Translational Medicine - Hand Surgery, Lunds University, Malmö, Sweden .,Department of Hand Surgery, Skånes University Hospital Malmö, Malmö, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lunds University, Malmö, Sweden.,Department of Hand Surgery, Skånes University Hospital Malmö, Malmö, Sweden
| | - Anders Gottsäter
- Department of Vascular Diseases, Skåne University Hospital Malmö, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Science, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Internal Medicine, Lund University, Clinical Research Unit, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Science, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Internal Medicine, Lund University, Clinical Research Unit, Malmö, Sweden
| | - Malin Zimmerman
- Department of Translational Medicine - Hand Surgery, Lunds University, Malmö, Sweden.,Department of Hand Surgery, Skånes University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
38
|
Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci 2021; 22:9208. [PMID: 34502117 PMCID: PMC8431625 DOI: 10.3390/ijms22179208] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Roko Bjelica
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Nursing, University North, 48000 Varaždin, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
- Department of Health Studies, University of Split, 21000 Split, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Dinko Vidović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | | | - Srećko Sabalić
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | - Borut Dobričić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedics and Traumatology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Tadija Petrović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Darko Antičević
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
| | - Rok Košir
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, State College, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
39
|
Neefjes M, Housmans BAC, van Beuningen HM, Vitters EL, van den Akker GGH, Welting TJM, van Caam APM, van der Kraan PM. Prediction of the Effect of the Osteoarthritic Joint Microenvironment on Cartilage Repair. Tissue Eng Part A 2021; 28:27-37. [PMID: 34039008 DOI: 10.1089/ten.tea.2021.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is characterized by progressive articular cartilage loss. Human mesenchymal stromal cells (MSCs) can be used for cartilage repair therapies based on their potential to differentiate into chondrocytes. However, the joint microenvironment is a major determinant of the success of MSC-based cartilage formation. Currently, there is no tool that is able to predict the effect of a patient's OA joint microenvironment on MSC-based cartilage formation. Our goal was to develop a molecular tool that can predict this effect before the start of cartilage repair therapies. Six different promoter reporters (hIL6, hIL8, hADAMTS5, hWISP1, hMMP13, and hADAM28) were generated and evaluated in an immortalized human articular chondrocyte for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm) obtained from 32 different knee OA patients. To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model, while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. We confirmed that OAs-cm of different patients had significantly different effects on sGAG production. In addition, significant correlations were obtained between the effect of the OAs-cm on cartilage formation and promoter reporter outcome. Furthermore, we validated the predictive value of measuring two promoter reporters with an independent cohort of OAs-cm and the effect of 87.5% of the OAs-cm on MSC-based cartilage formation could be predicted. Together, we developed a novel tool to predict the effect of the OA joint microenvironment on MSC-based cartilage formation. This is an important first step toward personalized cartilage repair strategies for OA patients.
Collapse
Affiliation(s)
- Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bas A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Henk M van Beuningen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L Vitters
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Gupta R, Kapoor A, Khatri S, Sandal D, Masih GD. There is an Association of Synovial Interleukin-6 Levels With Chondral Damage in Anterior Cruciate Ligament-Deficient Knees. HSS J 2021; 17:145-149. [PMID: 34421423 PMCID: PMC8361593 DOI: 10.1177/1556331621992006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022]
Abstract
Background: Osteoarthritis (OA) in the anterior cruciate ligament (ACL)-deficient knee is seen in approximately 50% of affected patients. Possible causes include biochemical or biomechanical changes. Purpose: We sought to study the correlation between inflammatory cytokines and chondral damage in ACL-deficient knees. Methods: Seventy-six male patients who underwent ACL reconstruction were enrolled in a cross-sectional study. Synovial fluid was aspirated before surgery and analyzed for levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-1 (IL-1), and interleukin-6 (IL-6). At the time of ACL reconstruction, the severity of chondral damage was documented as described by the Outerbridge classification. Results: Patients with grade 2 or higher chondral damage were observed to have elevated IL-6 levels when compared to patients who had no chondral damage. Interleukin-6 levels had no correlation with the duration of injury. Conclusion: Elevated levels of IL-6 in synovial fluid were associated with chondral damage in ACL-deficient knees. Further study is warranted to determine whether inflammatory cytokines contribute to the development of OA of the knee after ACL injury.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Orthopaedics, Government Medical College & Hospital, Chandigarh, India
| | - Anil Kapoor
- Department of Orthopaedics, Government Medical College & Hospital, Chandigarh, India,Anil Kapoor, MBBS, MS, MRCS, Department of Orthopaedics, Government Medical College & Hospital, Chandigarh 160030, India.
