1
|
Motta MA, Martin-Saldaña S, Beloqui A, Calderón M, Larrañaga A. Polypeptide-based multilayer capsules with anti-inflammatory properties: exploring different strategies to incorporate hydrophobic drugs. J Mater Chem B 2025; 13:5297-5314. [PMID: 40207430 DOI: 10.1039/d4tb01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
More than 90% of drug candidates used in the drug development pipeline and about 40% of drugs on the market are poorly soluble in water based on the definition of the biopharmaceutical classification system. The advent of drug delivery approaches has represented a striking tool to overcome the challenges associated with the use of hydrophobic drugs, such as their low bioavailability and off-target effects. Drug carrier formulations composed of biodegradable and biocompatible polymers, such as polypeptides, have been explored as platforms to host poorly water-soluble drugs to prolong drug circulation, enhance their safety, reduce their immunogenicity, and promote their controlled release. In this work, we evaluated three strategies-co-precipitation, post-encapsulation, and conjugation-to incorporate a hydrophobic model drug, i.e., curcumin (CUR), into biodegradable multilayer capsules fabricated via a layer-by-layer (LbL) approach. Poly(L-lysine) (PLys) and poly(L-glutamic acid) (PGlu) were adopted as building blocks and alternately assembled onto calcium carbonate (CaCO3) microparticles to build a polypeptide-multilayer membrane, which acted as a barrier to control the release of the drug. The application of our three formulations in in vitro inflammatory models of THP-1 derived human macrophages and murine microglia showed a reduction of the inflammation with the suppression of three pivotal pro-inflammatory cytokines (i.e., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α). Moreover, the intracellular release of CUR detected upon uptake studies on activated microglia suggested that our systems could represent a potential therapeutic approach to reduce acute neuroinflammation and modulate microglia phenotype.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| |
Collapse
|
2
|
Bai X, Li L, Wu Y, Jie B. Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. Cell Biochem Biophys 2025; 83:1167-1183. [PMID: 39505796 DOI: 10.1007/s12013-024-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/08/2024]
Abstract
Euphorbia hirta has anti-inflammatory effects in traditional medicine, but its anti-inflammatory mechanism has not been explored at the cellular and molecular levels. To unravel these mechanisms, the main active components in the 65 and 95% ethanol extracts of Euphorbia hirta were first identified by UPLC-Q-TOF/MS. Subsequently, potential anti-inflammatory targets and signaling pathways were predicted using network pharmacology and experimentally validated using RT-PCR and flow cytometry in a lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells. The results revealed flavonoids as the key active components. Network pharmacology uncovered 71 potential anti-inflammation targets, with a protein-protein interaction (PPI) network highlighting 8 cores targets, including IL-6, TNF, NFκB and Nrf2 et al. Furthermore, Euphorbia hirta exerts anti-inflammation effects through modulation of Nrf2 and NF-κB signaling pathways. Specifically, the 65% ethanol extract of Euphorbia hirta (EE65) and quercitrin (HPG) exerted anti-inflammatory activity by inhibiting the expression of inflammatory genes associated with the NF-κB signaling pathway, whereas baicalein (HCS) suppressed cellular inflammation by promoting Nrf2-mediated antioxidant gene expression and enhancing apoptosis of inflammatory cells. The results of the study suggest that Euphorbia hirta has potential for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaolin Bai
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lijun Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuning Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Bai Jie
- College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
4
|
Coutinho-Wolino KS, Brito ML, Trigueira PC, de Menezes LO, do Nascimento CS, Stockler-Pinto MB. Genetic Signature of a Healthy Lifestyle: New Horizons for Preventing Noncommunicable Chronic Diseases by Modulating MicroRNA-155. Nutr Rev 2024:nuae142. [PMID: 39383044 DOI: 10.1093/nutrit/nuae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
The development and progression of several noncommunicable diseases (NCDs) are associated with microRNA (miR) 155 (miR-155) activation, which promotes inflammation and oxidative stress. In particular, miR-155 regulates nuclear transcription factor-kappa B (NF-κB) by silencing gene expression of proteins involved in NF-κB suppression, such as suppressor of cytokine signaling 1 (SOCS1) and SH-2 containing inositol 5' polyphosphate 1 (SHIP1), increases the production of reactive oxygen species, and suppresses gene expression of antioxidant enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. In this context, a healthy lifestyle based on a diet rich in nutrients and bioactive compounds as well as regular physical activity may modulate the activity of several miRs. Following this concept, studies involving nutrients, bioactive compounds, and physical activity have been developed to modulate miR-155 activation. This narrative review aims to discuss how a healthy lifestyle based on a diet rich in nutrients, bioactive compounds, and physical activity may modulate the miR-155 pathway and consequently prevent the development and progression of NCDs. Nutrients and bioactive compounds from food may act by inhibiting pathways that promote miR-155 activation such as NF-κB and promote activation of pathways that are associated with the downregulation of miR-155, such as Nrf2, and SOCS1 pathways. Regular physical activity also seems to influence miR-155 levels through an improvement in the immune system during muscle recovery. There is relevant evidence that shows a positive effect of nutrients, bioactive compounds, and physical activity with the modulation of miR-155, which can potentially provide benefits in the clinical setting in cases of NCDs.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Michele L Brito
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Pricilla C Trigueira
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Larissa O de Menezes
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Clara S do Nascimento
- Graduate Program in Biomedicine, Faculty of Biomedicine, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| |
Collapse
|
5
|
Wei CS, Song LL, Peng ZX, Wang XL. Influence of SphK1 on Inflammatory Responses in Lipopolysaccharide-Challenged RAW 264.7 Cells. Cell Biochem Biophys 2024; 82:2511-2521. [PMID: 38909173 DOI: 10.1007/s12013-024-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious respiratory disorders caused by a variety of intrapulmonary and extrapulmonary factors. Their incidence is increasing year by year, with high morbidity and mortality rates and lack of effective treatment. Inflammation plays a crucial role in ALI development, with sphingosine kinase 1 (SphK1) being a pivotal enzyme influencing sphingolipid metabolism and participating in inflammatory responses. However, the specific impact and the signaling pathway underlying SphK1 in lipopolysaccharide (LPS)-induced ALI/ARDS are poorly understood. This investigation aimed to explore the influence of SphK1 on inflammation and delve into the mechanistic aspects of inflammation in RAW 264.7 cells during LPS-induced ALI, which is of great importance in providing new targets and strategies for ALI/ARDS treatment.
Collapse
Affiliation(s)
- Chao-Shun Wei
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Lin-Li Song
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Zi-Xi Peng
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Xiao-Li Wang
- Medical College of Hunan Normal University, Changsha, Hunan, 410006, PR China.
| |
Collapse
|
6
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
7
|
Zhang S, Song L, Zheng R, Zhang F, Wang Q, Mao X, Fan JX, Liu B, Zhao YD, Chen W. Quantification of MicroRNA in a Single Living Cell via Ionic Current Rectification-Based Nanopore for Triple Negative Breast Cancer Diagnosis. Anal Chem 2024; 96:7411-7420. [PMID: 38652893 DOI: 10.1021/acs.analchem.3c05027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.
