1
|
Zhang X, Ji D, Zhang Y, Du C, Liang L, Ahmad A, Feng Y, Ye G. Study on the mechanism of action of berberine combined with Jianpi Yishen Huazhuo formulation in treating obese polycystic ovary syndrome by activating PI3K/AKT signaling pathway. Gynecol Endocrinol 2025; 41:2462068. [PMID: 39967331 DOI: 10.1080/09513590.2025.2462068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES This study aims to investigate the effects and potential mechanisms of berberine in conjunction with Jianpi Yishen Huazhuo formulation (JPYSHZF) on obese rats that serve as a model for polycystic ovary syndrome (PCOS). METHODS Letrozole combined with high-fat diet (HFD) was used to establish an overweight PCOS rat model. After successful modeling, each intervention group was monitored for 28 d. An oral glucose tolerance test (OGTT) is performed to assess glucose metabolism. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of sex hormones and serum levels of gastrointestinal hormones in rats. Biochemical analyzers were used to assess blood lipid levels. The protein expression levels of p38, PI3K, GLUT4, and AKT in ovarian tissue were demonstrated using Western Blotting (WB). Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of p38, PI3K, GLUT4 and AKT in the same tissue. The morphological changes of ovarian tissue were observed using Hematoxylin-eosin (HE). RESULTS Treatment with berberine in conjunction with JPYSHZF has been shown to reduce serum testosterone T and luteinizing hormone (LH) levels while increasing serum follicle-stimulating hormone (FSH) and E2 levels. This combination therapy also decreases the LH/FSH ratio and ameliorates polycystic ovary-like pathological changes in the ovaries of rats with PCOS. Additionally, this treatment decreases serum TC, TG, and LDL-c levels while increasing HDL-c levels. It also reduces levels of GLU and Ghrelin while enhancing levels of CCK, PYY, and GLP-1. Furthermore, the relative 6 of PI3K and AKT proteins, as well as the mRNA levels of PI3K, GLUT4, and AKT, were found to be increased. CONCLUSIONS Berberine combined with JPYSHZF can improve the sex hormone levels, ovarian function, glucose and lipid metabolism levels, and gastrointestinal hormone levels in obese PCOS rats by activating the PI3K/AKT signaling pathway, thereby playing a role in treating obese PCOS.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Dejiang Ji
- Department of Acupuncture and Moxibustion, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Yan Zhang
- The First Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Cuizhong Du
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Lijun Liang
- Department of Pediatrics, General Hospital of Ningxia Medical University, Ningxia, China
| | - Aqsa Ahmad
- The First Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Yahong Feng
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Gaxi Ye
- Department of Acupuncture and Moxibustion, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| |
Collapse
|
2
|
Yang J, Wu Y, Wei W, Guo W, Li M, Jia J, Xu Y, Wang Y. Study on Cold and Hot Properties of Chinese Materia Medica Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics Combined With Network Pharmacology Analysis. Biomed Chromatogr 2025; 39:e70070. [PMID: 40159985 DOI: 10.1002/bmc.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
The cold/hot properties of Chinese materia medica (CMM) are the core theory of traditional Chinese medicine (TCM). This study aims to investigate the cold/hot properties of CMM and find the possible mechanisms related to CMM properties using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics combined with network pharmacology analysis. Typical cold and hot CMMs were given to mice by intragastric administration. The metabolomics analyses showed that cold/hot CMMs induced metabolome changes by modulating arginine and proline metabolism, tricarboxylic acid cycle, fatty acid metabolism, etc. The joint analysis of metabolomics and network pharmacology suggested that cold and hot CMMs could modulate the expression of IL-6, IL-1β, TNF, and CASPS and influence metabolic changes, thereby exhibiting their cold/hot properties. The validation study showed that the serum levels of IL-6 and IL-1β were regulated by CMM administration. Molecular docking analysis suggested that the active compound of CMM had good binding energy with target proteins. This study conducted a primary investigation to explore the CMM property from the perspective of metabolomics, which is expected to provide some research data related to the body metabolism for the scientific connotation of the cold/hot properties of CMM.
Collapse
Affiliation(s)
- Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wei
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Changchun, China
| | - Meng Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangwei Jia
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Mao Q, Liu J, Yan Y, Wang G, Zhang M, Wang Z, Wen X, Jiang Z, Li H, Li J, Xu M, Zhang R, Yang B. 13-Methylpalmatine alleviates bleomycin-induced pulmonary fibrosis by suppressing the ITGA5/TGF-β/Smad signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156545. [PMID: 40023972 DOI: 10.1016/j.phymed.2025.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated. PURPOSE The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF. METHODS In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF. RESULT In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action. CONCLUSION To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
Collapse
Affiliation(s)
- Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Haijing Li
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Mingyang Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|
4
|
Jiang Y, Zhang J, Liu W, Qian X, Zhuang X, Hu C. Scutellariae Radix and Coptidis Rhizoma improve NAFLD via regulation of SIRT6/ACSL5 pathway and SCD1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119834. [PMID: 40254111 DOI: 10.1016/j.jep.2025.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal pair Scutellariae Radix-Coptidis Rhizoma (SR-CR) has been widely used in Traditional Chinese Medicine (TCM) for treating metabolic disorders, including nonalcoholic fatty liver disease (NAFLD) -related conditions. Its traditional use highlights its potential in addressing the multifaceted pathogenesis of NAFLD, though the underlying mechanisms remain unclear. AIM OF THE STUDY To evaluate the therapeutic efficacy of the SR-CR herbal pair in alleviating NAFLD and to elucidate its mechanisms of action, with a specific focus on lipid metabolism pathways. MATERIALS AND METHODS The therapeutic effects of SR-CR were assessed using a high-fat diet (HFD)-induced NAFLD rat model and HepG2 cell model. Multi-omics analyses were employed to identify molecular targets and pathways, while affinity ultrafiltration-mass spectrometry characterized bioactive constituents. Findings were validated in vivo and in vitro via Western blot and immunofluorescence. Protein-constituent interactions were further characterized by surface plasmon resonance and molecular docking. RESULTS SR-CR significantly alleviated NAFLD symptoms in HFD-fed rats by reducing hepatic lipid accumulation, inflammation, and hepatocyte ballooning while normalizing biochemical indicators. Mechanistic studies revealed that SR-CR regulates the SIRT6/ACSL5 pathway and SCD1, both critical to lipid metabolism. Scutellariae Radix (SR) and its major constituent, baicalin, enhanced ACSL5 activity via SIRT6-mediated deacetylation, promoting fatty acid oxidation and intracellular lipid utilization. Coptidis Rhizoma (CR) and its primary component, berberine, inhibited SCD1, thereby reducing de novo lipogenesis. These complementary effects synergistically enhanced energy expenditure and reduced lipid synthesis. CONCLUSION The SR-CR herbal pair effectively alleviates HFD-induced NAFLD by synergistically modulating lipid metabolism, enhancing energy expenditure, and reducing de novo lipogenesis through the regulation of the SIRT6/ACSL5 pathway and SCD1. These findings provide molecular evidence for the traditional use of SR-CR in treating metabolic disorders and highlight its potential as a plant-based therapeutic for NAFLD.