| | - Sourabh Khatri
- All India Institute of Medical Sciences, Rishikesh, India
| | - Dinesh Sandal
- Department of Orthopaedics, Government Medical College & Hospital, Chandigarh, India
| | - Gladson David Masih
- Department of Orthopaedics, Government Medical College & Hospital, Chandigarh, India
| |
Collapse
|
41
|
Scanu A, Tognolo L, Maccarone MC, Masiero S. Immunological Events, Emerging Pharmaceutical Treatments and Therapeutic Potential of Balneotherapy on Osteoarthritis. Front Pharmacol 2021; 12:681871. [PMID: 34276372 PMCID: PMC8278055 DOI: 10.3389/fphar.2021.681871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy.,Department of Neurosciences, Physical Medicine and Rehabilitation School, University of Padua, Padua, Italy
| | - Lucrezia Tognolo
- Department of Neurosciences, Physical Medicine and Rehabilitation School, University of Padua, Padua, Italy
| | - Maria Chiara Maccarone
- Department of Neurosciences, Physical Medicine and Rehabilitation School, University of Padua, Padua, Italy
| | - Stefano Masiero
- Department of Neurosciences, Physical Medicine and Rehabilitation School, University of Padua, Padua, Italy
| |
Collapse
|
42
|
Jiang J, Cai M. Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte. J Microbiol Biotechnol 2021; 31:794-802. [PMID: 34024891 PMCID: PMC9705951 DOI: 10.4014/jmb.2103.03057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
In this study we investigated the role and mechanism of cardamonin on IL-1β induced injury in OA. CHON-001 cells were treated with cardamonin and IL-1β and transfected with silencing nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability was detected by Cell Counting Kit-8 assay and flow cytometer assay was utilized for cell apoptosis assessment. IL-6, IL-8, TNF-α and Nrf2 mRNA expression was tested by qRT-PCR. Western blot was employed to evaluate MMP-3, MMP-13, Collagen II, Nrf2, NQO-1, NLRP3, Caspase 1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) protein levels. In CHON-001 cells, IL-1β suppressed cell viability and Collagen II level while promoting cell apoptosis and expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), MMPs (MMP-3, MMP-13), NQO-1, and NLRP3 inflammasome (NLRP3, Caspase 1 and ASC), with no significant influence on Nrf2. Cardamonin reversed the effect of IL-1β on cell viability, cell apoptosis, pro-inflammatory cytokines, MMPs, Collagen II, and NLRP3 inflammasome levels. In addition, cardamonin advanced Nrf2 and NQO-1 expression of CHON-001 cells. SiNrf2 reversed the function of cardamonin on IL-1β-induced cell apoptosis and expression of pro-inflammatory cytokines, Nrf2, NQO-1, and NLRP3 inflammasome in chondrocytes. Taken together Cardamonin inhibited IL-1β induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte.