Collapse
Affiliation(s)
- Shujie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Laibo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruina Zheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qimeng Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiaosui Mao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
8
|
Kmail A. Mitigating digestive disorders: Action mechanisms of Mediterranean herbal active compounds. Open Life Sci 2024; 19:20220857. [PMID: 38645751 PMCID: PMC11032100 DOI: 10.1515/biol-2022-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
This study explores the effects of the Mediterranean diet, herbal remedies, and their phytochemicals on various gastrointestinal conditions and reviews the global use of medicinal plants for common digestive problems. The review highlights key plants and their mechanisms of action and summarizes the latest findings on how plant-based products influence the digestive system and how they work. We searched various sources of literature and databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our focus was on gathering relevant papers published between 2013 and August 2023. Certain plants exhibit potential in preventing or treating digestive diseases and cancers. Notable examples include Curcuma longa, Zingiber officinale, Aloe vera, Calendula officinalis, Lavandula angustifolia, Thymus vulgaris, Rosmarinus officinalis, Ginkgo biloba, Cynodon dactylon, and Vaccinium myrtillus. The phytochemical analysis of the plants showed that compounds such as quercetin, anthocyanins, curcumin, phenolics, isoflavones glycosides, flavonoids, and saponins constitute the main active substances within these plants. These natural remedies have the potential to enhance the digestive system and alleviate pain and discomfort in patients. However, further research is imperative to comprehensively evaluate the benefits and safety of herbal medicines to use their active ingredients for the development of natural and effective drugs.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University Jenin, P. O. Box 240, Jenin, Palestine
| |
Collapse
|
9
|
Gao Y, Lu J, Wang Z, Sun N, Wu B, Han X, Liu Y, Yu R, Xu Y, Han X, Miao J. L-arginine attenuates Streptococcus uberis-induced inflammation by decreasing miR155 level. Int Immunopharmacol 2024; 130:111638. [PMID: 38373387 DOI: 10.1016/j.intimp.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.
Collapse
Affiliation(s)
- Yabing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Binfeng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Han
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yuzhen Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Rui Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Wu JJ, Zhang PA, Chen MZ, Zhang Y, Du WS, Li XN, Ji GC, Jiang LD, Jiao Y, Li X. Analysis of Key Genes and miRNA-mRNA Networks Associated with Glucocorticoids Treatment in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:589-605. [PMID: 38435123 PMCID: PMC10909375 DOI: 10.2147/copd.s441716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Some patients with chronic obstructive pulmonary disease (COPD) benefit from glucocorticoid (GC) treatment, but its mechanism is unclear. Objective With the help of the Gene Expression Omnibus (GEO) database, the key genes and miRNA-mRNA related to the treatment of COPD by GCs were discussed, and the potential mechanism was explained. Methods The miRNA microarray dataset (GSE76774) and mRNA microarray dataset (GSE36221) were downloaded, and differential expression analysis were performed. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the differentially expressed genes (DEGs). The protein interaction network of the DEGs in the regulatory network was constructed with the STRING database, and the key genes were screened through Cytoscape. Potential downstream target genes regulated by differentially expressed miRNAs (DEMs) were predicted by the miRWalk3.0 database, and miRNA-mRNA regulatory networks were constructed. Finally, some research results were validated. Results ① Four DEMs and 83 DEGs were screened; ② GO and KEGG enrichment analysis mainly focused on the PI3K/Akt signalling pathway, ECM receptor interaction, etc.; ③ CD2, SLAMF7, etc. may be the key targets of GC in the treatment of COPD; ④ 18 intersection genes were predicted by the mirwalk 3.0 database, and 9 pairs of miRNA-mRNA regulatory networks were identified; ⑤ The expression of miR-320d-2 and TFCP2L1 were upregulated by dexamethasone in the COPD cell model, while the expression of miR-181a-2-3p and SLAMF7 were downregulated. Conclusion In COPD, GC may mediate the expression of the PI3K/Akt signalling pathway through miR-181a-2-3p, miR-320d-2, miR-650, and miR-155-5p, targeting its downstream signal factors. The research results provide new ideas for RNA therapy strategies of COPD, and also lay a foundation for further research.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ping-An Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ming-Zhe Chen
- Infectious Disease Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei-Sha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao-Ning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guo-Chao Ji
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liang-Duo Jiang
- Respiratory Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xin Li
- Glaucoma Department, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
12
|
Guo J, Fang M, Xiong Z, Zhou K, Zeng P. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:583-598. [PMID: 37490124 DOI: 10.1007/s00210-023-02628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Curcumin (CUR) exhibits a definite curative effect in the treatment of depression. To identify potential antidepressant targets and mechanisms of action of CUR. This study used network pharmacology to explore the signaling pathways and CUR-related targets in depression. C57BL/6 J mice (male,12-14 weeks old) were randomly divided into four groups (n = 8): saline-treated (control mice), lipopolysaccharide (LPS, 2 mg/kg/day, intraperitoneally), LPS + CUR (50 mg/kg/day, intragastrically), and LPS + CUR + LY294002 (7.5 mg/kg/day, intraperitoneally). After 1 week, behavioral tests were performed. Then, neuronal damage in the prefrontal cortex of mice was evaluated by hematoxylin-eosin (HE) staining. We uncovered the main active mechanism of CUR against depression using Western blotting and enzyme-linked immunosorbent assay (ELISA). Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the most significantly enriched pathway in CUR against depression was the PI3K-Akt pathway. Moreover, 52 targets were significantly correlated with the PI3K-Akt signaling pathway and CUR-related targets. In addition, among the top 50 targets ranked by degree in the protein-protein interaction (PPI) network, there were 23 targets involved in the 52 intersection targets. Administration of LPS alone extended immobility time in the open field test (OFT) and tail suspension test (TST) and decreased sucrose consumption in the sucrose preference test (SPT). Pretreatment with CUR relieved LPS-induced changes in the behavioral tests, activity of the PI3K-Akt signaling pathway, neuronal damage in the prefrontal cortex (PFC), and inflammatory response. Moreover, inhibition of the PI3K-Akt signaling pathway by LY294002 blocked the therapeutic effects of CUR. Our study indicates that CUR may be an effective antidepressant agent in an LPS-induced mouse model, partly because of its anti-inflammatory action through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Meng Fang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhe Xiong
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ke Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| |
Collapse
|
13
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
14
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
15
|
Xiong W, Feng S, Zhao Y, Liu X, Gong J. Revealing Landscape of Competing Endogenous RNA Networks in Sepsis-Induced Cardiovascular Diseases. Rev Cardiovasc Med 2023; 24:214. [PMID: 39077015 PMCID: PMC11266464 DOI: 10.31083/j.rcm2407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular dysfunction induced by sepsis is one of the most common phenotypes of cardiovascular diseases (CVDs), which is closely related to the high mortality of sepsis and is an urgent health problem to be solved worldwide. Unfortunately, the exact pathogenesis and pathophysiology of sepsis-induced cardiovascular dysfunction are not clear. As a research hotspot in recent years, competing endogenous RNA (ceRNA) networks are involved in the modulation of the pathophysiological progression of many diseases, including sepsis-related CVDs. Both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) can specifically bind to microRNAs (miRNAs) as ceRNAs to target messenger RNAs (mRNAs), forming a ceRNA network composed of lncRNA/circRNA-miRNA-mRNA. This review demonstrates the potential regulatory mechanism of the ceRNA networks in sepsis-induced cardiovascular toxicity, hoping to provide novel therapeutic strategies and monitoring targets for sepsis-related CVDs.