Collapse
Affiliation(s)
- Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wangzhenzu Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojing Qian
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Jiao X, Li R, Ocholi SS, Wang H, Cui T, Chen B, Wang L, Fu Z, Liu E, Wang F, Han L. A multi-level strategy based on comprehensive two-dimensional liquid chromatography-Q-Orbitrap-mass spectrometry combined with PLS regression model and RT-Ensemble Pred model to intelligently distinguish different geographical locations of Huanglian sample. J Pharm Biomed Anal 2025; 262:116864. [PMID: 40233553 DOI: 10.1016/j.jpba.2025.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Huanglian (HL) is a member of the Ranunculaceae family, including Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao, or Coptis teeta Wall. The dried rhizomes are highly esteemed herbal medicine in Chinese pharmacopeia. However, the composition of HL is complex, and current identification technologies are insufficient for conducting a comprehensive analysis of HL, leading to major obstacles in quality control. Therefore, an in-depth exploration of the influence of species diversity and geographic provenance on the chemical profile of HL is imperative for its rational application and quality assurance. To comprehensively analyze compounds in HL samples from diverse geographical regions, this study employed an integrated approach combining offline two-dimensional ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry (2D-LC-MS/MS) with online 2D-LC-MS/MS. This dual-platform strategy enabled detailed characterization of complex compound profiles. Additionally, the retention time prediction (RT-Ensemble Pred) models were utilized to predict and identify the retention times of unknown compounds, which particularly facilitated the differentiation of isomers. The comprehensive research resulted in the identification of 150 chemical constituents in HL, including 72 isomers. Furthermore, the compounds were analyzed and categorized according to mathematical classification models, allowing for distinction between various geographical origins. Based on unexposed data, the model demonstrated robust predictive capability, enabling the selection of 20 distinctive characteristic compounds with prominent features for use in geographical origin discrimination. Overall, this multidimensional investigation significantly enhanced our understanding of the chemical composition and inherent variability of HL plant resources, providing crucial technical underpinnings and methodological insights for the comprehensive exploitation and utilization of HL in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Rongrong Li
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Simon Sani Ocholi
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Haitao Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tongcan Cui
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Biying Chen
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Liming Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhifei Fu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Erwei Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Fengchao Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Lifeng Han
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Xia C, Yue L, Wang Y, Li C, Ma G, Ju Y, Wang P, Wang J, Jiang X, Wang X, Chen F. Gut microbiota's role in the enhancement of type 2 diabetes treatment by a traditional Chinese herbal formula compared to metformin. Microbiol Spectr 2025:e0241224. [PMID: 40162751 DOI: 10.1128/spectrum.02412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly increasing metabolic disorder that poses a significant threat to global public health. Recent evidence suggests that targeting the gut microbiota through dietary and pharmaceutical interventions can effectively manage T2DM. In this study, we developed a novel Chinese herbal formula, CCM, specifically for T2DM, composed of Coptis rhizoma, Cinnamomi cortex, and Mume fructus. To evaluate CCM's efficacy and explore its underlying mechanisms, particularly the role of the gut microbiota, diabetic C57/db/db mice were administered different doses of CCM (low, medium, high) for 4 weeks, with normal C57 mice as healthy controls and metformin as a positive control. Comprehensive clinical indicators of T2DM were measured before and after treatment. High-throughput sequencing was used to assess changes in gut microbiome composition and function. Our results showed that CCM treatment, especially at medium and high doses, resulted in more significant improvements in blood glucose, lipid profiles, and body weight compared to metformin. The CCM-treated group also exhibited more significant changes in the microbial community structure compared to the metformin group, notably enriching three beneficial microbes (>40%): Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp., which correlated with improved diabetic parameters. Further analysis identified that all four microbial metabolic pathways linked to lowering blood glucose were exclusively enriched in the CCM-treated group. Of the 10 pathways related to improved blood lipid levels, five were unique to CCM. These unique pathways enriched by CCM may explain its superior therapeutic effects, indicating its distinct mechanisms in modulating gut microbiota.IMPORTANCEOur study demonstrates that CCM outperforms metformin in managing key clinical indicators in type 2 diabetes mellitus (T2DM) model mice and induces more significant alterations in gut microbiota composition and function. Notably, the uniquely enriched beneficial microbes and microbial metabolic pathways in the CCM samples may explain its enhanced therapeutic effects compared to metformin. Consequently, these findings suggest that CCM offers a promising therapeutic strategy for T2DM, and further provide valuable insights into potential probiotic candidates (such as Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp.) and newly identified functional pathways (such as chondroitin sulfate degradation, geraniol degradation, biotin biosynthesis, colonic acid building blocks biosynthesis, and the biosynthesis of vancomycin group antibiotics) that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Chengdong Xia
- Department of Endocrinology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Liya Yue
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yinyu Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guannan Ma
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingjiao Ju
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peihan Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Jiang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| |
Collapse
|
7
|
Yang C, Tang X, Wu R, Jiang Y, Quan Q, Xiao Y, Kuang J, Chen J, Tang Q, Jiang Z. Effects of a powder made from three medicinal plants on growth performance, intestinal health, antioxidant activity, and anti-inflammatory ability in Xianghuang chickens. Front Vet Sci 2025; 12:1538623. [PMID: 40206255 PMCID: PMC11980689 DOI: 10.3389/fvets.2025.1538623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
This study investigated the effect of a traditional Chinese medicine (TCM) plant powder made from an equal proportion of Sarcococca ruscifolia Stapf, Hedera nepalensis var. sinensis (Tobl.) Rehd, and Clematis chinensis Osbeck on growth performance and intestinal health in Xianghuang chickens, focusing on intestinal histomorphology, antioxidant activity, and anti-inflammation function. A total of 100 10-day-old male Xianghuang chickens were randomly assigned to two groups, with five replicate cages per group containing 10 birds each. The birds in the control group received a corn-soybean-based diet, while the birds in the TCM group received the control diet supplemented with 2% of the TCM powder. The chickens were slaughtered for sample collection on D28. The results showed that the average daily feed intake (ADFI), average daily gain (ADG), and feed-to-gain (F:G) ratio were not affected by the TCM supplementation (p > 0.05). In the jejunum and ileum, the ratio of the villus height to the crypt depth was higher in the TCM group compared to the control group (p < 0.05). Supplementing the chickens with 2% TCM powder increased the total superoxide dismutase (T-SOD) and catalase (CAT) activities in the jejunal mucosa compared to the control group (p < 0.05). The gene expression of tumor necrosis factor alpha (TNF-α) was downregulated in the jejunal mucosa and spleen in the TCM group compared to the control group (p < 0.05). In conclusion, TCM powder can be safely utilized to promote the development of the intestinal tract by enhancing antioxidant and anti-inflammatory functions without affecting the growth performance. Our findings suggest that TCM powder is an effective and low-toxicity natural additive for intestinal improvement in poultry.
Collapse
Affiliation(s)
- Can Yang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - XiaoWu Tang
- College of Bioengineering, Hunan Vocational Technical College of Environment and Biology, Hengyang, China
| | - RunTao Wu
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - YunMiao Jiang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Qi Quan
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - YuTian Xiao
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - JiaXuan Kuang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - JiaYi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - QingHai Tang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Zhi Jiang
- Yimin Ecological Agriculture Development Co., LTD, Hengyang, China
| |
Collapse
|
8
|
Liu C, Gao P, Liu X, Kuang M, Xu H, Wu Y, Liu W, Wang S. Reunderstanding the classical prescription Banxia Xiexin Decoction: new perspectives from a comprehensive review of clinical research and pharmacological studies. Chin Med 2025; 20:39. [PMID: 40102869 PMCID: PMC11921579 DOI: 10.1186/s13020-025-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Classical prescriptions of Chinese medicine represent the crystallized wisdom of millennia of clinical practice, enduring as cornerstones of therapeutic intervention due to their demonstrated efficacy across generations. Their evolving role in modern healthcare systems reflects shifting disease patterns, scientific advancements, and global health priorities. Banxia Xiexin Decoction (BXD), formulated by Zhang Zhongjing in the Treatise on Febrile and Miscellaneous Diseases (Shanghanlun), is a time-honored classical prescription renowned for its therapeutic versatility in managing gastrointestinal disorders, both in China and internationally. Recent advancements in clinical research and pharmacological studies on BXD underscore the necessity for a comprehensive bibliometric analysis to summarize and elucidate its specific clinical benefits. Through an extensive literature review of publications from the Web of Science, PubMed, Scopus, and the China National Knowledge Infrastructure (CNKI) between 1997 and 2024, 11 major categories of clinical applications for BXD were identified, along with an analysis of the potential pharmacological mechanisms, such as chronic gastritis, functional dyspepsia, and inflammatory bowel disease. We believe this review will provide new insights into the understanding of clinical value of BXD and identify potential future perspectives for its research and development.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Pengwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Xiaoying Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Min Kuang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Haoran Xu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yangming Wu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China.
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
9
|
Cao N, Shou Z, Wang M, Wu Y, Wang X. The potential role and mechanism of Rhizoma Coptidis in prevention of diabetic encephalopathy: targeting sodium ion and channels. Front Pharmacol 2025; 16:1542015. [PMID: 40160459 PMCID: PMC11949989 DOI: 10.3389/fphar.2025.1542015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Rhizoma Coptidis (RC) is an edible and medicinal herb with anti-hyperglycemia, which has potential application in the prevention of diabetic encephalopathy (DE). However, its efficacy and underlying mechanism in DE prevention have not been elucidated yet. The objective of the current study is to investigate the preventive effect of RC on DE, thereby focusing on the target through the method of network pharmacology and molecular docking. Methods Sixty 4-week-old, male C57BL/6 mice were randomly allocated to six groups: control, model, metformin (200 mg/kg), RCL (0.75 g/kg), RCM (1.5 g/kg), and RCH (3 g/kg). The DE-model mice were induced by streptozocin combined with a high-fat diet. In addition, the neuroprotective effect of RC was determined both in vivo and in vitro. Network pharmacology analysis was used to screen the potential mechanism of RC. Thereafter, the underlying mechanism of action of RC was explored by molecular docking prediction and Western blot analysis. An analysis of patients with DE was performed to validate it from another perspective. Results The results showed that the cognitive state of DE model mice was improved and neuronal injury was ameliorated after RC administration. Active compounds in RC, berberine and coptisine, were found to ameliorate HT22 injury induced by high glucose. Network pharmacology results suggest that voltage-gated sodium channel subtypes (Nav1.1, Nav1.2, and Nav1.6) may be the targets for RC prevention of DE. Furthermore, the Western blot analysis revealed that RC significantly upregulated Nav1.1 and Nav1.2, while Nav1.6 could not. In addition, serum sodium was related to the cognitive status of DE patients, which can be used as a diagnostic index for mild and moderate-severe DE. Discussion RC has the potential to be a functional food or adjuvant drug for DE prevention, and Nav1.1 and Nav1.2 are promising DE intervention targets.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mimi Wang
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - You Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefeng Wang
