1
|
Zheng E, Warchoł I, Mejza M, Możdżan M, Strzemińska M, Bajer A, Madura P, Żak J, Plewka M. Exploring Anti-Inflammatory Treatment as Upstream Therapy in the Management of Atrial Fibrillation. J Clin Med 2025; 14:882. [PMID: 39941553 PMCID: PMC11818443 DOI: 10.3390/jcm14030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Inflammation has been widely recognized as one of the major pathophysiological drivers of the development of atrial fibrillation (AF), which works in tandem with other risk factors of AF including obesity, diabetes, hypertension, and heart failure (HF). Our current understanding of the role of inflammation in the natural history of AF remains elusive; however, several key players, including the NLRP3 (NLR family pyrin domain containing 3) inflammasome, have been acknowledged to be heavily influential on chronic inflammation in the atrial myocardium, which leads to fibrosis and eventual degradation of its electrical function. Nevertheless, our current methods of pharmacological modalities with reported immunomodulatory properties, including well-established classes of drugs e.g., drugs targeting the renin-angiotensin-aldosterone system (RAAS), statins, and vitamin D, have proven effective in reducing the overall risk of developing AF, the onset of postoperative atrial fibrillation (POAF), and reducing overall mortality among patients with AF. This might bring hope for further progress in developing new treatment modalities targeting cellular checkpoints of the NLRP3 inflammasome pathway, or revisiting other well-known anti-inflammatory drugs e.g., colchicine, vitamin C, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticosteroids, and antimalarial drugs. In our review, we aim to find relevant upstream anti-inflammatory treatment methods for the management of AF and present the most current real-world evidence of their clinical utility.
Collapse
|
2
|
Badreldin H, Elshal M, El-Karef A, Ibrahim T. Empagliflozin protects the heart from atrial fibrillation in rats through inhibiting the NF-κB/HIF-1α regulatory axis and atrial remodeling. Int Immunopharmacol 2024; 143:113403. [PMID: 39437485 DOI: 10.1016/j.intimp.2024.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia. The current study aimed to investigate the potential of empagliflozin (EMPA) to protect against acetylcholine (ACh)/calcium chloride (CaCl2)-induced AF in rats and elucidate the possible underlying mechanism of action. Rats were randomly assigned to five groups, as follows: CTRL group: received 1 ml/kg isotonic saline; AF group: received 1 ml/kg induction mixture of ACh/CaCl2 (60 µg ACh and 10 mg CaCl2 per ml); EMPA group: received 30 mg/kg EMPA; AF + EMPA10 group: received the induction mixture concurrent with 10 mg/kg EMPA; AF + EMPA30 group: received the induction mixture concurrent with 30 mg/kg EMPA. Our results showed that EMPA administration inhibited the AF-related electrocardiographic abnormalities and decreased the serum brain natriuretic peptide levels. EMPA treatment maintained the cardiac redox balance, as indicated by reduced levels of the lipid peroxidation biomarker malonaldehyde while enhancing the antioxidant glutathione levels. Moreover, EMPA markedly repressed ACh/CaCl2-induced C-reactive protein, tumor necrosis factor, and interleukin-6 production. Interestingly, EMPA administration strongly suppressed cardiac transforming growth factor beta1, collagen type I, and alpha-smooth muscle actin expression levels in the AF rats. These results were consistent with our histopathological findings, which revealed the ameliorative effect of EMPA on AF-induced inflammatory and fibrotic lesions. Mechanistically, EMPA dose-dependently downregulated nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor (HIF)-1α expressions. Besides, it attenuated the pro-apoptotic active caspase-3 while augmenting the anti-apoptotic B-cell lymphoma 2 expressions. Furthermore, EMPA dose-dependently suppressed cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, this study demonstrates that EMPA intervention, within AF induction, protects against ACh/CaCl2-induced AF in rats, exerting powerful antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects. These effects are mainly mediated through the targeting of the NF-κB/HIF-1α regulatory axis in a dose-dependent manner.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
3
|
Shitole SG, Heckbert SR, Marcus GM, Shah SJ, Sotoodehnia N, Walston JD, Reiner AP, Tracy RP, Psaty BM, Kizer JR. Assessment of Inflammatory Biomarkers and Incident Atrial Fibrillation in Older Adults. J Am Heart Assoc 2024; 13:e035710. [PMID: 39644101 PMCID: PMC11935547 DOI: 10.1161/jaha.124.035710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Available evidence supports the importance of inflammation in atrial fibrillation (AF) pathogenesis, yet general anti-inflammatory therapies have failed to show benefit for prevention of the arrhythmia. Better understanding of the specific inflammatory pathways involved is necessary to advance therapeutics. METHODS AND RESULTS We evaluated 9 circulating markers of inflammation measured by immunoassays and incidence of AF in a population-based older cohort. Biomarkers included measures of general inflammation and the NLR (nucleotide-binding oligomerization domain-like receptor) family pyrin domain containing 3 inflammasome, TNF-α (tumor necrosis factor α), monocyte activation markers, and sIL-2 (soluble interleukin-2). Among 5726 participants (median age 72 years), 1836 developed AF over median follow-up of 11.5 years. After adjustment for conventional risk factors, 5 biomarkers were positively associated with incident AF: IL-6 (interleukin-6), hazard ratio (HR), 1.14 (95% CI, 1.07-1.21); hs-CRP (high-sensitivity C-reactive protein), HR, 1.05 (95% CI, 1.01-1.09); white blood cell count, HR, 1.18 (95% CI, 1.04-1.35); sTNFR1 (soluble TNF receptor 1), HR, 1.21 (95% CI, 1.05-1.39); and sIL-2Rα (sIL-2 receptor α), HR, 1.16 (95% CI, 1.05-1.29) (all per doubling of biomarker). sCD14, sCD163, IL-18, and IL-1 receptor antagonist showed no association with AF. Upon concurrent adjustment for all biomarkers, only IL-6 remained significantly associated with the arrhythmia, HR, 1.17 (95% CI, 1.07-1.26). CONCLUSIONS Among older adults, IL-6, hs-CRP, white blood cell count, sTNFR1, and sIL-2Rα were positively associated with incident AF, but only IL-6 retained significance on concurrent adjustment. These findings newly document associations for sTNFR1 and sIL-2Rα and lend support to a preeminent role for IL-6 in development of this arrhythmia. The efficacy of IL-6 blockade for AF prevention awaits completion of appropriate clinical trials.