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Department of Anesthesiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Shiyan Feng
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Emergency Medical Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, 610072 Chengdu, Sichuan, China
| | - Yanhua Zhao
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| | - Xinquan Liu
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| | - Jian Gong
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Department of Emergency Critical Care, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| |
Collapse
|
16
|
Zhang J, Tian W, Wang F, Liu J, Huang J, Duangmano S, Liu H, Liu M, Zhang Z, Jiang X. Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury. Cell Cycle 2023; 22:1694-1712. [PMID: 37415386 PMCID: PMC10446815 DOI: 10.1080/15384101.2023.2230018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome. MicroRNAs (miRNA) are conserved, endogenous, short non-coding RNAs composed of 18-25 nucleotides that serve as potential markers for many diseases and are involved in various biological processes, including cell proliferation, apoptosis, and differentiation. In this review, we provide a brief overview of miRNA expression in ALI/ARDS and summarize recent research on the mechanism and pathways by which miRNAs respond to macrophage polarization, inflammation, and apoptosis. The characteristics of each pathway are also summarized to provide a comprehensive understanding of the role of miRNAs in regulating macrophage polarization during ALI/ARDS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanyi Tian
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiao Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, China
| |
Collapse
|
17
|
Zhang Z, Cui Y, Ouyang H, Zhu W, Feng Y, Yao M, Yang S. Radix Pueraria lobata polysaccharide relieved DSS-induced ulcerative colitis through modulating PI3K signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
18
|
Huang S, Xu D, Zhang L, Hao L, Jia Y, Zhang X, Cheng T, Chen J. Therapeutic Effects of Curcumin Liposomes and Nanocrystals on Inflammatory Osteolysis: In Vitro and In Vivo Comparative Study. Pharmacol Res 2023; 192:106778. [PMID: 37094714 DOI: 10.1016/j.phrs.2023.106778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Curcumin could inhibit periprosthetic osteolysis induced by wear debris and adherent endotoxin, which commonly cause prosthesis loosening and negatively influence the long-term survival of joint arthroplasty. However, its limited water solubility and poor stability pose challenges for its further clinical application. To address these issues, we developed curcumin liposomes for intraarticular injection, as liposomes possess good lubricant capacity and pharmacological synergy with curcumin. Additionally, a nanocrystal dosage form was prepared to enable comparison with the liposomes based on their ability to disperse curcumin effectively. A microfluidic method was used for its controllability, repeatability, and scalability. The Box-Behnken Design was employed to screen the formulations and flow parameters, while computational fluid dynamics was used to simulate the mixing process and predict the formation of liposomes. The optimized curcumin liposomes (Cur-LPs) had a size of 132.9nm and an encapsulation efficiency of 97.1%, whereas the curcumin nanocrystals (Cur-NCs) had a size of 172.3nm. Both Cur-LPs and Cur-NCs inhibited LPS-induced pro-inflammatory polarization of macrophages and reduced the expression and secretion of inflammatory factors. The mouse air pouch model further demonstrated that both dosage forms attenuated inflammatory cell infiltration and inflammatory fibrosis in subcutaneous tissues. Interestingly, the anti-inflammatory effect of Cur-LPs was more potent than that of Cur-NCs, both in vitro and in vivo, although the cellular uptake of Cur-NCs was quicker. In conclusion, the results demonstrate that Cur-LPs have great potential for the clinical treatment of inflammatory osteolysis and that the therapeutic effect is closely related to the liposomal dosage form.
Collapse
Affiliation(s)
- Shan Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dongdong Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, No.800, Shanghai, China
| | - Liang Hao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujie Jia
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Wang Z, Liu H, Song G, Gao J, Xia X, Qin N. Cherry juice alleviates high-fat diet-induced obesity in C57BL/6J mice by resolving gut microbiota dysbiosis and regulating microRNA. Food Funct 2023; 14:2768-2780. [PMID: 36857703 DOI: 10.1039/d2fo03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Cherry is a nutrient-rich food that is good for health. This study demonstrated the inhibitory action of dietary cherry juice on high-fat diet (HFD)-induced obesity in mice. Cherry juice intervention significantly decreased body weight, fat contents, and blood lipid levels in obese mice. The overproduction of proinflammatory cytokines was suppressed by dietary cherry juice, which was accompanied by the elevation of tight junction proteins to maintain intestinal barrier. Moreover, dietary cherry juice restored the decreased production of short-chain fatty acids (SCFAs) by regulating the composition and abundance of gut microbiota. In addition, dietary cherry juice also suppressed the expression of some microRNAs associated with obesity such as miR-200c-3p, miR-125a-5p, miR-132-3p, and miR-223-3p and target proteins related with microRNAs in the inguinal or epididymal white tissue in the obese mice. These results offer a fresh perspective on cherry juice's role in the prevention of obesity caused by the HFD.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Hongxu Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Guoku Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Jingzhu Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Xiaodong Xia
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| | - Ningbo Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China.
- National Engineering Research Center of Seafood, Dalian 116304, China
| |
Collapse
|
20
|
Petry F, Oltramari AR, Kuhn KZ, Schneider SE, Mazon SC, Garbinato CLL, Aguiar GPS, Kreutz LC, Oliveira JV, Siebel AM, Müller LG. Fluoxetine and Curcumin Prevent the Alterations in Locomotor and Exploratory Activities and Social Interaction Elicited by Immunoinflammatory Activation in Zebrafish: Involvement of BDNF and Proinflammatory Cytokines. ACS Chem Neurosci 2023; 14:389-399. [PMID: 36634245 DOI: 10.1021/acschemneuro.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The increase in proinflammatory cytokine expression causes behavioral changes consistent with sickness behavior, and this led to the suggestion that depression might be a psychoneuroimmunological phenomenon. Here, we evaluated the effects of the pretreatment with fluoxetine (10 mg/kg, i.p.) and curcumin (0.5 mg/kg, i.p.) on the immune response elicited by the inoculation of an Aeromonas hydrophila bacterin in zebrafish. Non-pretreated but A. hydrophila-inoculated and sham-inoculated groups of fish served as controls. The social preference, locomotor, exploratory activities, and cerebral expression of il1b, il6, tnfa, and bdnf mRNA were compared among the groups. Behavioral changes characteristic of sickness behavior and a significant increase in the expression of il1b and il6 cytokines were found in fish from the immunostimulated group. The behavioral alterations caused by the inflammatory process were different between males and females, which was coincident with the increased expression of cerebral BDNF. Fluoxetine and curcumin prevented the sickness behavior induced by A. hydrophila and the increased expression of proinflammatory cytokines. Our results point to the potential of zebrafish as a translational model in studies related to neuroinflammation and demonstrate for the first time the effects of fluoxetine and curcumin on zebrafish sickness behavior.