- Pharmacy Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Zhang J, Shi Y, Wang J, Gao M, Zhong S, Chen Y, Hao J, Yang P, Xu S, Liu Y. Mechanisms of Huhuang decoction in treating diabetic wounds: a network pharmacological and experimental study. Int J Med Sci 2025; 22:1811-1824. [PMID: 40225864 PMCID: PMC11983308 DOI: 10.7150/ijms.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Huhuang (HH) decoction, a composition of seven traditional Chinese medicines, has demonstrated clinical efficacy in wound healing. However, its pharmacological foundation and potential mechanisms remain unclear. This study aimed to elucidate the mechanisms of action of HH decoction in the treatment of diabetic wounds. Methods: The chemical composition of HH decoction was analysed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The targets of the HH decoction in treating diabetic wounds were predicted using network pharmacology. The gene ontology and pathway enrichment analyses were performed using the DAVID functional annotation tool. The compound targets and PPI networks were established using Cytoscape. Molecular docking was implemented using the AutoDock Vina software. Experimental verification was performed on the target prediction of the HH decoction in treating diabetic wounds, both in vivo and in vitro. Results: The study identified 53 chemical components in HH decoction, with tetrahydropalmatine, emodin, rosmarinic acid, citric acid, berberine, and cryptotanshinone as key components for treating diabetic wounds. Twenty-one target genes were identified as core genes. Gene ontology analysis indicated that the therapeutic effects of HH on diabetic foot ulcers may occur through the regulation of cell proliferation, migration, and inflammation. Pathway enrichment was found to be mainly related to the HIF-1 and TNF signalling pathways. HH promoted proliferation, migration, and tube formation in vascular endothelial cells in vitro. Compared with the control group, the expression levels of HIF-1α, VEGF-α, cyclinD1 in the HH group were higher while the phosphorylation level of p65 in the HH group was significantly lower. The concentrations of IL-6, TNF-α, and IL-1β in wound tissue in the HH group were significantly lower than those in the control group. The expression levels of CD31, VEGF-α, Ki67 and HIF-1α in the wounds of diabetic rats in the HH group were higher than those in the control group. Conclusions: The HH decoction promotes diabetic wound healing via multiple components, targets, and pathways. It may enhance vascular endothelial cell proliferation via cyclinD1, promote vascularization through the HIF-1α/VEGF-α signalling pathway, and inhibit inflammation through NF-κB signalling pathways.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Wang
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Zhong
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Chen
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Hao
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shun Xu
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Liu
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Yang H, Cao G, Li X, Zhao Z, Wang Y, Xu F. Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling. Biologics 2025; 19:31-42. [PMID: 40026702 PMCID: PMC11871928 DOI: 10.2147/btt.s479430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025]
Abstract
Background Ischemia-reperfusion (I/R) injury is a major contributor to myocardial dysfunction and tissue damage. A natural alkaloid-Berberine having a wide range of pharmacological properties, has garnered interest for its potential cardioprotective properties. This study aimed to investigate the protective effects of berberine on myocardial tissue in a rat model of myocardial ischemia-reperfusion (I/R) injury. Additionally, the study explored the role of the miR-184/NOTCH1 signaling pathway in mediating these effects. Methods Male Wistar rats were randomly assigned to five groups: sham-operated control, I/R injury, I/R treated with berberine, I/R treated with inhibitor NC and I/R treated with a miR-184 inhibitor. The I/R injury was induced by ligating the left anterior descending (LAD) coronary artery for 30 minutes, followed by 2 hours of reperfusion. Berberine was administered orally at 100 mg/kg/day for 2 weeks, and the miR-184 inhibitor was administered via intraperitoneal injection. Hemodynamic parameters were recorded using a pressure sensor connected to a catheter inserted into the left ventricle. Myocardial infarct size was assessed using TTC staining, while histological and molecular changes were evaluated through H&E staining, TUNEL assay, and Western blotting. The expression levels of target genes were analyzed using quantitative real-time PCR (qRT-PCR). Results Berberine significantly reduced myocardial infarct size and improved hemodynamic parameters compared to the untreated I/R group. Additionally, berberine treatment attenuated apoptosis as evidenced by decreased TUNEL-positive cells. The miR-184 inhibitor also demonstrated protective effects by modulating key signaling pathways involved in myocardial injury. Western blot analysis revealed downregulation of NOTCH1 and HES1 expression in treated groups, indicating a potential mechanism for the observed cardio protection. Conclusion Berberine and miR-184 inhibition offer significant protection against myocardial ischemia-reperfusion injury. These findings suggest that targeting miR-184 and associated pathways may be a promising therapeutic strategy for reducing cardiac damage following ischemia-reperfusion.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Emergency, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an second People’s Hospital, Huai’an, People’s Republic of China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People’s Hospital, Hongze, Jiangsu, People’s Republic of China
| | - Xia Li
- Department of Geriatric, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Zhikun Zhao
- Department of Intensive Care Unit, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Yong Wang
- Department of Cardiology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, People’s Republic of China
| | - Fei Xu
- Department of Intensive Care Unit, Lianshui County People’s Hospital, Huai’an, People’s Republic of China
| |
Collapse
|
12
|
Ren L, Ruan X, Dong H, Cheng Y, Shon K, Chang C, Gu R, Sun Z. The bitter flavor of Banxia Xiexin decoction activates TAS2R38 to ameliorate low-grade inflammation in the duodenum of mice with functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119309. [PMID: 39746410 DOI: 10.1016/j.jep.2024.119309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a traditional herbal formulation with a bitter flavor that has a long-standing history of use in Asia for treating functional dyspepsia (FD). In traditional Chinese medicine, the bitter flavor is believed to play a critical role in the therapeutic activity of BXD. The ethnopharmacological properties of bitter plant extracts are closely associated with their anti-inflammatory effects, which may contribute to their efficacy in FD. However, the specific mechanisms remain unknown. AIM OF THE STUDY The objective of this study is to uncover the bitter active compounds of BXD and their effects in the treatment of FD. MATERIALS AND METHODS The chemical compounds of BXD were identified using HPLC-Q-Exactive-MS. Active compounds in BXD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and bitter active compounds were further identified using BitterDB and PlantMolecularTasteDB. Molecular docking was employed to identify potential targets of these bitter active compounds, and their activation was validated through flow cytometry analysis of Ca2+. Subsequently, a mouse model of FD was established, and our hypothesis was further validated using enzyme linked immunosorbent assay, immunohistochemistry, immunofluorescence, and western blotting. RESULTS Through HPLC-Q-Exactive-MS analysis, TCMSP, BitterDB, and PlantMolecularTasteDB database, a total of 11 bitter active compounds in BXD were identified: Baicalein, Baicalin, Berberine, Coptisine, Formononetin, Isorhamnetin, Kaempferol, Naringenin, Palmatine, Quercetin, and Wogonin. Molecular docking results indicated that these active compounds exhibited strong affinity for TAS2R38, with Berberine showing the highest scoring. Flow cytometry analysis of Ca2+ revealed that both Berberine and BXD elevated intracellular calcium concentrations, although this effect was partially antagonized by the TAS2R38 inhibitor probenecid. In vivo experiments demonstrated that BXD effectively improved eosinophil infiltration in the duodenum of FD mice, downregulated the expression of inflammatory factors IL-1β, IL-5, and TNF-α, inhibition of NF-κB signaling pathway activation, alleviated damage to the duodenal mucosal barrier, and reversed gastrointestinal motility disorders, with the therapeutic effect enhancing with increasing doses of BXD. However, this therapeutic effect was partially inhibited following probenecid intervention. CONCLUSION BXD contains numerous bitter active compounds that play a significant role in regulating inflammatory activity in the duodenum of FD through the activation of TAS2R38. This finding unveils, for the first time, the ethnopharmacological activity of bitter plant taste agents in anti-inflammatory effects, providing new insights for the treatment and drug development of FD.
Collapse
Affiliation(s)
- Lang Ren
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Xingqiu Ruan
- Department of Integrated Traditional Chinese and Western Medicine, Red Cross Hospital of Yulin City, Yulin, 537006, China.
| | - Hanlin Dong
- The Eighth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yiyao Cheng
- Jiangsu Province Second Hospital of Chinese Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China.
| | - Kinyu Shon
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China.
| | - Cheng Chang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| |
Collapse
|
13
|
Liu YF, Liu YY, Xiao Y, Huang WJ, Sun RX, Hu J, Fu XZ, Tian CX, Fu Q, Zhao JX. Shenlian Decoction Ameliorates LPS-Related Inflammation in db/db Mice: Coupling Network Pharmacology With Experimental Verification. J Diabetes Res 2025; 2025:3823051. [PMID: 39810933 PMCID: PMC11729506 DOI: 10.1155/jdr/3823051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Shenlian (SL) decoction, a renowned traditional Chinese formula for diabetes mellitus, has also been employed to treat intestinal disorders. Previous studies have demonstrated the efficacy of SL decoction in regulating blood glucose and intestinal bacteria. Nevertheless, further analysis is required to elucidate the mechanistic link between SL decoction-mediated improvement of intestinal function and treatment of Type 2 diabetes mellitus (T2DM). Methods: Firstly, the active ingredients of SL decoction were sourced from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, with putative targets of active ingredients being predicted using the same database. Secondly, the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were employed to screen the aforementioned targets that act on T2DM, and protein-protein interaction (PPI) networks were constructed in accordance with the results. Thirdly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), which resulted in a comprehensive analysis of the association between SL decoction for the treatment of T2DM and the modulation of intestinal functions. Finally, the effect of the SL decoction on predicted lipopolysaccharide (LPS)-related targets, as well as intestinal function markers, was validated through in vivo experimentation. Results: A total of 36 active ingredients and 145 potential targets of SL decoction were predicted. GO enrichment analysis indicated that the principal biological processes by which the SL decoction acted against T2DM were responses to LPSs, while KEGG enrichment analysis identified the nuclear factor kappa B (NF-κB) signaling pathway and toll-like receptor signaling pathway as the key pathways involved. The in vivo experiments showed that SL decoction improved glycolipid metabolism indexes, inflammatory factor levels, and LPS levels in db/db mice. The immunohistochemical results demonstrated that the SL decoction restored the expression of Occludin, Claudin-1, and ZO-1 in the intestine and inhibited the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MYD88), and NF-κB in both the intestine and pancreas. Furthermore, it may influence the levels of short-chain fatty acids (SCFAs) in feces. Conclusions: This research investigated the multigene pharmacological mechanism of SL decoction against T2DM using network pharmacology and in vivo experiments. SL decoction treatment of T2DM may reverse inflammation by inhibiting LPS-related pathway activation and improving intestinal function.
Collapse
Affiliation(s)
- Yi-fan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan-yuan Liu
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-xi Sun
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Hu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-zhe Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chu-xiao Tian
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Wang W, Li Y, Zhu M, Xu Q, Cui J, Liu Y, Liu Y. Danlian-Tongmai formula improves diabetic vascular calcification by regulating CCN3/NOTCH signal axis to inhibit inflammatory reaction. Front Pharmacol 2025; 15:1510030. [PMID: 39834821 PMCID: PMC11743396 DOI: 10.3389/fphar.2024.1510030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Background Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear. This study aims to elucidate the effects of DLTM on DVC and explore the underlying mechanisms of action. Methods Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to identify the metabolites of DLTM. A DVC rat model was established using streptozotocin (STZ) combined with vitamin D3 (VitD3). The effects of DLTM on DVC were evaluated through alizarin red staining, calcium deposition, and changes in osteogenic and contractile markers. The specific molecular mechanism of DLTM in treating diabetic VC was comprehensively analyzed by transcriptomics, molecular docking and in vivo experimental verification. Results We identified 108 major metabolites of DLTM. In vivo, high-dose DLTM significantly alleviated VC in diabetic rats. Transcriptomic analysis showed that DLTM treatment markedly altered the transcriptomic profile of rat aortas, which was associated with regulating the CCN3/NOTCH signaling pathway, promoting vascular smooth muscle contraction, and inhibiting the inflammatory responses. Molecular docking and molecular dynamics simulation demonstrated strong binding interactions between DLTM metabolites and key molecules within the CCN3/NOTCH pathway, including NOTCH1, DLL1, DLL4, hes1, and hey1. In vivo experiments confirmed that DLTM could upregulate CCN3, inhibit the activation of NOTCH signaling ligands DLL1 and downstream transcription factors hes1 and hey1, and reduce the release of inflammatory cytokines IL6, IL1β, and TNFα. Conclusion DLTM alleviates DVC by regulating the CCN3/NOTCH signaling axis to inhibit inflammatory responses. Our research provides experimental basis for clinical treatment and drug transformation of diabetic VC.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Haysom‐McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2025; 19:15-36. [PMID: 39592417 PMCID: PMC11705733 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom‐McDowell
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life SciencesUniversity of Technology SydneyAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
16
|
Hirakawa K, Matsuura T, Nishimura Y, Mori H, Takagi S. Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer. Photochem Photobiol Sci 2025; 24:79-87. [PMID: 39730844 DOI: 10.1007/s43630-024-00673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol-1 and - 90 J K-1 mol-1, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.