Collapse
Affiliation(s)
- Sanyog G. Shitole
- Cardiology SectionSan Francisco Veterans Affairs Health Care SystemSan FranciscoCAUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
- Department of MedicineAlbert Einstein College of MedicineBronxNYUSA
| | | | - Gregory M. Marcus
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Sanjiv J. Shah
- Department of MedicineNorthwestern UniversityChicagoILUSA
| | - Nona Sotoodehnia
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | | | | | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineThe University of VermontBurlingtonVTUSA
| | - Bruce M. Psaty
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Department of Health Systems and Population HealthUniversity of WashingtonSeattleWAUSA
| | - Jorge R. Kizer
- Cardiology SectionSan Francisco Veterans Affairs Health Care SystemSan FranciscoCAUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Epidemiology & BiostatisticsUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
4
|
Vyas V, Sandhar B, Keane JM, Wood EG, Blythe H, Jones A, Shahaj E, Fanti S, Williams J, Metic N, Efremova M, Ng HL, Nageswaran G, Byrne S, Feldhahn N, Marelli-Berg F, Chain B, Tinker A, Finlay MC, Longhi MP. Tissue-resident memory T cells in epicardial adipose tissue comprise transcriptionally distinct subsets that are modulated in atrial fibrillation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1067-1082. [PMID: 39271815 PMCID: PMC11399095 DOI: 10.1038/s44161-024-00532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and carries an increased risk of stroke and heart failure. Here we investigated how the immune infiltrate of human epicardial adipose tissue (EAT), which directly overlies the myocardium, contributes to AF. Flow cytometry analysis revealed an enrichment of tissue-resident memory T (TRM) cells in patients with AF. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell T cell receptor (TCR) sequencing identified two transcriptionally distinct CD8+ TRM cells that are modulated in AF. Spatial transcriptomic analysis of EAT and atrial tissue identified the border region between the tissues to be a region of intense inflammatory and fibrotic activity, and the addition of TRM populations to atrial cardiomyocytes demonstrated their ability to differentially alter calcium flux as well as activate inflammatory and apoptotic signaling pathways. This study identified EAT as a reservoir of TRM cells that can directly modulate vulnerability to cardiac arrhythmia.
Collapse
Affiliation(s)
- Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Balraj Sandhar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack M Keane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hazel Blythe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aled Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack Williams
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Han Leng Ng
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Gayathri Nageswaran
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Suzanne Byrne
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Niklas Feldhahn
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm C Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Jurica J, Péč MJ, Benko J, Bolek T, Galajda P, Mokáň M, Samoš M. Obesity as a risk factor in atrial fibrillation and heart failure. J Diabetes Metab Disord 2024; 23:125-134. [PMID: 38932866 PMCID: PMC11196522 DOI: 10.1007/s40200-023-01332-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024]
Abstract
Objectives The aim of this article is to provide an insight into the role of obesity as a risk factor, and as a potential etiologic agent of atrial fibrillation (AF) and heart failure (HF). Methods A narrative (non-systematic) review article summarizing currently available data regarding the interaction between obesity, AF and HF. Results Obesity is considered a risk factor of AF and chronic HF. Multiple recent studies indicate that obesity is also a potential causal factor in the development of AF and HF, the elucidation of pathological mechanisms of which could help devise new diagnostic and therapeutic modalities for these conditions. The discussion about obesity in relation to HF cannot omit the so-called obesity paradox, which represents a dilemma for clinicians, and it is still a source of irregularities regarding the strategy of weight reduction in obese patients with HF. Recently, the obesity paradox has also been assumed to play a role in the relationship between obesity and thromboembolic complications of AF. Conclusions Obesity is an independent and modifiable risk factor for AF and HF. In addition, there is an increasing volume of experimental and clinical data that suggests an important role of the epicardial adipose tissue in the pathophysiology of AF. However, several issues, such as the issue of optimal pharmacotherapy and weight reduction strategy in obese patients with HF remains still unanswered, and open for future investigation.
Collapse
Affiliation(s)
- Jakub Jurica
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Martin Jozef Péč
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Jakub Benko
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Tomáš Bolek
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Peter Galajda
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Marián Mokáň
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
| | - Matej Samoš
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovak Republic
- Division of Acute and Interventional Cardiology, Department of Cardiology and Angiology II, Mid-Slovakian Institute of Heart and Vessel Diseases (SÚSCCH) in Banská Bystrica, Banská Bystrica, Slovakia
| |
Collapse
|
6
|
Dye C, Dela Cruz M, Larsen T, Nair G, Marinescu K, Suboc T, Engelstein E, Marsidi J, Patel P, Sharma P, Volgman AS. A review of the impact, pathophysiology, and management of atrial fibrillation in patients with heart failure with preserved ejection fraction. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 33:100309. [PMID: 38510554 PMCID: PMC10946048 DOI: 10.1016/j.ahjo.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 03/22/2024]
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) have increased mortality and increased risk of stroke. Due to the heterogeneous nature of both disease processes, it is difficult to ascertain whether the diagnosis and progression of AF is the cause of deterioration or if it is a symptom of worsening heart failure. This presents physicians with a clinical conundrum of whether optimizing their heart failure will decrease the overall AF burden or if restoration of sinus rhythm is necessary to optimize patients with HFpEF. In this paper, we will review the impact of AF in patients with HFpEF, the pathophysiology and heterogeneity of HFpEF and AF, and the management of these patients. As HFpEF and AF become more prevalent, managing these disease processes needs standardization to improve outcomes. Further research is needed to understand the complex interplay between AF and HFpEF to help determine the best management strategy.