Collapse
Affiliation(s)
- Fernanda Petry
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Amanda R Oltramari
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Ketelin Z Kuhn
- School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Sabrina E Schneider
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Samara C Mazon
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Cristiane L L Garbinato
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Gean P S Aguiar
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Luiz C Kreutz
- Laboratory of Advanced Microbiology and Immunology, Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, Rio Grande do Sul99052-900, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis, Santa Catarina88040-900, Brazil
| | - Anna M Siebel
- Institute of Biological Sciences, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande, Rio Grande do Sul96203-900, Brazil
| | - Liz G Müller
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil.,School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| |
Collapse
|
21
|
Impacts of Curcumin Treatment on Experimental Sepsis: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2252213. [PMID: 36756300 PMCID: PMC9902115 DOI: 10.1155/2023/2252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Background and Aims Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host immune response to an infection. Curcumin is a yellow polyphenol derived from the rhizome of Curcuma longa with anti-inflammatory and antioxidant properties scientifically proven, a condition that allowed its use as a tool in the treatment of sepsis. Thus, the purpose of this article was to systematically review the evidence on the impact of curcumin's anti-inflammatory effect on experimental sepsis. Methods For this, the PubMed, MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were used, and the research was not limited to a specific publication period. Only original articles in English using in vivo experimental models (rats or mice) of sepsis induction performed by administration of lipopolysaccharide (LPS) or cecal ligation and perforation surgery (CLP) were included in the study. Studies using curcumin in dry extract or with a high degree of purity were included. At initial screening, 546 articles were selected, and of these, 223 were eligible for primary evaluation. Finally, 12 articles with full text met all inclusion criteria. Our results showed that curcumin may inhibit sepsis-induced complications such as brain, heart, liver, lungs, and kidney damage. Curcumin can inhibit inflammatory factors, prevent oxidative stress, and regulate immune responses in sepsis. Additionally, curcumin increased significantly the survival rates after experimental sepsis in several studies. The modulation of the immune response and mortality by curcumin reinforces its protective effect on sepsis and indicates a potential therapeutic tool for the treatment of sepsis.
Collapse
|
22
|
Fei Y, Wang Z, Huang M, Wu X, Hu F, Zhu J, Yu Y, Shen H, Wu Y, Xie G, Zhou Z. MiR-155 regulates M2 polarization of hepatitis B virus-infected tumour-associated macrophages which in turn regulates the malignant progression of hepatocellular carcinoma. J Viral Hepat 2023; 30:417-426. [PMID: 36704832 DOI: 10.1111/jvh.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) initiated by hepatitis B virus (HBV) infection is a complicated process. MiR-155 can alter the immune microenvironment to affect the host's anti-infective ability. This study investigated the mechanism by which miR-155 affects tumour-associated macrophage (TAM) polarization at a molecular level, thus affecting the malignant progression of HBV+ HCC. MiR-155 and TAM-related cytokine expression were analysed by qRT-PCR. The distribution of TAMs was detected by immunohistochemistry. The effect of the aberrant miR-155 expression on macrophage polarization was examined by flow cytometry. The targeted relationship was verified by dual-luciferase assay, and the protein level of src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was detected by western blot. The proliferation of HCC cells was examined by CCK-8 and colony formation assays. Invasion and migration of HCC cells were detected by transwell assay. In HBV+ HCC tissues, miR-155 was significantly highly expressed and the number of CD206-positive TAM (CD206+ TAM) and CD68-positive TAM (CD68+ TAM) were higher than those in HBV- HCC tissues. In addition, miR-155 overexpression significantly promoted M2-type macrophage polarization, whilst miR-155 silencing expression significantly promoted M1-type macrophage polarization. Besides, the miR-155/SHIP1 axis accelerated HCC cell invasion, proliferation and migration by inducing M2-type macrophage polarization. MiR-155 accelerates HCC cell proliferation, migration and invasion by targeting SHIP1 expression and inducing macrophage M2 polarization. This finding provides new insights into the development of novel therapeutic strategies for combatting HBV+ HCC and a new reference for exploring anti-tumour immunotherapy.
Collapse
Affiliation(s)
- Yingming Fei
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zhiwei Wang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Minmin Huang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xinjuan Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Fangqin Hu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Jinlong Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Huajiang Shen
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Yong Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Guilin Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zumo Zhou
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| |
Collapse
|
23
|
Chaiwangyen W, Chumphukam O, Kangwan N, Pintha K, Suttajit M. Anti-aging effect of polyphenols: possibilities and challenges. PLANT BIOACTIVES AS NATURAL PANACEA AGAINST AGE-INDUCED DISEASES 2023:147-179. [DOI: 10.1016/b978-0-323-90581-7.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Zhou X, Al-Khazaleh A, Afzal S, Kao MH(T, Münch G, Wohlmuth H, Leach D, Low M, Li CG. 6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation. Biomol Ther (Seoul) 2023; 31:27-39. [PMID: 36319441 PMCID: PMC9810444 DOI: 10.4062/biomolther.2022.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokinesuppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-ɣ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaol-curcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia,Corresponding Authors E-mail: (Li CG), (Zhou X), Tel: +61-2-9685-4743 (Li CG), +61-2-9685-4741 (Zhou X), Fax: +61-2-9685-4760 (Li CG), +61-2-9685-4760 (Zhou X)
| | - Ahmad Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Sualiha Afzal
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ming-Hui (Tim) Kao
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Hans Wohlmuth
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia,Integria Healthcare, Building 5, Freeway Office Park, QLD 4113, Australia,School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David Leach
- Integria Healthcare, Building 5, Freeway Office Park, QLD 4113, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia,Corresponding Authors E-mail: (Li CG), (Zhou X), Tel: +61-2-9685-4743 (Li CG), +61-2-9685-4741 (Zhou X), Fax: +61-2-9685-4760 (Li CG), +61-2-9685-4760 (Zhou X)
| |
Collapse
|
25
|
Hayakawa S, Ohishi T, Oishi Y, Isemura M, Miyoshi N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel) 2022; 11:antiox11122352. [PMID: 36552560 PMCID: PMC9774417 DOI: 10.3390/antiox11122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Growing evidence has been accumulated to show the anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| |
Collapse
|
26
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
27
|
Grafeneder J, Derhaschnig U, Eskandary F, Buchtele N, Sus N, Frank J, Jilma B, Schoergenhofer C. Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Mol Nutr Food Res 2022; 66:e2200139. [PMID: 36101515 PMCID: PMC9787856 DOI: 10.1002/mnfr.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/23/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Preclinical models have demonstrated the anti-inflammatory and lipid-lowering effects of curcumin. Innovative formulations have been developed to overcome the poor bioavailability of native curcumin. The study hypothesizes that the bioavailability of micellar curcumin is superior to native curcumin and investigates the potential anti-inflammatory and proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration lowering effects. METHODS AND RESULTS In this double-blind, randomized, crossover trial, 15 healthy volunteers receive micellar or native curcumin (105 mg day-1 ) for 7 days with a ≥7 days washout period. Curcumin and metabolite concentrations are quantified by high-performance liquid chromatography with fluorescence detection (HPLC-FD), and pharmacokinetics are calculated. To analyze anti-inflammatory effects, blood samples (baseline, 2 h, 7 days) are stimulated with 50 ng mL-1 lipopolysaccharides (LPS). Interleukin (IL)-6, tumor-necrosis factor (TNF-α), and PCSK9 concentrations are quantified. Micellar curcumin demonstrates improved bioavailability (≈39-fold higher maximum concentrations, ≈14-fold higher area-under-the-time-concentration curve, p < 0.001) but does not reduce pro-inflammatory cytokines in the chosen model. Subjects receiving micellar curcumin have significantly lower PCSK9 concentrations (≈10% reduction) after 7 days compared to baseline (p = 0.038). CONCLUSION Micellar curcumin demonstrates an improved oral bioavailability but does not show anti-inflammatory effects in this model. Potential effects on PCSK9 concentrations warrant further investigation.