Collapse
Affiliation(s)
- Jianqing Jiang
- No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou City, Zhejiang Province, 311400, P.R. China
| | - Mingsong Cai
- No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou City, Zhejiang Province, 311400, P.R. China,Corresponding author Phone: +86-571-61773106 E-mail:
| |
Collapse
|
43
|
Sun J, Liao W, Su K, Jia J, Qin L, Liu W, He Y, Zhang H, Ou F, Zhang Z, Sun Y. Suberoylanilide Hydroxamic Acid Attenuates Interleukin-1β-Induced Interleukin-6 Upregulation by Inhibiting the Microtubule Affinity-Regulating Kinase 4/Nuclear Factor-κB Pathway in Synovium-Derived Mesenchymal Stem Cells from the Temporomandibular Joint. Inflammation 2021; 43:1246-1258. [PMID: 32279160 DOI: 10.1007/s10753-020-01204-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synovium-derived mesenchymal stem cells (SMSCs) can migrate to the site of destroyed condylar cartilage and differentiate into chondrocytes to repair temporomandibular joint (TMJ) damage. Interleukin (IL)-1β-induced IL-6 secretion has been shown to inhibit the chondrogenic potential of SMSCs. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) has recently been shown to be closely related to the inflammation induced by IL-1β. However, the relationship between SAHA and IL-6 secretion induced by IL-1β in SMSCs remains unclear. In this study, we evaluated the relationships between IL-1β and IL-6 in synovial specimens from patients with TMD and in model rats with osteoarthritis (OA). We found that IL-1β and IL-6 were positively correlated and that IL-6 expression in SMSCs increased with IL-1β stimulation in vitro. Moreover, microtubule affinity-regulating kinase 4 (MARK4) was significantly upregulated in IL-1β-stimulated SMSCs and in the synovium of rats with OA. MARK4 knockdown inhibited IL-6 secretion and nuclear factor (NF)-κB pathway activation in IL-1β-stimulated SMSCs. SAHA attenuated IL-6 secretion in IL-1β-induced SMSCs through NF-κB pathway inhibition, and MARK4 was also downregulated in SAHA-treated SMSCs. However, inhibition of the NF-κB pathway did not suppress MARK4 expression. Thus, these results showed that SAHA attenuated IL-6 secretion in IL-1β-induced SMSCs through inhibition of the MARK4/NF-κB pathway.
Collapse
Affiliation(s)
- Jiadong Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Wenting Liao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Kai Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiaxin Jia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Lingling Qin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Wenjing Liu
- Stomatological Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Yiqing He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Farong Ou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiguang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China.
| | - Yangpeng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Zhou S, Wen H, Han X, Li H. Phillygenin protects against osteoarthritis by repressing inflammation via PI3K/Akt/NF-κB signaling: In vitro and vivo studies. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
45
|
Zhan J, Yan Z, Kong X, Liu J, Lin Z, Qi W, Wu Y, Lin J, Pan X, Xue X. Lycopene inhibits IL-1β-induced inflammation in mouse chondrocytes and mediates murine osteoarthritis. J Cell Mol Med 2021; 25:3573-3584. [PMID: 33751809 PMCID: PMC8034440 DOI: 10.1111/jcmm.16443] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative condition in the elderly, in which inflammation plays a key role in disease pathology. Lycopene (Lye), a member of the carotenoid family, has been reported to have anti‐inflammatory effects. The purpose of this study was to investigate the effect of Lye on the inflammation of chondrocytes and the mouse OA model. Chondrocytes were treated with interleukin (IL)‐1β, and the mouse OA model was induced by the surgical destabilization of the medial meniscus (DMM). The results showed that Lye could inhibit the expression of inflammatory factors and alleviate the degradation of extracellular matrix (ECM). Additionally, Lye could activate the Nrf2/HO‐1 pathway and reverse the activations of NF‐κB and STAT3 signal pathway induced by IL‐1β, suggesting that its anti‐inflammatory effect may be mediated via these pathways. The animal experiments showed that Lye could decrease the Osteoarthritis Research Society International (OARSI) scores of the knee, indicating that it could inhibit the occurrence and development of OA in mouse. Overall, our results indicated that Lye might be used as a novel drug for OA treatment.