Collapse
Affiliation(s)
- Cicely Dye
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Advocate Heart Institute, Advocate Christ Medical Center, Chicago, IL 60453, USA
| | - Timothy Larsen
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gatha Nair
- Division of Cardiology, University of Washington, Seattle, WA 98105, USA
| | - Karolina Marinescu
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Tisha Suboc
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Erica Engelstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jennifer Marsidi
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Priya Patel
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Parikshit Sharma
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
7
|
Shangguan W, Gu T, Cheng R, Liu X, Liu Y, Miao S, Wang W, Song F, Wang H, Liu T, Liang X. Cfa-circ002203 was upregulated in rapidly paced atria of dogs and involved in the mechanisms of atrial fibrosis. Front Cardiovasc Med 2023; 10:1110707. [PMID: 37593150 PMCID: PMC10427503 DOI: 10.3389/fcvm.2023.1110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND AND AIMS The role of circular RNAs (circRNAs) in the pathophysiology of cardiovascular disease is gradually being elucidated; however, their roles in atrial fibrillation (AF)-related fibrosis are largely unknown. This study aimed to characterize the different circRNA profiles in the rapid-pacing atria of dogs and explore the mechanisms involved in atrial fibrosis. METHODS A rapid right atrial-pacing model was established using electrical stimulation from a pacemaker. After 14 days, atrial tissue was collected for circRNA sequencing analysis. In vitro fibrosis was established by stimulating canine atrial fibroblasts with angiotensin II (Ang II). The fibroblasts were transfected with siRNA and overexpressing plasmids to explore the effects of cfa-circ002203 on fibroblast proliferation, migration, differentiation, and the expression of fibrosis-related proteins. RESULTS In total, 146 differentially expressed circRNAs were screened, of which 106 were upregulated and 40 were downregulated. qRT-PCR analysis showed that cfa-circ002203 was upregulated in both in vivo and in vitro fibroblast fibrosis models. The upregulation of cfa-circ002203 enhanced proliferation and migration while weakening the apoptosis of fibroblasts. Western blotting showed that cfa-circ002203 overexpression increased the protein expression levels of fibrosis-related indicators (Col I, Col III, MMP2, MMP9, and α-SMA) and decreased the protein expression levels of pro-apoptotic factors (Bax and Caspase 3) in Ang II-induced fibroblast fibrosis. CONCLUSION Cfa-circ002203 might serve as an active promoter of the proliferation, migration, and fibrosis of atrial fibroblasts and is involved in AF-induced fibroblast fibrosis.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rukun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Liu
- Department of Cardiology, Taikang Ningbo Hospital, Ningbo, China
| | - Shuai Miao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Song
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hualing Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
9
|
Enoki Y, Nagai T, Hamamura Y, Osa S, Nakamura H, Taguchi K, Watanabe H, Maruyama T, Matsumoto K. The G protein-coupled receptor ligand apelin-13 ameliorates skeletal muscle atrophy induced by chronic kidney disease. J Cachexia Sarcopenia Muscle 2023; 14:553-564. [PMID: 36562292 PMCID: PMC9891924 DOI: 10.1002/jcsm.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeting of the apelin-apelin receptor (Apj) system may serve as a useful therapeutic intervention for the management of chronic kidney disease (CKD)-induced skeletal muscle atrophy. We investigated the roles and efficacy of the apelin-Apj system in CKD-induced skeletal muscle atrophy. METHODS The 5/6-nephrectomized mice were used as CKD models. AST-120, a charcoal adsorbent of uraemic toxins (8 w/w% in diet), or apelin (1 μmol/kg) was administered to CKD mice to investigate the mechanism and therapeutic potential of apelin on CKD-induced skeletal muscle atrophy. The effect of indoxyl sulfate, a uraemic toxin, or apelin on skeletal muscle atrophy was evaluated using mouse myoblast cells (C2C12 cells) in vitro. RESULTS Skeletal muscle atrophy developed over time following nephrectomy at 12 weeks, as confirmed by a significant increase of atrogin-1 and myostatin mRNA expression in the gastrocnemius (GA) muscle and a decrease of lower limb skeletal muscle weight (P < 0.05, 0.01 and 0.05, respectively). Apelin expression in GA muscle was significantly decreased (P < 0.05) and elabela, another Apj endogenous ligand, tended to show a non-significant decrease at 12 weeks after nephrectomy. Administration of AST-120 inhibited the decline of muscle weight and increase of atrogin-1 and myostatin expression. Apelin and elabela expression was slightly improved by AST-120 administration but Apj expression was not, suggesting the involvement of uraemic toxins in endogenous Apj ligand expression. The administration of apelin at 1.0 μmol/kg for 4 weeks to CKD mice suppressed the increase of atrogin-1 and myostatin, increased apelin and Apj mRNA expression at 30 min after apelin administration and significantly ameliorated weight loss and a decrease of the cross-sectional area of hindlimb skeletal muscle. CONCLUSIONS This study demonstrated for the first time the association of the Apj endogenous ligand-uraemic toxin axis with skeletal muscle atrophy in CKD and the utility of therapeutic targeting of the apelin-Apj system.
Collapse
Affiliation(s)
- Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Tomoya Nagai
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yuna Hamamura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Sumika Osa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
10
|
Fir(e)ing the Rhythm. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Younes H, Noujaim C, Mekhael M, Chouman N, Assaf A, Kreidieh O, Lim C, Marrouche N, Donnellan E. Atrial fibrillation ablation as first-line therapy for patients with heart failure with reduced ejection fraction (HFrEF): evaluating the impact on patient survival. Expert Rev Cardiovasc Ther 2023; 21:111-121. [PMID: 36680789 DOI: 10.1080/14779072.2023.2172402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Atrial fibrillation and congestive heart failure share several pathophysiological mechanisms. As a result of their association, patients have worse outcomes than if either condition were present alone. AREAS COVERED While multiple trials report no significant difference between the use of pharmacological rhythm control and the use of rate control in terms of mortality and morbidity in patients with HFrEF, there is evidence to suggest that catheter ablation is beneficial in this patient population. The present review aims to provide a comprehensive overview of catheter ablation as a treatment modality for atrial fibrillation in patients with HFrEF as well as evaluate its outcome on survival. EXPERT OPINION An appropriate patient selection strategy for patients with HFrEF could be the next step in determining which patients might benefit most from catheter ablation. Future atrial fibrillation management may incorporate digital health and pulsed-field ablation.