Collapse
Affiliation(s)
- Juergen Grafeneder
- Department of Emergency MedicineMedical University of ViennaVienna1090Austria
| | - Ulla Derhaschnig
- Department of Clinical PharmacologyMedical University of ViennaVienna1090Austria
| | - Farsad Eskandary
- Division of Nephrology, Department of Medicine IIIMedical University of ViennaVienna1090Austria
| | - Nina Buchtele
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Nadine Sus
- Department of Food Biofunctionality (140b)Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| | - Jan Frank
- Department of Food Biofunctionality (140b)Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaVienna1090Austria
| | | |
Collapse
|
28
|
Novel Curcumin-Encapsulated α-Tocopherol Nanoemulsion System and Its Potential Application for Wound Healing in Diabetic Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7669255. [PMID: 36158895 PMCID: PMC9499807 DOI: 10.1155/2022/7669255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Objective This project was aimed at formulating a novel nanoemulsion system and evaluating it for open incision wound healing in diabetic animals. Methods The nanoemulsions were characterized for droplet size and surface charge, drug content, antioxidant and antimicrobial profiling, and wound healing potential in diabetic animals. The skin samples excised were also analyzed for histology, mechanical strength, and vibrational and thermal analysis. Results The optimized nanoemulsion (CR-NE-II) exhibited droplet size of26.76 ± 0.9 nm with negative surface charge (−10.86 ± 1.06 mV), was homogenously dispersed with drug content of68.05 ± 1.2%, released almost82.95 ± 2.2%of the drug within first 2 h of experiment with synergistic antioxidant (95 ± 2.1%) and synergistic antimicrobial activity against selected bacterial strains in comparison to blank nanoemulsion, and promoted significantly fast percent reepithelization (96.47%). The histological, vibrational, thermal, and strength analysis of selected skin samples depicted a uniform and even distribution of collagen fibers which translated into significant increase in strength of skin samples in comparison to the control group. Conclusions The optimized nanoemulsion system significantly downregulated the oxidative stress, enhanced collagen deposition, and precluded bacterial contamination of wound, thus accelerating the skin tissue regeneration process.
Collapse
|
29
|
Mohanty JN, Sahoo S, Routray SP, Bhuyan R. Does the diverse source of miRNAs affect human health? An approach towards diagnosis and therapeutic management. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Maiese A, Scatena A, Costantino A, Chiti E, Occhipinti C, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:9354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enrica Chiti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
31
|
Curcumin Elevates microRNA-183-5p via Cathepsin B-Mediated Phosphatidylinositol 3-Kinase/AKT Pathway to Strengthen Lipopolysaccharide-Stimulated Immune Function of Sepsis Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6217234. [PMID: 35992541 PMCID: PMC9356831 DOI: 10.1155/2022/6217234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022]
Abstract
Curcumin (Cur), a natural polyphenol compound, has been testified to modulate innate immune responses and also showed anti-inflammatory properties. Nevertheless, the mechanism was still poorly unknown, especially regarding Cur-modulated microRNAs (miRNAs) under the inflammatory response. CD39+ regulatory T cells (Tregs) were provided with distinct immunosuppressive action and exerted a critical role in the modulation of immune balance in sepsis. Nevertheless, the impact of Cur on the immune function of sepsis mice has not been reported. In this study, the influence of Cur on the inflammatory response and immune function of sepsis mice via augment of miR-183-5p and Cathepsin B (CTSB)-mediated phosphatidylinositol 3-kinase (PI3K)/AKT pathway was explored. Adoption of 20 mg/kg Cur was for gavage. In the meantime, injection of plasmid vectors of interference with miR-183-5p or CTSB was into the tail vein. Intraperitoneal injection of lipopolysaccharide (10 mg/kg) was to stimulate model of sepsis mice. Histopathological changes of sepsis mice were observed. The contents of tumor necrosis factor-α and Interleukin (IL)-1β and IL-6 in serum of mice were examined. Detection of alanine aminotransferase, aspartate aminotransferase (AST), urea nitrogen (BUN), and creatinine in serum of mice was performed. Test of the percentage of CD39+ Tregs in tail venous blood of mice was implemented. Examination of miR-183-5p, CTSB, and PI3K/AKT was performed. The targeting of miR-183-5p and CTSB was detected. Cur was available to ameliorate the histological damage, to reduce the content of inflammatory factors, AST, and BUN, and to decline the percentage of CD39+ Tregs in tail venous blood of sepsis mice. Elevated miR-183-5p or silenced CTSB was available to further enhance the protection of Cur. Cur was available to accelerate miR-183-5p, which negatively modulated CTSB and Cur-mediated PI3K/AKT pathway via the miR-183-5p/CTSB axis to restrain inflammation of sepsis mice and enhance its immune function.
Collapse
|
32
|
Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Taghipour A, Jafari MR, Nikpoor AR, Mohammadi M. Curcumin as an effective suppressor of miRNA expression in patients with knee osteoarthritis. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:346-356. [PMID: 35782767 PMCID: PMC9121260 DOI: 10.22038/ajp.2021.19380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022]
Abstract
Objective Osteoarthritis is the most common disease in the group of joint diseases, and its incidence is directly related to aging. Given the anti-inflammatory effects of curcumin as an active ingredient of turmeric, we aimed to investigate the effects of this compound in a new curcumin nanomicelle formula named SinaCurcumin® on the expression of microRNAs (miRNAs) involved in immune responses of patients with osteoarthritis. Materials and Methods We divided 30 patients with osteoarthritis into two groups namely, nano curcumin-receiving (15 patients) and placebo-receiving (15 patients) and we studied them for 3 months. The Iranian Registry of Clinical Trials (IRCT) approved our study with the IRCT registry No. IRCT20151028024760N4. We evaluated the rates of the expression of microRNAs 146, 155, 16, and 138 employing SYBR Green Real-Time PCR method. Results The expression of miRNAs 155, 138, and 16 revealed a significant reduction in the curcumin-receiving group (p=0.002, p=0.024 and p=0.0001 respectively). Conclusion Our research data indicated that the consumption of curcumin in patients with osteoarthritis could affect the immune system partially via altering the expression of microRNAs and cytokines.