Collapse
Affiliation(s)
- Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaojiang Kong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Junling Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Synovial fluid but not plasma interleukin-8 is associated with clinical severity and inflammatory markers in knee osteoarthritis women with joint effusion. Sci Rep 2021; 11:5258. [PMID: 33664374 PMCID: PMC7933151 DOI: 10.1038/s41598-021-84582-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 01/13/2023] Open
Abstract
Several cytokines and adipokines are related to clinical severity and progression in knee osteoarthritis. The aim of this study was to evaluate the associations of IL-8 with clinical severity and with local and systemic adipokines and cytokines. This is a Cross-sectional study including 115 women with symptomatic primary knee osteoarthritis with ultrasound-confirmed joint effusion. Age, symptoms duration and body mass index were collected. Radiographic severity was evaluated according to Kellgren–Lawrence. Pain and disability were assessed by Lequesne and Knee injury and Osteoarthritis Outcome Score pain, symptoms and function scales. Three inflammatory markers and five adipokines were measured by ELISA in serum and synovial fluid. Partial correlation coefficient (PCC) and corresponding 95% confidence interval were used to evaluate association. Synovial fluid IL-8 was significantly associated with clinical severity scales. After controlling for potential confounders, associations measured by a Partial Correlation Coefficient (PCC) remained essentially unaltered for Lequesne (PCC = 0.237), KOOS pain (PCC = − 0.201) and KOOS symptoms (PCC = − 0.209), KOOS function (PCC = − 0.185), although the later did not reach statistical significance. Also in synovial fluid samples, associations were found between IL-8 and TNF (PCC = 0.334), IL6 (PCC = 0.461), osteopontin (PCC = 0.575), visfatin (PCC = 0.194) and resistin (PCC = 0.182), although significance was not achieved for the later after statistical control for confounders. None of these associations were detected in serum. In conclusion, IL-8 was associated with clinical severity, inflammatory markers and adipokines in synovial fluid, but not in blood. Although the reported associations are weak to moderate in magnitude, these findings reinforce the notion that local and not systemic inflammation is more relevant to clinical severity in knee OA women with joint effusion.
Collapse
|
47
|
Richette P, Latourte A, Sellam J, Wendling D, Piperno M, Goupille P, Pers YM, Eymard F, Ottaviani S, Ornetti P, Flipo RM, Fautrel B, Peyr O, Bertola JP, Vicaut E, Chevalier X. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann Rheum Dis 2021; 80:349-355. [PMID: 33055078 DOI: 10.1136/annrheumdis-2020-218547] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the efficacy of tocilizumab, an antibody against IL-6 receptor, in patients with hand osteoarthritis. METHODS This was a multicentre, 12-week, randomised, double-blind, placebo-controlled study from November 2015 to October 2018. Patients with symptomatic hand osteoarthritis (pain ≥40 on a 0-100 mm visual analogue scale (VAS) despite analgesics and non-steroidal anti-inflammatory drugs; at least three painful joints, Kellgren-Lawrence grade ≥2) were randomised to receive two infusions 4 weeks apart (weeks 0 and 4) of tocilizumab (8 mg/kg intravenous) or placebo. The primary endpoint was changed in VAS pain at week 6. Secondary outcomes included the number of painful and swollen joints, duration of morning stiffness, patients' and physicians' global assessment and function scores. RESULTS Of 104 patients screened, 91 (45 to tocilizumab and 46 to placebo; 82% women; mean age 64.4 (SD 8.7) years) were randomly assigned and 79 completed the 12-week study visit. The mean change between baseline and week 6 on the VAS for pain (primary outcome) was -7.9 (SD 19.4) and -9.9 (SD 20.1) in the tocilizumab and placebo groups (p=0.7). The groups did not differ for any secondary outcomes at weeks 4, 6, 8 or 12. Overall, adverse events were slightly more frequent in the tocilizumab than placebo group. CONCLUSION Tocilizumab was no more effective than placebo for pain relief in patients with hand osteoarthritis.