Collapse
Affiliation(s)
- Hadi Younes
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Charbel Noujaim
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mario Mekhael
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nour Chouman
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ala Assaf
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Omar Kreidieh
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chanho Lim
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nassir Marrouche
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Eoin Donnellan
- Tulane Research and Innovation for Arrhythmia Discoveries- TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
12
|
Karaliūtė R, Leleika A, Apanavičiūtė I, Kazakevičius T, Mizarienė V, Zabiela V, Kavoliūnienė A, Ragaišytė N, Urbonienė D, Šakalytė G. Risk Factors of Early Atrial Fibrillation Recurrence Following Electrical Cardioversion When Left Ventricular Ejection Fraction Is Preserved. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1053. [PMID: 36013520 PMCID: PMC9416115 DOI: 10.3390/medicina58081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
Abstract
Background and objectives: To identify clinical, echocardiographic, and laboratory parameters that affect the early recurrence of atrial fibrillation (AF) after restoring sinus rhythm (SR) by electrical cardioversion (ECV), and to determine whether left atrial (LA) strain, as a noninvasive indicator reflecting fibrosis, is associated with laboratory indicators affecting the development of fibrosis, interleukin 6 (IL-6) or tumor necrosis factor α (TNF-α). Materials and Methods: The study included 92 persistent AF patients who underwent elective ECV. The effective maintenance of SR was evaluated after 40 ± 10 days of ECV. Echocardiography, inflammatory markers (high-sensitivity c-reactive protein (hs-CRP), IL-6, and TNF-α), and natriuretic peptides (N-terminal pro b-type natriuretic peptide (NT-proBNP) and N-terminal pro a-type natriuretic peptide (NT-proANP)) were assessed. Results: After a 40 ± 10 days observation period, 51 patients (55.4%) were in SR. Patients with AF recurrence had a significantly longer duration of AF (p = 0.008) and of arterial hypertension (p = 0.035), lower LA ejection fraction (p = 0.009), lower LA strain (p < 0.0001), higher left ventricular global longitudinal strain (p = 0.001), and a higher E/e‘ ratio (p < 0.0001). LA strain was an independent predictor of early AF recurrence (OR: 0.65; 95% Cl 0.5−0.9, p = 0.004). LA strain < 11.85% predicted AF recurrence with 70% sensitivity and 88% specificity (AUC 0.855, 95% CI 0.77−0.94, p < 0.0001). LA strain demonstrated the association with NT-proBNP (r = −0.489, p < 0.0001) and NT-proANP (r = −0.378, p = 0.002), as well as with hs-CRP (r = −0.243, p = 0.04). Conclusions: LA strain appeared to be the most accurate predictor of early AF recurrence after ECV in patients with persistent AF. LA strain inversely correlated with NT-proBNP and NT-proANP, but no significant association with any of the inflammatory markers was identified.
Collapse
Affiliation(s)
- Rasa Karaliūtė
- Laboratory of Behavioural Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
| | - Arnoldas Leleika
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
- Medicine Faculty, Medicine Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Ieva Apanavičiūtė
- Medicine Faculty, Medicine Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Tomas Kazakevičius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
| | - Vaida Mizarienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
| | - Vytautas Zabiela
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Aušra Kavoliūnienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
| | - Nijolė Ragaišytė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Gintarė Šakalytė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, 50009 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| |
Collapse
|
13
|
Chu Y, Yu F, Wu Y, Yang J, Shi J, Ye T, Han D, Wang X. Identification of genes and key pathways underlying the pathophysiological association between nonalcoholic fatty liver disease and atrial fibrillation. BMC Med Genomics 2022; 15:150. [PMID: 35790963 PMCID: PMC9258143 DOI: 10.1186/s12920-022-01300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Atrial fibrillation (AF) is one of the most prevalent sustained cardiac arrhythmias. The latest studies have revealed a tight correlation between nonalcoholic fatty liver disease (NAFLD) and AF. However, the exact molecular mechanisms underlying the association between NAFLD and AF remain unclear. The current research aimed to expound the genes and signaling pathways that are related to the mechanisms underlying the association between these two diseases. Materials and methods NAFLD- and AF- related differentially expressed genes (DEGs) were identified via bioinformatic analysis of the Gene Expression Omnibus (GEO) datasets GSE63067 and GSE79768, respectively. Further enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), the construction of a protein–protein interaction (PPI) network, the identification of significant hub genes, and receiver operator characteristic curve analysis were conducted. The gene-disease interactions were analyzed using the Comparative Toxicogenomics Database. In addition, the hub genes were validated by quantitative Real-Time PCR (qRT-PCR) in NAFLD cell model. Results A total of 45 co-expressed differentially expressed genes (co-DEGs) were identified between the NAFLD/AF and healthy control individuals. GO and KEGG pathway analyses revealed that the co-DEGs were mostly enriched in neutrophil activation involved in the immune response and cytokine-cytokine receptor interactions. Moreover, eight hub genes were selected owing to their high degree of connectivity and upregulation in both the NAFLD and AF datasets. These genes included CCR2, PTPRC, CXCR2, MNDA, S100A9, NCF2, S100A12, and S100A8. Conclusions In summary, we conducted the gene differential expression analysis, functional enrichment analysis, and PPI analysis of DEGs in AF and NAFLD, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for AF and NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01300-1.
Collapse
|
14
|
Lang RM, Cameli M, Sade LE, Faletra FF, Fortuni F, Rossi A, Soulat-Dufour L. Imaging assessment of the right atrium: anatomy and function. Eur Heart J Cardiovasc Imaging 2022; 23:867-884. [PMID: 35079782 DOI: 10.1093/ehjci/jeac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
The right atrium (RA) is the cardiac chamber that has been least well studied. Due to recent advances in interventional cardiology, the need for greater understanding of the RA anatomy and physiology has garnered significant attention. In this article, we review how a comprehensive assessment of RA dimensions and function using either echocardiography, cardiac computed tomography, and magnetic resonance imaging may be used as a first step towards a better understanding of RA pathophysiology. The recently published normative data on RA size and function will likely shed light on RA atrial remodelling in atrial fibrillation (AF), which is a complex phenomenon that occurs in both atria but has only been studied in depth in the left atrium. Changes in RA structure and function have prognostic implications in pulmonary hypertension (PH), where the increased right ventricular (RV) afterload first induces RV remodelling, predominantly characterized by hypertrophy. As PH progresses, RV dysfunction and dilatation may begin and eventually lead to RV failure. Thereafter, RV overload and increased RV stiffness may lead to a proportional increase in RA pressure. This manuscript provides an in-depth review of RA anatomy, function, and haemodynamics with particular emphasis on the changes in structure and function that occur in AF, tricuspid regurgitation, and PH.