Collapse
Affiliation(s)
- Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Taghipour
- Department of Epidemiology, Social Determinants of Health Research Center, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Reza Jafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Nguyen HD, Kim MS. The protective effects of curcumin on metabolic syndrome and its components: In-silico analysis for genes, transcription factors, and microRNAs involved. Arch Biochem Biophys 2022; 727:109326. [PMID: 35728632 DOI: 10.1016/j.abb.2022.109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND We aimed to identify the molecular mechanisms behind curcumin's therapeutic benefits for metabolic syndrome (MetS) and its components. METHODS The Comparative Toxicogenomics Database, MIENTURNET, Metascape, GeneMania, and Cytoscape software were critical analytic tools. RESULTS Curcumin may have therapeutic effects on MetS and its components via the following genes: NOS3, IL6, INS, and ADIPOQ, particularly PPARG. Curcumin has higher docking scores than other genes with INS and PPARG (docking scores: -8.3 and -5.8, respectively). Physical interactions (56%) were found to be the most prevalent for dyslipidemia, co-expression for hypertension, obesity, T2DM, and MetS. "Galanin receptor pathway", "lipid particles composition", "IL-18 signaling pathway", "response to extracellular stimulus", and "insulin resistance" were listed in the first of the key pathways for MetS, dyslipidemia, hypertension, obesity, and diabetes, respectively. The protein-protein interaction enrichment analysis study also identified "vitamin B12 metabolism," "folate metabolism," and "selenium micronutrient network" as three major molecular pathways linked to MetS targeted by curcumin. PPARG was the key transcription factor that regulated practically all curcumin-targeted genes linked to MetS and its components. Curcumin targeted hsa-miR-155-5p, which has been linked to T2DM, hypertension, and MetS, as well as hsa-miR-130b-3p and hsa-miR-22-3p, which have been linked to dyslipidemia and obesity, respectively. In silico, sponges that regulated hsa-miR-155-5p were developed and evaluated. Curcumin, MetS, and its components have been found to target adipocytes, cardiac myocytes, smooth muscle, the liver, and pancreas. Curcumin's physicochemical properties and pharmacokinetics are closely connected with its therapeutic advantages in MetS and its components due to its high gastrointestinal absorption, drug-likeness, water solubility, and lipophilic nature. Curcumin is a CYP1A9 and CYP3A4 inhibitor. Although curcumin has a low bioavailability, it can be synthesized and administered to increase its pharmacokinetic features. CONCLUSIONS Curcumin needs to undergo therapeutic optimization and further study into its pharmacological structure before it can be used to treat MetS and its components.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
34
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
35
|
Meng B, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Yan C. miR-21-5p serves as a promoter in renal cell carcinoma progression through ARHGAP24 downregulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39985-39993. [PMID: 35112252 DOI: 10.1007/s11356-021-18343-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Renal cell carcinoma (RCC) is a highly recurrent aggressive tumor. This study works for the regulation of miR-21-5p on RCC cell functions and novel ideas for therapies of RCC. Isoform expression quantification data were offered by The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) to investigate differentially expressed miRNAs. The way miR-21-5p works on biological functions of RCC was examined with MTT and Transwell assays. The downstream targets of miR-21-5p were predicted using bioinformatics analysis. The binding of two researched objects was verified by the dual-luciferase method. TCGA data manifested a considerably high level of miR-21-5p in RCC tissue, while ARHGAP24 was significantly lowly expressed. miR-21-5p bound ARHGAP24 and stimulated RCC cell functions, whereas ARHGAP24 mimic could reverse such promotion. This work observed miR-21-5p, a stimulator in RCC, and it deteriorated this cancer via repressing its downstream target gene ARHGAP24 expression.
Collapse
Affiliation(s)
- Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China.
| |
Collapse
|
36
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Zingale VD, Gugliandolo A, Mazzon E. MiR-155: An Important Regulator of Neuroinflammation. Int J Mol Sci 2021; 23:90. [PMID: 35008513 PMCID: PMC8745074 DOI: 10.3390/ijms23010090] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level and that play an important role in many cellular processes, including modulation of inflammation. MiRNAs are present in high concentrations in the central nervous system (CNS) and are spatially and temporally expressed in a specific way. Therefore, an imbalance in the expression pattern of these small molecules can be involved in the development of neurological diseases. Generally, CNS responds to damage or disease through the activation of an inflammatory response, but many neurological disorders are characterized by uncontrolled neuroinflammation. Many studies support the involvement of miRNAs in the activation or inhibition of inflammatory signaling and in the promotion of uncontrolled neuroinflammation with pathological consequences. MiR-155 is a pro-inflammatory mediator of the CNS and plays an important regulatory role. The purpose of this review is to summarize how miR-155 is regulated and the pathological consequences of its deregulation during neuroinflammatory disorders, including multiple sclerosis, Alzheimer's disease and other neuroinflammatory disorders. Modulation of miRNAs' expression could be used as a therapeutic strategy in the treatment of pathological neuroinflammation.
Collapse
Affiliation(s)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (V.D.Z.); (E.M.)