Collapse
Affiliation(s)
- Kazutaka Hirakawa
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Cooperative Major in Medical Photonics, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Toji Matsuura
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Chuo-Ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Yoshinobu Nishimura
- Department of Chemistry, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hakan Mori
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| |
Collapse
|
17
|
Wu Z, Yang W, Wu T, Liu Y, Pu Y, Hu W, Jiang Y, Zhang J, Zhu H, Li X, Feng S. Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptors activation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156292. [PMID: 39631296 DOI: 10.1016/j.phymed.2024.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Coptidis Rhizoma, a classic bitter traditional Chinese medicine, can lead to digestive dysfunction when long-term use according to traditional experience. Bitter taste receptors have been found to regulate gastrointestinal smooth muscle contraction. Coptidis Rhizoma alkaloids are potential agonists for bitter taste receptors, but whether they can induce gastrointestinal dysfunction via bitter taste receptors is not clear. PURPOSE The purpose of this study is to elucidate whether long-term Coptidis Rhizoma decoction/berberine intake can affect gastrointestinal function via bitter taste receptors. METHODS Firstly, mice were orally administered Coptidis Rhizoma decoction (or berberine) for 8 weeks, then their appetite, gastrointestinal emptying function, colon barrier function, and gut microbiota homeostasis were evaluated. Subsequently, isolated intestine, molecular docking, calcium release, and immunofluorescence co-localization experiments were applied to explore the mechanism of Coptidis Rhizoma decoction (or berberine) inhibition effects on gastrointestinal motility. Finally, transmembrane resistance, scratch assay, tight junction and cytoskeletal protein immunofluorescence staining were conducted to verify that the bitter taste receptor is the target for Coptidis Rhizoma decoction (or berberine) to damage the colon barrier function. RESULT Long-term Coptidis Rhizoma decoction (or berberine) intake can reduce appetite, inhibit gastrointestinal contractions, disrupt bacterial balance and colon barrier function in mice. Further mechanistic studies have shown that the alkaloids of Coptidis Rhizoma are agonists for bitter taste receptors, which can promote α-gustducin binding to CHRM3 by activating bitter taste receptors, finally inhibiting gastrointestinal smooth muscle contraction. In addition, Coptidis Rhizoma decoction (or berberine) can activate bitter taste receptors and its downstream pathways PKCβ/RhoA/ROCK1/MLC-2, reshape skeletal proteins, downregulate tight junction protein expression, and ultimately disrupt colon barrier function. CONCLUSIONS Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptor activation in mice.
Collapse
Affiliation(s)
- Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Xuegang Li
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Zhang H, Chu S, Jiang L, Chan Q, Zhang Z, Cheng M. Alkaloid profiling of the new species Corydalis huangshanensis and other 13 medicinal plants in genus Corydalis. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:68-79. [PMID: 39016051 DOI: 10.1002/pca.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Corydalis DC., the largest genus of Papaveraceae, comprises numerous species known for their abundant alkaloid content and historical use in clinical medicine. Recently, a new species of genus Corydalis named Corydalis huangshanensis Lu Q. Huang & H. S. Peng was discovered in the Huangshan Mountains of Anhui Province, China. OBJECTIVE To compare the chemical characteristics of C. huangshanensis and other 13 Corydalis species, aiming to elucidate the potential medicinal value of this new species. MATERIALS AND METHODS The chemical constituents of C. huangshanensis and other 13 medicinal plants of genus Corydalis were analyzed using ultra-high-performance liquid chromatography Q-Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Q-Orbitrap) mass technology. The differences in the alkaloids in the 14 species were distinguished by chemometrics. RESULTS The mass spectrometry fragmentation information and relative content of 72 alkaloids were obtained. Orthogonal partial least squares discriminant analysis (OPLS-DA) and cluster heat mapping analysis showed that these 14 species were divided into two groups. The clustering relationship between C. huangshanensis and C. decumbens (Thunb.) Pers. was similar, exhibiting similar chemical compositions and characteristics. These results indicate the potential pharmacological effects of C. huangshanensis. CONCLUSION This study enhances our understanding of the chemical classification of Corydalis and provides a basis for speculations on the medicinal value of C. huangshanensis.
Collapse
Affiliation(s)
- Haiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Lu Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Qingyun Chan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming'en Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
20
|
Ma Z, Chen X, Xiong M, Wang H, Sun C, Tang W, Li J, Li X, Ma H, Ye X. Cyberpharmacology uncover the mechanism of the total Rhizoma Coptidis extracts ameliorate chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118644. [PMID: 39094758 DOI: 10.1016/j.jep.2024.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Characterized by inflammation of the gastric mucosa, atrophy of gastric gland cells, and intestinal metaplasia, Chronic Atrophic Gastritis (CAG) is a precancerous lesion disease. In traditional Chinese medicine, Rhizoma Coptidis (RC) is extensively used for treating gastrointestinal disorders, mainly because RC alkaloids-based extracts are the main active pharmaceutical ingredients. Total Rhizoma Coptidis extracts (TRCE) is a mixture of Rhizoma Coptidis extracts from Rhizoma Coptidis with alkaloids as the main components. However, the efficacy and mechanism of TRCE on CAG need further study. AIM OF THE STUDY To explore the therapeutic effect and underlying mechanisms of action of TRCE on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chronic atrophic gastritis (CAG) using network pharmacological analysis. MATERIALS AND METHODS The amelioration effect of TRCE on CAG was evaluated in MNNG-induced CAG mice. The pathological severity of the mice was evaluated through H&E staining. Detection of gastric mucosal parietal cell loss was conducted using immunofluorescence staining, and serum indices were measured using ELISA. Additionally, the active compounds and drug targets of Rhizoma Coptidis were curated from the STP, SEA, and TCMSP databases, alongside disease targets of CAG sourced from PharmGkb, OMIM, and GeneCards databases. By mapping drug targets to disease targets, overlapping targets were identified. A shared protein-protein interaction (PPI) and drug target network were constructed for the overlapping targets and analyzed for KEGG enrichment. RESULTS The results of animal experiments demonstrate that TRCE has the potential to improve the CAG process in mice. In conjunction with disease characteristics, cyberpharmacology analysis has identified nine core compounds, 151 targets, 10 core targets, and five significant inflammatory pathways within the compound-target-pathway network. Furthermore, there is a remarkable coincidence rate of 98% between the core compound targets of TRCE and the targets present in the CAG disease database. The accurate search and calculation of literature reports indicate that the coverage rate for 121 predicted core targets related to CAG reaches 81%. The primary characteristic of CAG lies in its inflammatory process. Both predicted and experimental findings confirm that TRCE can regulate ten key inflammation-associated targets (TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and HSP90AA1) as well as inflammation-related pathways (MAPK, HIF-1, Toll-Like Receptor, IL-17, TNF, and other signaling pathways). These mechanisms mitigate inflammation and reduce gastric mucosal damage in CAG mice. CONCLUSIONS In conclusion, TRCE was shown to alleviate CAG by modulating TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and EGFR, as demonstrated by combined network pharmacology and biological experiments. In conclusion, our study provides a robust foundation for future clinical trials evaluating the efficacy of RC in treating CAG.
Collapse
Affiliation(s)
- Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hongmei Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Chunyong Sun
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Wanyu Tang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Li C, Deng L, Pu M, Ye X, Lu Q. Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118680. [PMID: 39117021 DOI: 10.1016/j.jep.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1β and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Min Pu
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Xuanlin Ye
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
22
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Feng H, Qin Y, Li Y, Li S, Zheng Y, Yan J, Xu R, Yu S, Liang R, Wang J, Zou H. Research Trend and Future Perspectives of Traditional Chinese Medicine for Atopic Dermatitis from 2004 to 2023: A Bibliometric Analysis. Clin Cosmet Investig Dermatol 2024; 17:2595-2613. [PMID: 39600528 PMCID: PMC11588668 DOI: 10.2147/ccid.s479632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Aim The application of bibliometric analysis gives insights into research trend and future perspectives. This paper aims to understand the current status of studies on traditional Chinese medicine (TCM) in the treatment of atopic dermatitis (AD), and to investigate the cooperation network, hotspots and trends in the field. Methods The original data were retrieved from the Web of Science Core Collection by searching for the topic "atopic dermatitis" and "traditional Chinese medicine" with the time span of 2004-2023. Microsoft Excel was used to create statistical tables and charts, whereas CiteSpace and VOSViewer were applied for knowledge mapping. Results In total, 252 publications were identified and downloaded. Current research on TCM treating AD is in the steady growth period. China has the largest number of publications, whereas the USA has the greatest international influence. Notably, the Arab Emirates, Malaysia, India and Bangladesh all have a high research impact but with a low amount of publications. Universities in Hong Kong China have the largest number of publications, but their interaction with other institutions is very poor. The top three most productive authors are all from Hong Kong, having a strong collaboration network with each other. The popular research topics in this field are "children" "cell" "activation" "nf kappa b" "inflammation" "asthma" "extract" "management" and "cytokine". According to the analysis of leading co-cited journals and authors, "J ETHNOPHARMACOL" has the largest amount of citations whilst "AM J CHINESE MED" the strongest academic influence. The largest number of co-cited authors comes from "Hon Karn-Lun Ellis", a well-known scholar from Hong Kong. Conclusion TCM has been widely used in AD treatment, honored for its individualized therapeutic concepts of evidence-based treatment. The academic community must form a continuous and deep-going pattern to achieve higher international influence and a stronger research degree in this field.