Collapse
Affiliation(s)
- Roberto M Lang
- Heart and Vascular Center, University of Chicago, 5758 S Maryland Avenue, MC 9067, DCAM 5509, Chicago, IL 60637, USA
| | - Matteo Cameli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Leila E Sade
- University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, PA, USA.,Department of Cardiology, University of Baskent, Ankara, Turkey
| | | | - Federico Fortuni
- Department of Cardiology, San Giovanni Battista Hospital, Foligno, Italy.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexia Rossi
- Department of Nuclear Medicine, Zurich University Hospital, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Schlieren, Zurich, Switzerland
| | - Laurie Soulat-Dufour
- Saint Antoine and Tenon Hospital, AP-HP, Pr Ariel Cohen, Sorbonne Université, INSERM, Unité de recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, ICAN, Paris F-75013, France
| |
Collapse
|
15
|
Time series RNA-seq analysis identifies MAPK10 as a critical gene in diabetes mellitus-induced atrial fibrillation in mice. J Mol Cell Cardiol 2022; 168:70-82. [PMID: 35489387 DOI: 10.1016/j.yjmcc.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
Abstract
Atrial fibrillation (AF) is a major complication of type 2 diabetes mellitus (T2DM) and plays critical roles in the pathogenesis of atrial remodeling. However, the differentially expressed genes in atria during the development of AF induced by hyperglycemia have rarely been reported. Here, we showed time-dependent increased AF incidence and duration, atrial enlargement, inflammation, fibrosis, conduction time and action potential duration in db/db mice, a model of T2DM. RNA sequencing analysis showed that 2256 genes were differentially expressed in the atria at 12, 14 and 16 weeks. Gene Ontology analysis showed that these genes participate primarily in cell adhesion, cellular response to interferon-beta, immune system process, positive regulation of cell migration, ion transport and cellular response to interferon-gamma. Analysis of significant pathways revealed the IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway, chemokine signaling pathway, and cAMP receptor signaling. Additionally, these differentially expressed genes were classified into 50 profiles by hierarchical clustering analysis. Twelve of these profiles were significant and comprised 1115 genes. Gene coexpression network analysis identified that mitogen-activated protein kinase 10 (MAPK10) was localized in the core of the gene network and was the most highly expressed gene at different time points. Knockdown of MAPK10 markedly attenuated DM-induced AF incidence, atrial inflammation, fibrosis, electrical disorder and apoptosis in db/db mice. In summary, the present findings revealed that many genes are involved in DM-induced AF and that MAPK10 plays a central role in this disease, indicating that strategies targeting MAPK10 may represent a potential therapeutic approach to treat DM-induced AF.
Collapse
|
16
|
Ihara K, Sasano T. Role of Inflammation in the Pathogenesis of Atrial Fibrillation. Front Physiol 2022; 13:862164. [PMID: 35492601 PMCID: PMC9047861 DOI: 10.3389/fphys.2022.862164] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias encountered in clinical practice. AF is a major risk factor for stroke, which is associated with high mortality and great disability and causes a significant burden on society. With the development of catheter ablation, AF has become a treatable disease, but its therapeutic outcome has been limited so far. In persistent and long-standing AF, the expanded AF substrate is difficult to treat only by ablation, and a better understanding of the mechanism of AF substrate formation will lead to the development of a new therapeutic strategy for AF. Inflammation is known to play an important role in the substrate formation of AF. Inflammation causes and accelerates the electrical and structural remodeling of the atria via pro-inflammatory cytokines and other inflammatory molecules, and enhances the AF substrate, leading to the maintenance of AF and further inflammation, which forms a vicious spiral, so-called "AF begets AF". Breaking this vicious cycle is expected to be a key therapeutic intervention in AF. In this review, we will discuss the relationship between AF and inflammation, the inflammatory molecules included in the AF-related inflammatory process, and finally the potential of those molecules as a therapeutic target.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
17
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
18
|
Wu LD, Li F, Chen JY, Zhang J, Qian LL, Wang RX. Analysis of potential genetic biomarkers using machine learning methods and immune infiltration regulatory mechanisms underlying atrial fibrillation. BMC Med Genomics 2022; 15:64. [PMID: 35305619 PMCID: PMC8934464 DOI: 10.1186/s12920-022-01212-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
We aimed to screen out biomarkers for atrial fibrillation (AF) based on machine learning methods and evaluate the degree of immune infiltration in AF patients in detail.
Methods
Two datasets (GSE41177 and GSE79768) related to AF were downloaded from Gene expression omnibus (GEO) database and merged for further analysis. Differentially expressed genes (DEGs) were screened out using “limma” package in R software. Candidate biomarkers for AF were identified using machine learning methods of the LASSO regression algorithm and SVM-RFE algorithm. Receiver operating characteristic (ROC) curve was employed to assess the diagnostic effectiveness of biomarkers, which was further validated in another independent validation dataset of GSE14975. Moreover, we used CIBERSORT to study the proportion of infiltrating immune cells in each sample, and the Spearman method was used to explore the correlation between biomarkers and immune cells.
Results
129 DEGs were identified, and CYBB, CXCR2, and S100A4 were identified as key biomarkers of AF using LASSO regression and SVM-RFE algorithm. Both in the training dataset and the validation dataset, CYBB, CXCR2, and S100A4 showed favorable diagnostic effectiveness. Immune infiltration analysis indicated that, compared with sinus rhythm (SR), the atrial samples of patients with AF contained a higher T cells gamma delta, neutrophils and mast cells resting, whereas T cells follicular helper were relatively lower. Correlation analysis demonstrated that CYBB, CXCR2, and S100A4 were significantly correlated with the infiltrating immune cells.
Conclusions
In conclusion, this study suggested that CYBB, CXCR2, and S100A4 are key biomarkers of AF correlated with infiltrating immune cells, and infiltrating immune cells play pivotal roles in AF.
Collapse
|
19
|
Rafaqat S, Rafaqat S, Rafaqat S. Pathophysiological role of major adipokines in Atrial Fibrillation. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2021. [DOI: 10.1186/s42444-021-00048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The adipokines, secreted from adipose tissue or body fats, are also called adipocytokines which are cytokines, cell signaling proteins or cell–cell communication. However, AF is a common cardiac arrhythmia in which the heart beats so fast by abnormal beating and is a serious public health disease associated with increased heart failure, systemic thromboembolism, and death. Adipokines are cardiovascular disease (CVD) mediators or biomarkers that affect the heart as well as blood vessels, by increasing the cardiac contractility and action potential duration, which result in the extent of left ventricular and atrial remodeling.
Main body
Google Scholar, PubMed, and science direct were used to review the literature. Many keywords were used for searching the literature such as Adipokines, Leptin, Apelin, Adiponectin, Omentin-1, Chemerin, CTRP3, TNF-α, IL-6, IL-10, and AF. According to the literature, much more data are available for numerous adipokines, but this review article only has taken few major adipokines which played their major role in Atrial Fibrillation. The review article did not limit the time frame.