Collapse
Affiliation(s)
- Pascal Richette
- APHP, Hôpital Lariboisière, Service de Rhumatologie, Paris, France
- Université de Paris, Inserm, UMR-S 1132, Bioscar, Paris, France
| | - Augustin Latourte
- APHP, Hôpital Lariboisière, Service de Rhumatologie, Paris, France
- Université de Paris, Inserm, UMR-S 1132, Bioscar, Paris, France
| | - Jérémie Sellam
- Rheumatology, INSERM UMRS_938, Sorbonnes Université UPMC Univ Paris 06, St-Antoine Hospital, DHU i2B, Paris, France
| | | | | | | | - Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France
| | - Florent Eymard
- Department of Rheumatology, APHP Henri Mondor Hospital, Créteil, France
- Universite Paris-Est Creteil Val de Marne, Creteil, Île-de-France, France
| | | | - Paul Ornetti
- Rheumatology, Burgundy Franche-Comté University, Dijon, France
- Dijon University Hospital, Dijon, France
| | - René-Marc Flipo
- Service de Rhumatologie, CHU Roger Salengro, Université de Lille, Lille, France
| | - Bruno Fautrel
- Rheumatology, Assistance Publique - Hopitaux de Paris, Paris, France
- GRC08 - IPLESP, UPMC Faculte de Medecine, Paris, France
| | - Olivier Peyr
- Service de Rhumatologie, Hopital Lariboisiere Centre Viggo Petersen, Paris, Île-de-France, France
| | | | - Eric Vicaut
- Unité de recherche clinique, Groupe hospitalier Lariboisiere Fernand-Widal, Paris, Île-de-France, France
| | - Xavier Chevalier
- Department of Rheumatology, APHP Henri Mondor Hospital, Créteil, France
- Universite Paris-Est Creteil Val de Marne, Creteil, Île-de-France, France
| |
Collapse
|
48
|
Badshah Y, Shabbir M, Hayat H, Fatima Z, Burki A, Khan S, Rehman SU. Genetic markers of osteoarthritis: early diagnosis in susceptible Pakistani population. J Orthop Surg Res 2021; 16:124. [PMID: 33563308 PMCID: PMC7871631 DOI: 10.1186/s13018-021-02230-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background and aim Osteoarthritis (OA) is a multiple factorial disease with unidentified specific markers. The alternate method such as biochemical and genetic markers for the diagnosis of osteoarthritis is an undeniable need of the current era. In the present study, we aimed to investigate the association of interleukin-6 (IL-6)(IL-6-174G/C), transforming growth factor-β1 (TGF-beta1-29C/T), and calmodulin 1 gene-16C/T (CALM1-16C/T) polymorphism in clinically definite Pakistani OA patients and matching controls. Methods The study design was based on biochemical analysis of OA via serum hyaluronic acid (HA) enzyme-linked immunosorbent assay (ELISA) test and genetic analysis based on amplification refractory mutation system (ARMS) PCR. Statistical evaluations of allele probabilities were carried through chi-squared test. This study includes 295 subjects including 100 OA patients, 105 OA susceptible, and 90 controls. Results HA levels obtained were distinct for all the populations: patients with a mean value of ± 5.15, susceptible with mean value of ± 2.27, and control with mean value of ± 0.50. The prevalent genotypes in OA were GG genotype for IL-6-174G/C, CT genotypes for TGF β1-29C/T, and TT genotype for CALM1-16C/T polymorphism. A significant P value of 0.0152 is obtained as a result of the comparison among the patients and controls on the number of individuals possessing the disease-associated genotypes. Conclusions The positive association of GG genotype for IL-6-174G/C, TT genotype for CALM1-16C/T polymorphism in OA while high prevalence of CT TGF β1-29 C/T genotypes in susceptible population in our study group implies these polymorphisms can serve as susceptible marker to OA and genetic factors for screening OA patients in Pakistan. There might be other factors that may influence disease susceptibility. However, further investigations on larger population are required to determine the consequences of genetic variations for prediagnosis of OA.
Collapse
Affiliation(s)
- Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Hunza Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Zoha Fatima
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Asad Burki
- Type D hospital, LORA, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Khan
- Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | |
Collapse
|
49
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
50
|
Tissue Engineering of Cartilage Using a Random Positioning Machine. Int J Mol Sci 2020; 21:ijms21249596. [PMID: 33339388 PMCID: PMC7765923 DOI: 10.3390/ijms21249596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.
Collapse
|