| | | |
Collapse
|
38
|
Zhou Y, Zhang P, Zheng X, Ye C, Li M, Bian P, Fan C, Zhang Y. miR-155 regulates pro- and anti-inflammatory cytokine expression in human monocytes during chronic hepatitis C virus infection. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1618. [PMID: 34926662 PMCID: PMC8640902 DOI: 10.21037/atm-21-2620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Background Hepatitis C virus (HCV) dysregulates innate and adaptive immune responses while monocytes (M) play a crucial role in linking innate and adaptive immunity to control viral infection. A transcription factor T-bet is upregulated to dampen M functions via the c-Jun N-terminal kinase (JNK) pathway, followed by enhanced Tim-3 expression in chronic HCV infection. However, the molecular mechanisms that control the expression in M are yet unknown. miR-155 has been implicated as a key regulator controlling diverse biological processes through posttranscriptional repression, but the influences of miR-155 on these regulators and effectors still need to be studied. Methods Forty HCV-infected patients and 40 healthy subjects (HS) were recruited, THP-1 cells (human acute monocyte leukemia cell line) were cultured with HCV-infected Huh 7.5 cells. The expression levels of miR-155 and JNK1/JNK2/JNK3 were measured by real-time RT-PCR. IL-10/IL-12 was detected by flow cytometry. THP-1 cells were transfected with mimics-155 and negative control, SOCS1, p-STAT1, p65, p-smad, p-p38, and p-JNK were measured by Western blot. TNF-α levels were measured by ELISA. Student’s t-test was used in statistics. Results The study showed that miR-155 was upregulated in CD14+ M in HCV-infected patients compared to healthy subjects (P<0.05). Moreover, the upregulation of miR-155 in CD14+ M from HCV-infected patients induced TNF-α production and JNK gene expression, which, in turn, led to T-bet upregulation. Also, miR-155 upregulation in CD14+ M of HCV-infected patients increased the IL-12 and decreased the IL-10 production. Conclusions The obtained results indicated that miR-155 upregulation in M during HCV infection enhances the activation of TNF-α and JNK pathways, promotes the expression of transcription factor T-bet, and triggers pro- and anti-inflammatory mediators. Together, these data reveal new information regarding the mechanisms of chronic HCV infection.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peixin Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiyu Bian
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
40
|
Usmani J, Khan T, Ahmad R, Sharma M. Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother 2021; 144:112337. [PMID: 34688080 DOI: 10.1016/j.biopha.2021.112337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The growing number of deaths related to sepsis has become a major concern for past few years. Sepsis is a complex pathological reactions that is explained by series of host response to microbial insult. The resulted systemic reactions are manifested by early appearance of proinflammatory cytokines leading to hyperinflammatory phase which is followed by septic shock and death of the patient. The present study has revealed that antibiotics are not self-sufficient to control the complex mechanism of sepsis. Moreover prolonged and unnecessary administration of antibiotics may lead to antibiotic resistance to pathogens. In addition to this, immunosuppressive medications are selective and have targeted approach to certain study population. Drugs from herbal origin have shown to possess a mammoth of immunomodulatory potential by suppressing proinflammatory and anti-inflammatory cytokines exhibiting no or minimal unwanted secondary responses. Concomitantly, herbal plants tend to modulate oxidative stress level and haematological imbalance during inflammatory diseased conditions. Natural compounds have gained much attention for the treatment of several clinical complications. Considering the promising responses of medicinal plants with less/no side effects and easy procurement, comprehensive research on herbal plants to treat sepsis should be contemplated.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110019, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
41
|
Ayadilord M, Nasseri S, Emadian Razavi F, Saharkhiz M, Rostami Z, Naseri M. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem Funct 2021; 39:886-895. [PMID: 34235754 DOI: 10.1002/cbf.3659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Human dental pulp stem cells (hDPSCs) have significant potential of immunomodulatory for therapeutic and regenerative biomedical applications compared to other mesenchymal stem cells (MSCs). Nowadays, alteration of gene expression is an important way to improve the performance of MSCs in the clinic. MicroRNAs (miRs) and CD200 are known to modulate the immune system in MSCs. Curcumin is famous for its anti-inflammatory impacts. Phytosomal curcumin (PC) is a nanoparticle synthesized from curcumin that removes the drawbacks of curcumin. The purpose of this research was to assess the effects of PC on the expression of the CD200 and four key miRNAs in immune system. PC (30 μM) treatment of hDPSCs could ameliorate their immunoregulatory property, presented by reduced expressions of miR-21, miR-155 and miR-126, as well as enhanced expressions of miR-23 and CD200. The PC was also able to reduce PI3K\AKT1\NF-κB expressions that were target genes for these miRs and involved in inflammatory pathways. Moreover, PC was more effective than curcumin in improving the immune modulation of hDPSCs. Evidence in this study suggested that PC mediates immunoregulatory activities in hDPSC via miRs and CD200 to regulate PI3K\AKT1\NF-κB signalling pathways, which may provide a theoretical basis for PC in the treatment of many diseases. SIGNIFICANCE OF THE STUDY: Autoimmune diseases or tooth caries are partly attributed to global health problems and their common drug treatments have several side effects. The goal of this study is dentin regeneration and autoimmune diseases treatment via stem cell-based approaches with phytosomal curcumin (PC), for the first time. Because dental pulp stem cells have unique advantages (including higher immunomodulatory capacity) over other mesenchymal stem cells, we considered them the best option for treating these diseases. Using PC, we try to increase the immunomodulatory properties of these cells.
Collapse
Affiliation(s)
- Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Department of Prosthodontics, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
42
|
Li L, Huang Y, Zhang Z. Expression profile of miRNAs involved in the hepatoprotective effects of curcumin against oxidative stress in Nile tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105896. [PMID: 34174576 DOI: 10.1016/j.aquatox.2021.105896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Curcumin is a polyphenol with antioxidant activity that has been used to protect the health of fish livers. Our previous studies about comparative transcriptome have shown that curcumin can enhance the Nrf2-Keap1 signaling pathway and induce downstream anti-stress genes to maintain cell viability. However, the possible role of miRNAs in the protective mechanism of curcumin is not understood. In this study, the tilapia hepatocyte H2O2 stress model was used, and the miRNA expression profile for four groups (control group, curcumin group, H2O2 group, and protection group) were established by high-throughput sequencing. In our results, 278-333 types of Oreochromis niloticus miRNAs, 309-543 types of conserved miRNAs, and 535-746 types of novel miRNAs were identified in different samples. Differentially expressed miRNAs were identified by comparing miRNA expression profiles among the four groups. The expression levels were confirmed by q-PCR. The target genes of these differentially expressed miRNAs were predicted, and their functional annotations were enriched by GO and KEGG analysis, which revealed that many target genes were involved in "response to stimulus" and "antioxidant activity" in each pair of groups. Several miRNAs related to oxidative stress showed differential expression. For example, in the H2O2 group, the expression of miR-122 was decreased, and the expression of miR-21 and miR-489 increased significantly. In the curcumin group, the expression of miR-153b was decreased, and the expression of miR-200a and miR-29 was increased significantly. miR-153b, miR-200a, and miR-29 may be involved in the regulation of the Nrf2-Keap1 signaling pathway by curcumin. This work might provide insights into the molecular mechanisms of miRNA regulation of curcumin on the prevention and alleviation of liver diseases in fish.
Collapse
Affiliation(s)
- Linming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ziping Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
43
|
Altered Properties of Neurons and Astrocytes and the Effects of Food Components in Stroke-Prone Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:718-727. [PMID: 34001721 DOI: 10.1097/fjc.0000000000001025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT In stroke-prone spontaneously hypertensive rats (SHRSP), stroke induces neuronal vulnerability and neuronal death, while astrocytes show a weakened support function toward neurons. Moreover, certain food components have been demonstrated to prevent the occurrence of stroke. This review aims to explain the stroke-related properties of SHRSP-derived neurons and astrocytes. In addition, it describes the effects of particular dietary phytochemicals on SHRSP. In this study, we obtained information using PubMed, ScienceDirect, and Web of Science. We searched for the functions of neurons and astrocytes and the molecular mechanism of ischemic stroke induction. We summarized the recent literature on the underlying mechanisms of stroke onset in SHRSP and the alleviating effects of typical food-derived phytochemical components. Neuronal death in SHRSP is induced by hypoxia-reoxygenation, suggesting the involvement of oxidative stress. Furthermore, the production of lactate, l-serine, and glial cell line-derived neurotrophic factor in SHRSP-derived astrocytes was reduced compared with that in control Wistar-Kyoto rats. Vitamin E exerts an inhibitory effect on hypoxia-reoxygenation-induced neuronal death in SHRSP. Curcumin, epigallocatechin gallate, resveratrol, and carotenoids can prevent the development of stroke in SHRSP. In particular, the properties of SHRSP-derived neurons and astrocytes affect stroke-induced neuronal death. This review suggests the potential and therapeutic applications of dietary phytochemicals in reducing stroke risk and lowering blood pressure in SHRSP, respectively, by targeting various processes, including oxidative stress, apoptosis, and inflammation. Thus, future research on SHRSP brain cells with a genetic predisposition to stroke can consider using these food ingredients to develop approaches for stroke prevention.