Conclusion
In conclusion, adipokines play a significant role in the development and progress of atrial fibrillation. Also, there are major adipokines such as adiponectin, apelin, C1q/TNF-Related Protein 3 (CTRP3), Chemerin, Omentin-1, interleukin-6, Leptin, TNF-α, resistin, and interleukin-10, which played their pathophysiological role in atrial fibrillation by causing cardiac hypertrophy, increasing the cardiac contractility and action potential duration, atrial fibrosis, electrical and structural remodeling of atrial tissue.
Collapse
|
20
|
Avula UMR, Dridi H, Chen BX, Yuan Q, Katchman AN, Reiken SR, Desai AD, Parsons S, Baksh H, Ma E, Dasrat P, Ji R, Lin Y, Sison C, Lederer WJ, Joca HC, Ward CW, Greiser M, Marks AR, Marx SO, Wan EY. Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight 2021; 6:e147371. [PMID: 34710060 PMCID: PMC8675199 DOI: 10.1172/jci.insight.147371] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
Collapse
Affiliation(s)
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Haajra Baksh
- Division of Cardiology, Department of Medicine, and
| | - Elaine Ma
- Division of Cardiology, Department of Medicine, and
| | | | - Ruiping Ji
- Division of Cardiology, Department of Medicine, and
| | - Yejun Lin
- Division of Cardiology, Department of Medicine, and
| | | | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Physiology and
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
21
|
Lin DW, Jiang F, Wu C, Li YG, Zhang X, Wang YS. Association of furosemide or hydrochlorothiazide use with risk of atrial fibrillation post pacemaker implantation among elderly patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:855. [PMID: 34164489 PMCID: PMC8184456 DOI: 10.21037/atm-21-1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Atrial fibrillation (AF) induced by artificial pacing is directly related to atrial remodeling. Previous basic research has shown that furosemide aggravates pathologic myocardial remodeling while hydrochlorothiazide alleviates it. However, whether furosemide or hydrochlorothiazide plays a role in developing AF after pacemaker implantation remains unknown. The study aims to investigate the association between oral furosemide or hydrochlorothiazide and the risk of developing AF after pacemaker implantation. Methods After a review of electronic medical records, elderly patients with pacemaker implantation and without a known baseline history of AF were included and information on their use of daily oral furosemide or hydrochlorothiazide was extracted. New incident AF cases were confirmed via the records of outpatient visits. A Cox proportional-hazards model was used to evaluate the association between daily oral furosemide or hydrochlorothiazide and risk of developing AF after pacemaker implantation, after adjustment for potential confounders. Results Among a total of 551 patients aged more than 65 years, 157 AF cases were identified after pacemaker implantation during a maximum follow up of 3.0±1.6 years. Of these, 242 had used furosemide and 97 had used hydrochlorothiazide therapy. Patients taking daily oral furosemide had a relatively higher risk of AF after pacemaker implantation [hazard ratio (HR): 1.507, 95% confidence interval (CI): 1.036–2.192; P=0.032] after being adjusted for related disease and prescribed medications, while oral taking of hydrochlorothiazide was shown to be a non-effective factor (HR: 0.666, 95% CI: 0.413–1.074), which had no statistical significance. Conclusions Daily oral furosemide might increase the risk of developing AF after pacemaker implantation in elderly patients, while hydrochlorothiazide has no detrimental effect.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Chongming Branch, Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Clinical Research & Innovation Unit, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Sheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research & Innovation Unit, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Liu A, Jia K, Liang H, Jin Q. Comprehensive analysis of autophagy-related genes and patterns of immune cell infiltration in valvular atrial fibrillation. BMC Cardiovasc Disord 2021; 21:132. [PMID: 33706714 PMCID: PMC7948357 DOI: 10.1186/s12872-021-01939-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background The development of atrial fibrillation (AF) following valvular heart disease (VHD) remains a common disease and is associated with substantial adverse complications. However, valid molecular diagnostic and therapeutic tools for post-VHD AF have not been fully established. This study was conducted to discover the molecular mechanisms and immune microenvironment underlying AF following VHD. Methods Gene expression profiles of the GSE41177 dataset were assessed to construct a protein–protein interaction network, and then, autophagy-related hub genes were identified. In addition, to determine the functions of immune cell infiltration in valvular AF, we used the CIBERSORT algorithm to estimate the composition of 22 immune cell types in valvular heart disease. Finally, correlation analysis was carried out to identify the relationship between differentially expressed autophagy-related genes (DEARGs) and significant immune cell subpopulations to reveal potential regulatory pathways. Results A total of 153 DEARGs were identified in AF-VHD patients compared with controlled donors. Moreover, we screened the top ten hub nodes with the highest degrees through a network analysis. The ten hub nodes were considered hub genes related to AF genesis and progression. Then, we revealed six significant immune cell subpopulations through the CIBERSORT algorithm. Finally, correlation analysis was performed, and six DEARGs (BECN1, GAPDH, ATG7, MAPK3, BCL2L1, and MYC) and three immune cell subpopulations (T cells CD4 memory resting, T cells follicular helper, and neutrophils) were identified as the most significant potential regulators. Conclusion The DEARGs and immune cells identified in our study may be critical in AF development following VHD and provide potential predictive markers and therapeutic targets for determining a treatment strategy for AF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01939-1.
Collapse
Affiliation(s)
- Ao Liu
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China
| | - Kangni Jia
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China
| | - Huaibin Liang
- Department of Neurology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
23
|
Harada M, Nattel S. Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Card Electrophysiol Clin 2021; 13:25-35. [PMID: 33516403 DOI: 10.1016/j.ccep.2020.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammation and fibrosis have been implicated in the pathophysiology of atrial fibrillation. Atrial fibrosis causes conduction disturbances and is a central component of atrial remodeling in atrial fibrillation. Cardiac fibroblasts, the cells responsible for fibrosis formation, are activated by inflammatory mediators and growth factors associated with systemic inflammatory conditions. Thus, inflammation contributes to atrial fibrosis; the complex interplay of these maladaptive components creates a vicious cycle of atrial remodeling progression, maintaining atrial fibrillation and increasing thrombogenicity. This review provides up-to-date knowledge regarding inflammation and fibrosis in atrial fibrillation pathophysiology and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Masahide Harada
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake 4701192, Japan.