Collapse
Affiliation(s)
- Huishang Feng
- Department of Dermatology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yeping Qin
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Yuanwen Li
- Department of Dermatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuo Li
- Department of Basic Products, China Mobile Communications Group Co., Ltd. Government and Enterprise Customer Branch in Beijing, Beijing, People’s Republic of China
| | - Yuyi Zheng
- Ministry of Education Science and Technology Inspection Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Juntang Yan
- Ministry of Education Science and Technology Inspection Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Rongting Xu
- Ministry of Education Science and Technology Inspection Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shulin Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ru Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiayu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Huiqin Zou
- Ministry of Education Science and Technology Inspection Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Huang Y, Luo W, Pei W, Sun D, Zhou H, He F. Study on the correlation between alkaloids and tastes of Coptis Rhizome from four species based on UHPLC-QQQ-MS/MS combined with electronic tongue technique. FRONTIERS IN PLANT SCIENCE 2024; 15:1496789. [PMID: 39574447 PMCID: PMC11578696 DOI: 10.3389/fpls.2024.1496789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Objective Taste is one of the vital indicators for the quality evaluation of Coptis rhizome (CR), but the traditional taste evaluation lacks objectivity. By establishing the correlation between CR's tastes and alkaloids, an objective basis for the taste evaluation was established. Methods Ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) and electronic tongue technique were performed to determine ten alkaloid contents and eight tastes from Coptis chinensis rhizome, Coptis deltoidea rhizome, Coptis teeta rhizome, and Coptis japonica rhizome, respectively. Combined with multivariate statistical analysis, we established models to discriminate the alkaloid contents and tastes of CR, screened the differential alkaloids and tastes, and performed Pearson's correlation analysis on the results of alkaloids and tastes. Results 1) According to the previous UHPLC-QQQ-MS/MS method established by our research group, the contents of ten alkaloids of the four species of CR were quantified, of which jatrorrhizine, columbamine, and magnoflorine were the differential alkaloids of the four species. 2) The electronic tongue technique realized the objectification of CR's tastes and distinguished the species of CR based on the tastes of aftertaste-A, sourness, bitterness, and richness. 3) Pearson's correlation analysis shows the bitterness of CR was mainly manifested as aftertaste-B, indicating the higher the aftertaste-B value, the higher the berberrubine content. Astringency and aftertaste-A could be suggested as quality evaluation indexes of CR, due to the positively correlated or significantly positively correlated with coptisine, epiberberine, berberine, and palmatine, respectively. Conclusion Electronic tongue technique has successfully achieved the objectification of the tastes of CR, and combined with UHPLC-QQQ-MS/MS technique for alkaloid quantification and correlation research, it provides a new idea for the quality evaluation of CR.
Collapse
Affiliation(s)
- Yufeng Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Wenhui Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangdong, China
- Technique Center, Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, China
| | - Wenhan Pei
- The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongmei Sun
- Technique Center, Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Fan He
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
25
|
Ahmad S, Ahmad MFA, Khan S, Alouffi S, Khan M, Prakash C, Khan MWA, Ansari IA. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280:135761. [PMID: 39306154 DOI: 10.1016/j.ijbiomac.2024.135761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, 2440, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il-55473, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
26
|
Zhang CW, Huang DY, Rajoka MSR, Wu Y, He ZD, Ye L, Wang Y, Song X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules 2024; 29:5079. [PMID: 39519720 PMCID: PMC11547813 DOI: 10.3390/molecules29215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fungal infections present a significant health risk, particularly in immunocompromised individuals. Berberine, a natural isoquinoline alkaloid, has demonstrated broad-spectrum antimicrobial activity, though its antifungal potential and underlying mechanisms against both yeast-like and filamentous fungi are not fully understood. This study investigates the antifungal efficacy of berberine against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Trichophyton mentagrophytes in vitro, as well as its therapeutic potential in a murine model of cryptococcal infection. Berberine showed strong antifungal activity, with MIC values ranging from 64 to 128 µg/mL. SEM and TEM analyses revealed that berberine induced notable disruptions to the cell wall and membrane in C. neoformans. No signs of cell necrosis or apoptosis were observed in fungal cells treated with 2 × MIC berberine, and it did not increase intracellular ROS levels or affect mitochondrial membrane potential. Molecular docking and binding affinity assays demonstrated a strong interaction between berberine and the fungal enzyme CYP51, with a dissociation constant (KD) of less than 1 × 10-12 M, suggesting potent inhibition of ergosterol biosynthesis. In vivo studies further showed that berberine promoted healing in guinea pigs infected with T. mentagrophytes, and in a murine cryptococcal infection model, it prolonged survival and reduced lung inflammation, showing comparable efficacy to fluconazole. These findings indicate that berberine exerts broad-spectrum antifungal effects through membrane disruption and CYP51 inhibition, highlighting its potential as a promising therapeutic option for fungal infections.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Dong-Yu Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Liang Ye
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xun Song
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| |
Collapse
|
27
|
Zhang M, Lu P, Zheng Y, Huang X, Liu J, Yan H, Quan H, Tan R, Ren F, Jiang H, Zhou J, Liao H. Genome-wide identification of AP2/ERF gene family in Coptis Chinensis Franch reveals its role in tissue-specific accumulation of benzylisoquinoline alkaloids. BMC Genomics 2024; 25:972. [PMID: 39415101 PMCID: PMC11484470 DOI: 10.1186/s12864-024-10883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The Plant-specific AP2/ERF gene family encodes proteins involved in various biological and physiological processes. Although the genome of Coptis chinensis Franch, a plant producing benzylisoquinoline alkaloids (BIAs), has been sequenced at the chromosome level, studies on the AP2/ERF gene family in C. chinensis are lacking. Thus, a genome-wide identification of AP2/ERF gene family in C. chinensis was conducted to explore its role in BIAs biosynthesis. RESULTS A total of 96 CcAP2/ERF genes were identified and categorized into five subfamilies, including 43 ERFs, 32 DREBs, 17 AP2s, 3 RAVs, and 1 Soloist, based on their structural domains. These CcAP2/ERF genes were unevenly distributed across nine chromosomes. Analysis of gene duplication events identified 17 CcAP2/ERF gene pairs in the genome, with 7 involved in tandem duplication events and 10 involved in segmental duplicate events, indicating that both types of duplications contributed to the expansion of the AP2/ERF gene family. The Ka/Ks ratio analysis suggested that the CcAP2/ERF gene family underwent strong purifying selection. Two phytohormones, methyl jasmonate and abscisic acid, were identified as potential key inducers of BIAs biosynthesis due to the cis-acting element prediction. Analysis of the spatial transcriptomic data revealed that 28 differentially expressed AP2/ERF genes had the highest or relatively higher expression levels in the rhizome, 17 of which positively correlated with the tissue-specific accumulation of BIAs. Further real-time PCR verification and protein-protein interaction analysis indicated that DREB1B might be one of the central regulators in a highly complex BIAs biosynthesis network. CONCLUSION These findings provide significant insight into the function of AP2/ERF genes in C. chinensis, particularly in the regulatory network of BIAs biosynthesis in C. chinensis. This study also identifies candidate genes for metabolic engineering to increase BIAs content in C. chinensis.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Pingping Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yating Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xue Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Junnan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 400010, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
28
|
Zhang Z, Zheng Y, Zhang B, Wang R, Chen L, Wang Y, Feng W, Zheng X, Li K, Zhou N. Untargeted serum and gastric metabolomics and network pharmacology analysis reveal the superior efficacy of zingiberis rhizoma recens-/euodiae fructus-processed Coptidis Rhizoma on gastric ulcer rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118376. [PMID: 38782310 DOI: 10.1016/j.jep.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear. AIM OF THE STUDY To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer. MATERIAL AND METHODS First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence. RESULTS zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways. CONCLUSION zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.
Collapse
Affiliation(s)
- Zhenkai Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yajuan Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Bingxian Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ruifeng Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Long Chen
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Yongxiang Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Kai Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China.
| | - Ning Zhou
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| |
Collapse
|
29
|
Xie Q, Chen J, Yang H, Liang J, Ma R, Guo J, Zeng X. A Comprehensive Review of Coptidis Rhizoma and Magnoliae Officinalis Cortex Drug Pair and Their Chemical Composition, Pharmacological Effects and Pharmacokinetics Analysis. Drug Des Devel Ther 2024; 18:4413-4426. [PMID: 39372674 PMCID: PMC11456271 DOI: 10.2147/dddt.s477381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Herbal pairs are unique combinations of two relatively fixed herbs that are used in clinical practice. This is the most fundamental and straightforward form of multiple herbal treatment that aims to attain specific efficacy through unique methods. Coptidis Rhizoma ("Huanglian" in Chinese) and Magnoliae Officinalis Cortex ("Houpo" in Chinese) which are commonly used in combination and could also be used as important components of other prescriptions to treat damp-heat dysentery, splenic and stomach disorders, and qi stagnation in clinical practice. However, there is currently no summary on the compatibility of Huanglian and Houpo about traditional use, phytochemistry, and pharmacological activity. It was found the combination or separate extraction of the two drugs may affect the main active components, and new components may be produced after the combined extraction. At the same time, Huanglian and Houpo herb pair exhibited antiviral, anti-inflammatory, antibacterial and other pharmacological effects. At present, research mainly focuses on the indicator components of Huanglian and Houpo, such as berberine, magnolol, and magnolol. The models used for pharmacological validation are limited, mainly including ulcerative colitis, pneumonia, bacterial infections, etc. In order to verify the pharmacological activity of the combination of Huanglian and Houpo, it is necessary to try more in vitro and in vivo models. It's still need to study the compatibility mechanism of the Huanglian and Houpo drug pair, including but not limited to the interactions between different components and the impact of compatibility on efficacy, bioequivalence studies, and the impact of different dosage forms on pharmacokinetics in the future. It's believed that the systematic review provided comprehensive information for the study of Huanglian-Houpo drug pair, which will help highlight the importance of the Huanglian-Houpo herb pair and provide some clues for future research on this herb pair.