Collapse
|
44
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
45
|
Gao X, Yi X, Liu Z, Dong X, Xia G, Zhang X, Shen X. Comparative Study on Curcumin Loaded in Golden Pompano ( Trachinotus blochii) Head Phospholipid and Soybean Lecithin Liposomes: Preparation, Characteristics and Anti-Inflammatory Properties. Molecules 2021; 26:2328. [PMID: 33923773 PMCID: PMC8073247 DOI: 10.3390/molecules26082328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we compared the characteristics and in vitro anti-inflammatory effects of two curcumin liposomes, prepared with golden pompano head phospholipids (GPL) and soybean lecithin (SPC). GPL liposomes (GPL-lipo) and SPC liposomes (SPC-lipo) loaded with curcumin (CUR) were prepared by thin film extrusion, and the differences in particle size, ζ-potential, morphology, and storage stability were investigated. The results show that GPL-lipo and SPC-lipo were monolayer liposomes with a relatively small particle size and excellent encapsulation rates. However, GPL-lipo displayed a larger negative ζ-potential and better storage stability compared to SPC-lipo. Subsequently, the effects of phospholipids in regulating the inflammatory response of macrophages were evaluated in vitro, based on the synergistic effect with CUR. The results showed that both GPL and SPC exerted excellent synergistic effect with CUR in inhibiting the lipopolysaccharide (LPS)-induced secretion of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory genes (tumor necrosis factor (TNF)-α, interleukin 1β (IL-β), and interleukin 6 (IL-6)) in RAW264.7 cells. Interestingly, GPL-lipo displayed superior inhibitory effects, compared to SPC-lipo. The findings provide a new innovative bioactive carrier for development of stable CUR liposomes with good functional properties.
Collapse
Affiliation(s)
- Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xiuping Dong
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| |
Collapse
|
46
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
47
|
Tufekci KU, Ercan I, Isci KB, Olcum M, Tastan B, Gonul CP, Genc K, Genc S. Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration. Immunol Lett 2021; 233:20-30. [PMID: 33711331 DOI: 10.1016/j.imlet.2021.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is a multiprotein complex that activates caspase-1 and triggers the release of the proinflammatory cytokines IL-1β and IL-18 in response to diverse signals. Although inflammasome activation plays critical roles against various pathogens in host defense, overactivation of inflammasome contributes to the pathogenesis of inflammatory diseases, including acute CNS injuries and chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In the current study, we demonstrated that Sulforaphane (SFN), a dietary natural product, inhibits NLRP3 inflammasome mediated IL-1β and IL-18 secretion and pyroptosis in murine microglial cells. SFN decreased the secretion of IL-1β and IL-18, and their mRNA levels in LPS primed microglia triggered by ATP. SFN suppressed the overexpression of cleaved caspase-1 and NLRP3 protein expressions as measured by caspase activity assay and western blot, respectively. SFN also prevented caspase-1 dependent pyroptotic cell death in microglia. Our data indicate that SFN suppresses NLRP3 inflammasome via the inhibition of NF-κB nuclear translocation and Nrf2 mediated miRNAs expression modulation in murine microglia.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Ilkcan Ercan
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kamer Burak Isci
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Melis Olcum
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
48
|
Dong R, Zhang B, Tan B, Lin N. Long non-coding RNAs as the regulators and targets of macrophage M2 polarization. Life Sci 2021; 266:118895. [PMID: 33310042 DOI: 10.1016/j.lfs.2020.118895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
Macrophages are immune cells with high heterogeneity and plasticity. M2 polarization is one extreme of the well-established phenotypes of macrophage polarization, and involves in diverse biological processes. The polarization process is initiated at the command of numerous components. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides with limited protein-coding capacity. Recent studies have revealed a newly found subset of lncRNAs engaged in the M2 polarization and their potent and multifunctional roles in developing diseases. By interfering with specific signaling pathways and altering the active mode, acting as the sponges of microRNAs or decoys of transcription factors, lncRNAs prompted macrophages to an M2 phenotype. Further, lncRNAs can bind to the genome to regulate the chromatin dynamics or work as a platform for protein complexes tether. Exosomal lncRNAs can also orchestrate the polarization in a paracrine way. To make it easier to interpret the roles of lncRNAs in the M2 polarization, we review the reported lncRNAs according to the underlying mechanisms. Moreover, we discuss the possibilities of targeting macrophages' M2 polarization using the oligonucleotides drugs or clustered regularly interspaced palindromic repeats (CRISPR) technologies to provoke wisdom on the therapeutic strategies.
Collapse
Affiliation(s)
- Rong Dong
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bo Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China
| | - Biqin Tan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China.
| |
Collapse
|
49
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
50
|
Deng L, Wu X, Zhu X, Yu Z, Liu Z, Wang J, Zheng Y. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res 2021; 13:57-72. [PMID: 33527008 PMCID: PMC7847521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Docetaxel (DTX) is widely used to treat many malignant tumors but has many adverse effects. Curcumin (CUR) also has effects on a variety of tumor cells and can reduce the toxicity and side effects of chemotherapy drugs and the occurrence of drug resistance. However, the combination of CUR and DTX for treating esophageal cancer has not been reported. METHODS Human esophageal squamous cell carcinoma (ESCC) KYSE150 and KYSE510 cells were treated with CUR or DTX alone or both drugs and cancer cell viability was detected by CCK8, apoptosis, scratch-healing and migration assays. Electron microscopy and Western blots were used. In vivo experiments were used observe anti-tumor effects. RESULTS CUR combined with DTX significantly inhibited the viability and migration of esophageal cancer cells (P<0.01) and further promoted the apoptosis of cancer cells. In addition, CUR induced autophagy in esophageal cancer cells when combined with DTX. DTX combined with CUR may induce apoptosis and autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. The compound 3-methyladenine (3MA) inhibited the autophagy induced by DTX and CUR (DC), further accelerated apoptosis and inhibited the proliferation of esophageal cancer cells when combined with DC. CONCLUSION CUR combined with DTX induced apoptosis and autophagy of ESCC and probably worked through the PI3K/AKT/mTOR signaling pathway. The combination of the autophagy inhibitor, CUR and DTX may become a new treatment strategy for esophageal cancer.
Collapse
Affiliation(s)
- Lian Deng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
- Second Department of Oncology, Guilin Nanxishan HospitalGuangxi, China
| | - Xiaoran Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhongjian Yu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhile Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Jinting Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| |
Collapse
|