| | - Stanley Nattel
- Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Zhou HS, Peng DW, Lai YY, Li Q, Zhao JF, Deng CY, Yang H, Li T, Wang ZY, Xu YW, Xue YM, Wu SL, Guo HM, Rao F. Activation of PKCα participates in the reduction of Ikur in atrial myocytes induced by tumour necrosis factor-α. Clin Exp Pharmacol Physiol 2021; 48:435-442. [PMID: 32966616 DOI: 10.1111/1440-1681.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
The atrial-specific ultra-rapid delayed rectifier K+ current (Ikur) plays an important role in the progression of atrial fibrillation (AF). Because inflammation is known to lead to the onset of AF, we aimed to investigate whether tumour necrosis factor-α (TNF-α) played a role in regulating Ikur and the potential signalling pathways involved. Whole-cell patch-clamp and biochemical assays were used to study the regulation and expression of Ikur in myocytes and in tissues from left atrial appendages (LAAs) obtained from patients with sinus rhythm (SR) or AF, as well as in rat cardiomyocytes (H9c2 cells) and mouse atrial myocytes (HL-1 cells). Ikur current density was markedly reduced in atrial myocytes from AF patients compared with SR controls. Reduction of Kv1.5 protein levels was accompanied by increased expression of TNF-α and protein kinase C (PKC)α activation in AF patients. Treatment with TNF-α dose-dependently reduced Ikur and protein expression of Kv1.5 but not Kv3.1b in H9c2 cells and HL-1 cells. TNF-α also increased activity of PKCα. Specific PKCα inhibitor Gö6976 alleviated the reduction in Ikur induced by TNF-α, but not the reduction in Kv1.5 protein. TNF-α was involved in the electrical remodelling associated with AF, probably by depressing Ikur in atrial myocytes via activation of PKCα.
Collapse
Affiliation(s)
- Hui-Shan Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Panyu Central Hospital, Guangzhou, China
| | - De-Wei Peng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ying-Yu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Qian Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jun-Fei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Teng Li
- Arrhythmia Department, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Zhao-Yu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Wen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
25
|
Li S, Jiang Z, Chao X, Jiang C, Zhong G. Identification of key immune-related genes and immune infiltration in atrial fibrillation with valvular heart disease based on bioinformatics analysis. J Thorac Dis 2021; 13:1785-1798. [PMID: 33841968 PMCID: PMC8024788 DOI: 10.21037/jtd-21-168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Atrial fibrillation (AF) is the most common persistent arrhythmia. Valvular heart disease (VHD) and AF frequently coexist. In our study, from performing bioinformatics analysis, we sought to identify immune-related genes (IRGs) and explore the role of immune cell infiltration in AF-VHD in depth, aiming at investigating the potential molecular mechanism and developing new therapeutic targets for AF, including AF-VHD. Methods The gene expression of the GSE41177 and GSE79768 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed via the limma package in Bioconductor with R software. Differentially expressed immune-related genes (DEIRGs) were selected via combination ImmPort database with DEGs, and the enrichment function and pathway analysis were explored. A protein-protein interaction (PPI) network was built with a Search Tool for the Retrieval of Interacting Genes/Proteins plugin in Cytoscape. The CIBERSORT algorithm was used to evaluate immune infiltration in the left atrial (LA) tissues between AF-VHD and sinus rhythm (SR) patients. Finally, a correlation analysis between key DEIRGs and infiltrating immune cells was performed. Results A total of 130 DEIRGs were detected. Enrichment function of DEIRGs demonstrated that they are significant in immune and inflammatory responses. The key DEIRGs assessed by the PPI network and involved in both the immune and inflammatory responses were the C-X-C motif chemokine ligand (CXCL) 1, pro-platelet basic protein (PPBP), CXCL12, and C-C motif chemokine ligand 4 (CCL4). The immune infiltration findings indicated that, compared with the LA tissues from SR patients, the tissues from AF-VHD patients contained a higher proportion of gamma delta T cells, but a lower proportion of CD8 and regulatory T cells. The results of correlation analysis demonstrated that CXCL1 was positively correlated with activated mast cells and significantly negatively correlated with resting mast cells. PPBP, CXCL12, and CCL4 were positively correlated with the infiltration of various immune cells, such as neutrophils, plasma cells, and resting dendritic cells. Conclusions The key immune-related genes and the differences in immune infiltration in LA tissues play an essential role in the occurrence and progression of AF-VHD.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Department of Cardiology, Division of Hypertension, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiaoying Chao
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chenyang Jiang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guoqiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Oh Y, Yang S, Liu X, Jana S, Izaddoustdar F, Gao X, Debi R, Kim DK, Kim KH, Yang P, Kassiri Z, Lakin R, Backx PH. Transcriptomic Bioinformatic Analyses of Atria Uncover Involvement of Pathways Related to Strain and Post-translational Modification of Collagen in Increased Atrial Fibrillation Vulnerability in Intensely Exercised Mice. Front Physiol 2020; 11:605671. [PMID: 33424629 PMCID: PMC7793719 DOI: 10.3389/fphys.2020.605671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.
Collapse
Affiliation(s)
- Yena Oh
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Sibao Yang
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Xiaodong Gao
- Department of Biology, York University, Toronto, ON, Canada
| | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Geng M, Lin A, Nguyen TP. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front Pharmacol 2020; 11:581837. [PMID: 33240090 PMCID: PMC7680856 DOI: 10.3389/fphar.2020.581837] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since the clinical use of digitalis as the first pharmacological therapy for atrial fibrillation (AF) 235 years ago in 1785, antiarrhythmic drug therapy has advanced considerably and become a cornerstone of AF clinical management. Yet, a preventive or curative panacea for sustained AF does not exist despite the rise of AF global prevalence to epidemiological proportions. While multiple elevated risk factors for AF have been established, the natural history and etiology of AF remain incompletely understood. In the present article, the first section selectively highlights some disappointing shortcomings and current efforts in antiarrhythmic drug therapy to uncover reasons why AF is such a clinical challenge. The second section discusses some modern takes on the natural history of AF as a relentless, progressive fibro-inflammatory "atriomyopathy." The final section emphasizes the need to redefine therapeutic strategies on par with new insights of AF pathophysiology.
Collapse
Affiliation(s)
| | | | - Thao P. Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
28
|
Matsumori A, Shimada T, Shimada M, Otani H, Drayson MT, Mason JW. Immunoglobulin Free Light Chains as Inflammatory Biomarkers of Atrial Fibrillation. Circ Arrhythm Electrophysiol 2020; 13:e009017. [PMID: 33017540 DOI: 10.1161/circep.120.009017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Akira Matsumori
- Clinical Research Center, Kyoto Medical Center, Japan (A.M.)
| | - Toshio Shimada
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan (T.S.)
| | | | - Hideo Otani
- Cardiovascular Division, Tangofurusato Hospital, Kyotango, Japan (H.O.)