Collapse
Affiliation(s)
- Qian Xie
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Rong Ma
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Xuxin Zeng
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| |
Collapse
|
30
|
Zhao Z, Wu Q, Xu Y, Qin Y, Pan R, Meng Q, Li S. Groenlandicine enhances cisplatin sensitivity in cisplatin-resistant osteosarcoma cells through the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. J Bone Oncol 2024; 48:100631. [PMID: 39263651 PMCID: PMC11388767 DOI: 10.1016/j.jbo.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Groenlandicine is a protoberberine alkaloid isolated from Coptidis Rhizoma, a widely used traditional Chinese medicine known for its various biological activities. This study aims to validate groenlandicine's effect on both cisplatin-sensitive and cisplatin-resistant osteosarcoma (OS) cells, along with exploring its potential molecular mechanism. The ligand-based virtual screening (LBVS) method and molecular docking were employed to screen drugs. CCK-8 and FCM were used to measure the effect of groenlandicine on the OS cells transfected by lentivirus with over-expression or low-expression of TOP1. Cell scratch assay, CCK-8, FCM, and the EdU assay were utilized to evaluate the effect of groenlandicine on cisplatin-resistant cells. WB, immunofluorescence, and PCR were conducted to measure the levels of TOP1, Bcl-2, BAX, Caspase-9, and Caspase-3. Additionally, a subcutaneous tumor model was established in nude mice to verify the efficacy of groenlandicine. Groenlandicine reduced the migration and proliferation while promoting apoptosis in OS cells, effectively damaging them. Meanwhile, groenlandicine exhibited weak cytotoxicity in 293T cells. Combination with cisplatin enhanced tumor-killing activity, markedly activating BAX, cleaved-Caspase-3, and cleaved-Caspase-9, while inhibiting the Bcl2 pathway in cisplatin-resistant OS cells. Moreover, the level of TOP1, elevated in cisplatin-resistant OS cells, was down-regulated by groenlandicine both in vitro and in vivo. Animal experiments confirmed that groenlandicine combined with cisplatin suppressed OS growth with lower nephrotoxicity. Groenlandicine induces apoptosis and enhances the sensitivity of drug-resistant OS cells to cisplatin via the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. Groenlandicine inhibits OS cells growth by down-regulating TOP1 level.Therefore, groenlandicine holds promise as a potential agent for reversing cisplatin resistance in OS treatment.
Collapse
Affiliation(s)
- Zihao Zhao
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qihong Wu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yangyang Xu
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuhuan Qin
- Beijing Jinshuitan Hospital Guizhou Hospital, Guiyang, Guizhou Province, China
| | - Runsang Pan
- Basic Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qingqi Meng
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
Chen X, Hu Z, Zhao K, Rao X, Shen C, Chen Y, Ye X, Fang C, Zhou F, Ding Z, Zhu B. Microenvironment-responsive, multimodulated herbal polysaccharide hydrogel for diabetic foot ulcer healing. Sci Rep 2024; 14:22135. [PMID: 39333183 PMCID: PMC11436737 DOI: 10.1038/s41598-024-72972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetic ulcers (DUs) usually suffer from severe infections, persistent inflammation, and excessive oxidative stress during the healing process, which led to the microenvironmental alternation and severely impede DU healing, resulting in a delayed wound healing. Therefore, it is particularly important to develop a medical dressing that can address these problems simultaneously. To this end, self-healing composite hydrogels were prepared in this study utilizing Bletilla striata polysaccharide (BSP) and Berberine (BER) with borax via borate ester bond. The chemical and mechanical properties of the BSP/BER hydrogels were characterized, and their wound healing performance was investigated in vivo and in vitro. The results showed that the BSP/BER hydrogel significantly accelerated wound healing in DU mice with the healing rate of 94.90 ± 1.81% on the 14th day by using BSP/BER5, and this outstanding performance was achieved by the multi-targeted biological functions of antibacterial, anti-inflammatory and antioxidant, which provided favorable microenvironment for orderly recovery of the wound. Aside from exhibiting the antibacterial rate of over 90% against both Escherichia coli and Staphylococcus aureus, the BSP/BER5 hydrogel could significantly reduce NO levels 4.544 ± 0.32 µmol/L to exert its anti-inflammatory effects. Additionally, it demonstrated a hemolysis rate and promotes cell migration capabilities at (34.92 ± 1.66%). With the above features, the developed BSP/BER hydrogel in this study could be the potential dressing for clinical treatment of DU wound.
Collapse
Affiliation(s)
- Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Rao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chenjun Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chengnan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Wang Y, Liu Y, Miao K, Hou L, Guo X, Ji Y. A haplotype-resolved genome assembly of Coptis teeta, an endangered plant of significant medicinal value. Sci Data 2024; 11:1012. [PMID: 39294137 PMCID: PMC11411109 DOI: 10.1038/s41597-024-03861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Coptis teeta Wall. (Ranunculaceae), an endangered plant species of significant medicinal value, predominantly undergoes clonal propagation, potentially compromising the species' evolutionary potential and ultimately increase its risk of extinction. In this study, we successfully assembled two sets of haploid genomes (Hap1 and Hap2) for C. teeta, comprising nine homologous chromosome pairs, by employing Illumina and PacBio sequencing technologies. The genome annotation identified a total of 43,979 and 46,311 protein-coding genes in Hap1 and in Hap2, and most of them were functionally annotated. The high-quality reference genome will serve as an indispensable genomic resource for conservation and comprehensive exploitation of this endangered species. Between the two haploid genomes, numerous structural alterations were detected within the nine homologous chromosome pairs, potentially resulting in aberrant synapsis and irregular chromosomal segregation and thus contributing to the sustained preservation of clonal propagation in C. teeta. The findings offer new perspective for elucidating the genetic mechanism underlying the compromised sexual reproductive capacity of C. teeta, thereby facilitating its enhancement though molecular breeding and genetic improvement.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Ke Miao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650201, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
33
|
Yang L, Deng F, Gong Q, Liu X, Li M, Zhang C. Distribution of the active components from Xianglian Pill in tissues of healthy and antibiotic-associated diarrhea model mice and the mechanism study. J Pharm Biomed Anal 2024; 248:116326. [PMID: 38959756 DOI: 10.1016/j.jpba.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotic therapy, characterized by intestinal inflammation which reduces the quality of life of patients. Xianglian Pill (XLP) has long been used to treat abdominal pain, diarrhea, bacillary dysentery and enteritis. Studies found that XLP has curative effect on AAD; however, the chemical constituents and mechanism of XLP have not been fully elucidated because of the lack of in vitro and in vivo studies. In this study, ultra-high performance liquid chromatography mass spectrometry method (UPLC-Q-Exactive-Orbitrap-HRMS) was used to examine the components of the XLP. Then, the binding between active compounds and the key targets was studied using network pharmacology and molecular docking. A comparative tissue distribution study was established for the simultaneous determination of the 10 active components in healthy and AAD mouse models. Forty-six components were characterized from XLP. According to the network pharmacology degree value, a prediction was made that encompassed 42 components and 14 core targets, which were intricately involved in crucial biological pathways, such as the AGE-RAGE signaling, cellular senescence, and MAPK signaling. Tissue distribution analysis showed that the 10 components were widely distributed in the heart, liver, spleen, lungs, kidneys, small intestine, and large intestine of mice, with varying concentrations in healthy and AAD mice. Molecular docking analysis also indicated that the active compounds in the tissue distribution could bind tightly to key targets of network pharmacological studies. This study provides a reference for further investigations of the relationships between the chemical components and pharmacological activities of XLP.
Collapse
Affiliation(s)
- Lujia Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fang Deng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qianqian Gong
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Muyao Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Chuanyang Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
34
|
Li L, He Y, Zou Q, Chen W, Liu Y, He H, Zhang J. In vitro and in vivo synergistic inhibition of Malassezia furfur targeting cell membranes by Rosa rugosa Thunb. and Coptidis Rhizoma extracts. Front Microbiol 2024; 15:1456240. [PMID: 39323889 PMCID: PMC11423746 DOI: 10.3389/fmicb.2024.1456240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Background Malassezia furfur (M. furfur) is a prevalent dermatophyte that significantly impairs patients' quality of life. This study aimed to evaluate the synergistic antifungal effects of combined extracts from Rosa rugosa Thunb. (MG) and Coptidis Rhizoma (HL) against M. furfur, both in vitro and in vivo. Methods High-performance liquid chromatography (HPLC) was used to identify the major active compounds present in MG and HL. The antifungal activity of the combined Meilian extract (ML) was assessed using the checkerboard method and time-kill curves. Microstructural alterations in the fungi were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of the extracts on the fungal cell membrane was investigated through propidium iodide staining, protein concentration assays, and ergosterol quantification. Transcriptomic analysis was conducted to elucidate the molecular mechanisms underlying the effects of the extracts. Furthermore, the synergistic antifungal effects of ML were evaluated in a mouse model of seborrheic dermatitis induced by M. furfur. Results The study demonstrated that the combined application of MG and HL significantly affected the integrity of the M. furfur cell membrane and potentially modulated its formation processes. In the M. furfur-induced seborrheic dermatitis model, ML exhibited synergistic antifungal effects and effectively alleviated skin inflammation. These findings provide an important theoretical basis for understanding the antifungal mechanisms of ML and its potential application in dermatological therapy.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanxia Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifen He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Misra A, Chaudhary MK, Rawat P, Tripathi D, Barik SK, Srivastava S. Benzyl-isoquinoline alkaloids rich extract of Coptis teeta Wall., exhibit potential efficacy in calcium-oxalate and uric-acid linked metabolic disorders. Fitoterapia 2024; 177:106050. [PMID: 38838823 DOI: 10.1016/j.fitote.2024.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Coptis teeta Wall., an endangered but valuable medicinal species having various folklore uses in Indian and Chinese Traditional system of medicine. Its distribution is restricted to India, China and Tibet. In India, C. teeta is traditionally used in joint disorders, urinary infections and inflammatory diseases, however the scientific validation is missing. Thus, the present study aims to validate the anti-lithiatic and anti-gout activity of C. teeta rhizome extract (CTME) through in-vitro biological assays. The metabolic fingerprinting of CTME through reverse phase-high performance liquid chromatography-photodiode array (RP-HPLC-PDA) showed the presence of five benzyl-isoquinoline alkaloids, namely berberine (2.59%), coptisine (0.746%) jatrorrhizine (0.133%), palmatine (0.03%) and tetrahydropalmatine (0.003%). The anti-gout potency analysed via in-vitro xanthine oxidase (XOD) inhibition assay, followed by HPTLC (High performance thin layer chromatography) mediated bio-autographic inhibition of XOD signifies that CTME exhibit strong inhibition of XOD (IC50: 3.014 μg/ml), insignificantly different (p > 0.05) from allopurinol (IC50: 2.47 μg/ml). The XOD bioautographic assay advocates that the efficacy is primarily due to berberine and coptisine alkaloids. The CTME has significant anti-lithiatic activity, and thereby limiting the progression of crystal nidus formation, mediated via inhibition of calcium oxalate crystals nucleation and aggregation. Additionally, the extract also exhibits potential effect on inhibition of oxidative stress associated inflammation, which plays crucial role in alleviating urolithiasis and gouty conditions. Validating the traditional claims of C. teeta will not only confirm its medicinal benefits for targeted pathological conditions but also enhance its industrial demand.
Collapse
Affiliation(s)
- Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Mridul Kant Chaudhary
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Poonam Rawat
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Deepali Tripathi
- FEST Division, CSIR-Indian Institute of Toxicological Research, Lucknow, UP, India
| | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India.
| |
Collapse
|
36
|
Wang P, Gui X, Xu M, Dong F, Li Y, Wang Q, Wang Y, Yao J, Lu L, Liu R. In vivo and in vitro chemical composition and biological activity of traditional vs. dispensing granule decoctions of Coptidis Rhizoma: A comparative study. Biomed Chromatogr 2024; 38:e5960. [PMID: 38992861 DOI: 10.1002/bmc.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Coptidis Rhizoma (CR) holds significant clinical importance. In this study, we conducted a comparative analysis of CR's dispensing granule decoction (DGD) and traditional decoction (TD) to establish a comprehensive evaluation method for the quality of DGD. We selected nine batches of DGD (three from each of manufacturers A, B and C) and 10 batches of decoction pieces for analysis. We determined the content of representative components using high-performance liquid chromatography and assessed the content of blood components in vivo post-administration using ultra-performance liquid chromatography-mass spectrometry. The antibacterial activity was measured using the drug-sensitive tablet method. To evaluate the overall consistency of DGD and TD, we employed the CRITIC method and Grey relational analysis method. Our CRITIC results indicated no significant difference between the CRITIC scores of DGD-B and TD, with DGD-B exhibiting the highest consistency and overall quality. However, DGD-A and DGD-C showed variations in CRITIC scores compared with TD. After equivalent correction, the quality of DGD-A and DGD-C approached that of TD. Furthermore, our Grey relational analysis results supported the findings of the CRITIC method. This study offers a novel approach to evaluate the consistency between DGD and TD, providing insights into improving the quality of DGD.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xinjing Gui
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Manwen Xu
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Fengyu Dong
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuanyuan Li
- Henan Medical College, Zhengzhou, Henan, China
| | - Qi Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yanli Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Yao
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Lu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ruixin Liu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
38
|
Wang F, Wu Q, Zhang Q, Ma S, Wang K, Jian H, Zhang Y. Gegen Qinlian Decoction Combined with Conventional Western Medicine for the Treatment of Infectious Diarrhea: A Systematic Review and Trial Sequential Analysis. Complement Med Res 2024; 31:461-476. [PMID: 39137735 DOI: 10.1159/000540793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Infectious diarrhea (ID) is a highly prevalent disease worldwide that poses a substantial risk to human well-being. In China, numerous clinical studies have investigated the efficacy of Gegen Qinlian decoction (GGQLD) in treating ID. However, there is a need for additional rigorous and evidence-based medical research to enhance physicians' confidence in their prescribing practices. METHODS Seven Chinese and English databases were systematically searched. The Cochrane Risk of Bias tool was used to assess the quality of the included studies. Meta-analysis was conducted using RevMan 5.3, and Stata 16.0 was used for the sensitivity analysis. Trial sequential analysis was performed using TSA v0.9, and GRADEprofiler was utilized to evaluate the quality of evidence. RESULTS A total of 12 randomized controlled trials (RCTs) involving 1,240 patients were included. The meta-analysis demonstrated that the combination of GGQLD with conventional Western medicine had better effects on clinical efficacy (relative risk [RR] = 1.15, 95% confidence interval [CI] [1.10, 1.20]), duration of diarrhea symptoms (weighted mean difference [WMD] = -10.96, 95% CI [-11.97, -9.96]), duration of abdominal pain symptoms (WMD = -12.01, 95% CI [-14.12, -9.90]), duration of fever symptoms (WMD = -11.91, 95% CI [-13.39, -10.43]), interleukin-6 levels (WMD = -113.59, 95% CI [-113.03, -108.14]), and tumor necrosis factor-α levels (WMD = -62.18, 95% CI [-65.25, -59.11]) and that no significant adverse reactions occurred (RR = 0.45, 95% CI [0.10, 1.97]). The sample size of the included studies reached the expected size. The quality of evidence for outcome indicators was rated as low or very low. CONCLUSIONS The combination of GGQLD with conventional Western medicine demonstrates promising efficacy and safety in treating ID. Nonetheless, more high-quality RCTs are required to confirm this conclusion.
Collapse
Affiliation(s)
- Fei Wang
- College of Graduate Studies, Jiangxi University of Chinese Medicine, Nanchang, China
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianyan Wu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingyuan Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuaishuai Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kangyi Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Jian
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
39
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
40
|
Zhang L, Li X, Wang R, Han X. Lemierre's syndrome complicating multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260: Case report and review. Diagn Microbiol Infect Dis 2024; 109:116375. [PMID: 38796934 DOI: 10.1016/j.diagmicrobio.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
We described a case of a 24-year-old man with multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260. This is the first described case of Lemierre's syndrome with multiple organ failure due to F. necrophorum subsp. funduliforme F1260 in an adult in China. Our study highlights that there may be a risk of misdiagnosis based solely on typical manifestations of internal jugular vein thrombophlebitis, metastatic lesions, and F. necrophorum isolated from blood cultures or normally sterile sites. Clinicians should be cognizant of the potential utility of metagenomic next-generation sequencing in facilitating early pathogen detection in severe infections, thus enabling timely and appropriate administration of antibiotics to reduce mortality rates and improve prognosis.
Collapse
Affiliation(s)
- Lizhong Zhang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Xiaoyan Li
- Shanghai Pudong New District Zhoupu Hospital, Shanghai 200120, China
| | - Ruixue Wang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xiaonan Han
- School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
41
|
Jiang H, Xu J, Xu X, Wei J, Liu J, Qin C, Miao W, Li L, Song X, Liu Q, Cui K, Li Z. Revealing microbial diversity in buffalo milk with high somatic cell counts: implications for mastitis diagnosis and treatment. Vet Res Commun 2024; 48:2537-2553. [PMID: 38874832 DOI: 10.1007/s11259-024-10438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Mastitis is one of the most serious diseases that threatens the health of dairy animals. The somatic cell count (SCC) in milk is widely used to monitor mastitis. This study aimed to reveal the diversity of microorganisms in buffalo milk with high somatic cell count (SCC ≥ 3 × 105 cells/mL, n = 30) and low somatic cell count (SCC ≤ 5 × 104 cells/mL, n = 10), and identify the dominant bacteria that cause mastitis in a local buffalo farm. We also investigated the potential method to treat bacterial mastitis. The V3-V4 region of 16 S rDNA was sequenced. Results showed that, compared to the milk with low SCC, the high SCC samples showed lower microbial diversity, but a high abundance of bacteria and operational taxonomic units (OTUs). By in vitro isolation and culture, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were found to be the leading pathogens, which is consistent with the 16 S rDNA sequencing data. We further isolated 3 of the main pathogens and established a pathogen detection method based on ELISA. In addition, the antibacterial effects of 10 antimicrobials and 15 Chinese herbal extracts were also investigated. Results showed that the microbial has developed tolerance to several of the antimicrobials. While the water extracts of Chinese herbal medicine such as Galla Chinensis, Coptis chinensis Franch, Terminalia chebula Retz, and Sanguisorba officinalis L can effectively inhibit the growth of main pathogens. This study provides novel insight into the microbial diversity in buffalo milk and a reference for the prevention, diagnosis, and treatment of mastitis.
Collapse
Affiliation(s)
- Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayin Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoxian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jue Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Chaobin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenhao Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China.
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
42
|
Wang J, Wu S, Gao H, Yu C, Chen X, Yuan Z. Integrated metabolomics and network pharmacology analysis to explore pig bile-processed Rhizoma Coptidis and Fructus Evodiae sauce-processed Rhizoma Coptidis in lipopolysaccharide-induced inflammatory response. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124192. [PMID: 38941716 DOI: 10.1016/j.jchromb.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Songnan Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Hui Gao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Caina Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Xuelian Chen
- Gynaecological Ward of Panyu District, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Zimin Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| |
Collapse
|
43
|
Xu T, Chen J, Shao Q, Ji J, Wang Q, Ma C, Wang X, Cheng F. The Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH and inhibits the NLRP3 inflammasome activation. Heliyon 2024; 10:e34718. [PMID: 39149083 PMCID: PMC11324969 DOI: 10.1016/j.heliyon.2024.e34718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The Coptidis Rhizoma and Bovis Calculus herb pair possesses clearing heat and detoxifying effects. The aim of this study was to reveal the effects and mechanisms of the herb pair in the treatment of NASH by network pharmacology and experimental verification. A network pharmacology-based approach was employed to predict the putative mechanism of the herb pair against NASH. The high-fat diet (HFD) and methionine/choline deficient (MCD) diet induced NASH models were used to evaluate efficacy and mechanism of the herb pair. Network pharmacological analysis showed that the herb pair modulated NOD-like receptor pathway. In the HFD mice, herb pair reduced body weight, blood sugar, serum ALT, AST, TBA, TC, TG and LDL-C contents, also improved the general morphology and pathological manifestations. Hepatic transcriptomics study showed that herb pair attenuated NASH by regulating NOD-like receptor signaling pathway. Western blotting showed that herb pair reduced the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. In the MCD mice, herb pair also reduced serum ALT, ALT and TBA levels, improved liver pathological manifestations, inhibited the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. Our findings proved that the Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH through suppression of NLRP3 inflammasome activation. This will demonstrate effective pharmacological evidence for the clinical application of herb pair.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Cheng Z, Li J, Xu C, Zhang L, Gong Q, Long C. Coptisaustrogaoligongensis (Ranunculaceae), a new species from West Yunnan, China. PHYTOKEYS 2024; 244:225-235. [PMID: 39070103 PMCID: PMC11283624 DOI: 10.3897/phytokeys.244.127978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Based on morphological and plastid data, we have described and confirmed that Coptisaustrogaoligongensis distributed in Tongbiguan Provincial Nature Reserve, Yingjiang County, Yunnan Province, is a new species of Coptis. It is distinctly different from C.teetasubsp.teeta and C.teetasubsp.lohitensis with differences mainly reflected in the following features: former leaf segment lobes contiguous to each other, and lateral segments equal to central one; plants without developed stolons; inflorescences with only 1-3 flowers; petals have short claws. Phylogenetic analysis indicated that C.austrogaoligongensis is a sister to C.teetasubsp.teeta and C.teetasubsp.lohitensis.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, ChinaMinzu University of ChinaBeijingChina
| | - Jiahua Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, ChinaGaoligongshan National Nature ReserveYunnanChina
| | - Congli Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, ChinaGaoligongshan National Nature ReserveYunnanChina
| | - Lixiang Zhang
- Gaoligongshan National Nature Reserve (Longyang Sub-bureau), Yunnan, 678000, ChinaYunnan Tongbiguan Provincial Nature Reserve Management and Protection BureauYunnanChina
| | - Qiangbang Gong
- Gaoligongshan National Nature Reserve (Longyang Sub-bureau), Yunnan, 678000, ChinaYunnan Tongbiguan Provincial Nature Reserve Management and Protection BureauYunnanChina
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, ChinaMinzu University of ChinaBeijingChina
| |
Collapse
|
45
|
Wang C, An T, Lu C, Liu T, Shan X, Zhu Z, Gao Y. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. Drug Des Devel Ther 2024; 18:2951-2969. [PMID: 39050798 PMCID: PMC11268521 DOI: 10.2147/dddt.s462603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prediabetes, characterized by a series of metabolic abnormalities, increases the risk of diabetes and cardiovascular diseases. Tangzhiping (TZP), a clinically validated traditional Chinese medicine formula, is used to treat impaired glucose tolerance. However, the underlying mechanism of TZP in intervening prediabetes is not fully elucidated. Purpose The current study aimed to evaluate the protective effect of TZP against prediabetes mice and explore its potential mechanism. Methods After establishing a prediabetic animal model through 12 weeks of high-fat diet (HFD) feeding, mice were subjected to TZP for 8 weeks. Various parameters related to body weight, glucose and lipid metabolism, and insulin sensitivity were measured. Histopathological examinations observed adipose cell size and liver lipid deposition. The Sable Promethion system assessed energy metabolism activity. Transcriptomic analysis of Epididymal white adipose tissue (EWAT) identified enriched pathways and genes. The key genes in the enriched pathways were identified through RT-PCR. Results Our data revealed that the administration of TZP reduced body weight and fat mass in a prediabetes mouse model. TZP normalized the glucose and insulin levels, improved insulin resistance, and decreased plasma TC and FFA. The alleviation of adipose tissue hypertrophy and lipid deposition by TZP was demonstrated through pathological examination. Indirect calorimetry measurements indicated a potential increase in VO2 and EE levels with TZP. The results of EWAT transcription showed that TZP reversed pathways and genes related to inflammation and catabolic metabolism. RT-PCR demonstrated that the mRNA expression of inflammation and lipolysis, including Tlr2, Ccr5, Ccl9, Itgb2, Lipe, Pnpla2, Cdo1, Ces1d, Echs1, and Acad11, were changed by TZP treatment. Conclusion TZP effectively alleviates obesity, impaired glucose and lipid metabolism, and insulin resistance. The effect of TZP might be associated with the regulation of gene expression in dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Cuiting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Li SY, Xu DQ, Chen YY, Fu RJ, Tang YP. Several major herb pairs containing Coptidis rhizoma: a review of key traditional uses, constituents and compatibility effects. Front Pharmacol 2024; 15:1399460. [PMID: 38983920 PMCID: PMC11231094 DOI: 10.3389/fphar.2024.1399460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.
Collapse
Affiliation(s)
- Shi-Yu Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Wuxi Institute of Integrated Chinese and Western Medicine, and Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
47
|
Zhang X, Zhang J, Zhou Z, Xiong P, Cheng L, Ma J, Wen Y, Shen T, He X, Wang L, Zhang Y, Xiao C. Integrated network pharmacology, metabolomics, and transcriptomics of Huanglian-Hongqu herb pair in non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117828. [PMID: 38325669 DOI: 10.1016/j.jep.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Huanglian-Hongqu herb pair (HH) is a synergistic drug combination used to treat non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism underlying the therapeuticeffects of HH requires further elucidation. AIM OF THE STUDY The present study explored the potential mechanism of HH in treating NAFLD. MATERIALS AND METHODS UPLC-Q-TOF-MS was employed to identify the drug constituents in HH. A NAFLD rat model was induced by a high-fat diet (HFD) and treated with different doses of HH. The functional mechanism of HH in NAFLD rats was predicted using network pharmacology, metabolomics and transcriptomics. Immunohistochemistry, real-time PCR, and Western blot were performed to validate the key mechanisms. RESULTS Pharmacodynamic assessment demonstrated that HH exhibited improvements in lipid deposition and reduced hepatic oxidative stress in NAFLD rats. Hepatic wide-target metabolomics revealed that HH primarily modulated amino acids and their metabolites, fatty acids, organic acids and their derivatives, bile acids, and other liver metabolites. The enriched pathways included metabolic pathways, primary bile acid biosynthesis, and bile secretion. Network pharmacology analysis indicated that HH regulated the key pathways in NAFLD, notably PPAR, AMPK, NF-κB and other signaling pathways. Furthermore, hepatic transcriptomics, based on Illumina RNA-Seq sequencing analyses, suggested that HH improved NAFLD through metabolic pathways, the PPAR signaling pathway, primary bile acid biosynthesis, and fatty acid metabolism. Further mechanistic studies indicated that HH could regulate the genes and proteins associated with the PPAR signaling pathway. CONCLUSION Our findings demonstrated that the potential therapeutic benefits of HH in ameliorating NAFLD by targeting the PPAR signaling pathway, thereby facilitating a more extensive use of HH in NAFLD.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Zhang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Cheng
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Ma
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoyan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Wang
- School of Traditional Chinese Medicine, Ningxia Medical University, Ningxia, 750004, China
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
48
|
Li W, Jiao R, Luo S, Liu Z, Song J, Chen Z. Mechanism of action of Coptidis Rhizome in treating periodontitis based on network pharmacology and in vitro validation. BMC Oral Health 2024; 24:530. [PMID: 38704553 PMCID: PMC11069132 DOI: 10.1186/s12903-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Li
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
| | - Ruofeng Jiao
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shiyi Luo
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zefei Liu
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550001, China.
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China.
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
49
|
Cervello M, Augello G, Cocco L, Ratti S, Follo MY, Martelli AM, Cusimano A, Montalto G, McCubrey JA. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv Biol Regul 2024; 92:101032. [PMID: 38693042 DOI: 10.1016/j.jbior.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo School of Medicine, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
50
|
Wang Z, Qiu H, Yang Y, Zhang Y, Mou T, Zhang X, Zhang Y. Huanglian-Hongqu herb pair improves nonalcoholic fatty liver disease via NF-κB/NLRP3 pathway in mice: network pharmacology, molecular docking and experimental validation. Hereditas 2024; 161:12. [PMID: 38566171 PMCID: PMC10988798 DOI: 10.1186/s41065-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The Huanglian-Hongqu herb pair (HH) is a carefully crafted traditional Chinese herbal compound designed to address disorders related to glucose and lipid metabolism. Its primary application lies in treating hyperlipidemia and fatty liver conditions. This study explored the potential mechanism of HH in treating non-alcoholic fatty liver disease (NAFLD) through network pharmacology, molecular docking, and in vivo animal experiments. Ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UPLC-Q-TOF-MS) was employed to identify the chemical composition of HH. Network pharmacology was used to analyze the related signaling pathways affected by HH. Subsequently, the prediction was verified by animal experiment. Finally, we identified 29 components within HH. Network pharmacology unveiled interactions between HH and 153 NAFLD-related targets, highlighting HH's potential to alleviate NAFLD through NF-κB signaling pathway. Molecular docking analyses illuminated the binding interactions between HH components and key regulatory proteins, including NF-κB, NLRP3, ASC, and Caspase-1. In vivo experiments demonstrated that HH alleviated NAFLD by reducing serum and liver lipid levels, improving liver function, and lowering inflammatory cytokine levels in the serum. Moreover, HH administration downregulated mRNA and protein levels of the NF-κB/NLRP3 pathway. In conclusion, our findings demonstrated that HH has potential therapeutic benefits in ameliorating NAFLD by targeting the NF-κB/NLRP3 pathway, facilitating the broader application of HH in the field of NAFLD.
Collapse
Affiliation(s)
- Zheng Wang
- College of Traditional Chinese Medicine and Health Service, Shanxi Datong University, Datong, China
| | - Hairong Qiu
- Department of Chinese Medicine, Medical School, Hubei Minzu University, Enshi, China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Yueyu Zhang
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Taiguo Mou
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Traditional Chinese Medicine department, Chinese Medicine Hospital of Chenghua, Chengdu, China.
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|