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom (M.T.D.)
| | - Jay W Mason
- Department of Medicine, University of Utah Medical Center, Salt Lake City (J.W.M.)
| |
Collapse
|
29
|
Puccio D, Vizzini MC, Baiamonte V, Lunetta M, Evola S, Galassi AR, Novo G. Atrial fibrillation and cognitive disorders: An overview on possible correlation. Mech Ageing Dev 2020; 191:111326. [PMID: 32768444 DOI: 10.1016/j.mad.2020.111326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Atrial Fibrillation is the most common cardiac arrhythmia affecting people of all ages, principally the elderly. Cognitive decline and dementia are also prevalent diseases in elderly. The scientific community always showed interest in the possible association between these two pathological entities, both implicating social and economic burden. This has been confirmed by several longitudinal population-based studies. Some studies also revealed that the association between atrial fibrillation and dementia may be not related to history of stroke. Therefore, other pathophysiological mechanisms are likely implicated, so far unclear or undefined. The aim of the present review is to analyse the possible mechanisms underlying the frequent association between atrial fibrillation and cognitive impairment.
Collapse
Affiliation(s)
- Danilo Puccio
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy.
| | - M Chiara Vizzini
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | | | - Monica Lunetta
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy
| | - Salvatore Evola
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy
| | - Alfredo Ruggero Galassi
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppina Novo
- Cardiology Unit, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Abstract
Atrial fibrillation (AF), the most common progressive and age-related cardiac arrhythmia, affects millions of people worldwide. AF is associated with common risk factors, including hypertension, diabetes mellitus, and obesity, and serious complications such as stroke and heart failure. Notably, AF is progressive in nature, and because current treatment options are mainly symptomatic, they have only a moderate effect on prevention of arrhythmia progression. Hereto, there is an urgent unmet need to develop mechanistic treatments directed at root causes of AF. Recent research findings indicate a key role for inflammasomes and derailed proteostasis as root causes of AF. Here, we elaborate on the molecular mechanisms of these 2 emerging key pathways driving the pathogenesis of AF. First the role of NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome on AF pathogenesis and cardiomyocyte remodeling is discussed. Then we highlight pathways of proteostasis derailment, including exhaustion of cardioprotective heat shock proteins, disruption of cytoskeletal proteins via histone deacetylases, and the recently discovered DNA damage-induced nicotinamide adenine dinucleotide+ depletion to underlie AF. Moreover, potential interactions between the inflammasomes and proteostasis pathways are discussed and possible therapeutic targets within these pathways indicated.
Collapse
Affiliation(s)
- Na Li
- From the Department of Medicine (Cardiovascular Research) (N.L.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (N.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (N.L.), Baylor College of Medicine, Houston, TX
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, the Netherlands (B.J.J.M.B.)
| |
Collapse
|
31
|
Glikson M, Wolff R, Hindricks G, Mandrola J, Camm AJ, Lip GYH, Fauchier L, Betts TR, Lewalter T, Saw J, Tzikas A, Sternik L, Nietlispach F, Berti S, Sievert H, Bertog S, Meier B. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion - an update. EUROINTERVENTION 2020; 15:1133-1180. [PMID: 31474583 DOI: 10.4244/eijy19m08_01] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Glikson
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou X, Dudley SC. Evidence for Inflammation as a Driver of Atrial Fibrillation. Front Cardiovasc Med 2020; 7:62. [PMID: 32411723 PMCID: PMC7201086 DOI: 10.3389/fcvm.2020.00062] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common types of arrhythmias and increases cardiovascular morbidity and mortality. Current therapeutic approaches to AF that focus on rhythm control have high recurrence rates and no life prolongation value. While possible explanations include toxicity of current therapies, another likely explanation may be that current therapies do not address fundamental mechanisms of AF initiation and maintenance. Inflammation has been shown to affect signaling pathways that lead to the development of AF. This paper reviews the roles of inflammation in the occurrence, development, and mechanisms of AF and reviews the therapeutic implications of the correlation of inflammation and AF.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN, United States
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
33
|
Glikson M, Wolff R, Hindricks G, Mandrola J, Camm AJ, Lip GYH, Fauchier L, Betts TR, Lewalter T, Saw J, Tzikas A, Sternik L, Nietlispach F, Berti S, Sievert H, Bertog S, Meier B, Lenarczyk R, Nielsen-Kudsk JE, Tilz R, Kalarus Z, Boveda S, Deneke T, Heinzel FR, Landmesser U, Hildick-Smith D. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update. Europace 2019; 22:184. [DOI: 10.1093/europace/euz258] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael Glikson
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rafael Wolff
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Gerhard Hindricks
- Heartcenter Leipzig at Leipzig University and Leipzig Heart Institute, Department of Electrophysiology, Leipzig, Germany
| | | | - A John Camm
- Cardiology Clinical Academic Group Molecular & Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Laurent Fauchier
- Centre Hospitalier Universitaire Trousseau et Université François Rabelais, Tours, France
| | - Tim R Betts
- Oxford University Hospitals NHS Foundation Trust, Oxford Biomedical Research Centre, Department of Cardiology, Oxford, United Kingdom
| | - Thorsten Lewalter
- Dept. of Cardiology and Intensive Care, Hospital for Internal Medicine Munich South, Munich, Germany
- Dept. of Cardiology, University of Bonn, Bonn, Germany
| | - Jacqueline Saw
- Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Apostolos Tzikas
- Structural & Congenital Heart Disease, AHEPA University Hospital & Interbalkan European Medical Center, Thessaloniki, Greece
| | - Leonid Sternik
- Cardiac Surgery, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabian Nietlispach
- Cardiovascular Center Zurich, Hirslanden Klinik im Park, Zurich, Switzerland
| | - Sergio Berti
- Heart Hospital-Fondazione C.N.R. Reg. Toscana G. Monasterio, Cardiology Department, Massa, Italy
| | - Horst Sievert
- CardioVascular Center CVC, Cardiology and Angiology, Frankfurt, Germany
- Anglia Ruskin University, Chelmsford, United Kingdom
- University of California San Francisco, San Francisco, CA, USA
- Yunnan Hospital Fuwai, Kunming, China
| | - Stefan Bertog
- CardioVascular Center CVC, Cardiology and Angiology, Frankfurt, Germany
| | - Bernhard Meier
- Cardiology, Cardiovascular Department, University Hospital Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lakin R, Polidovitch N, Yang S, Guzman C, Gao X, Wauchop M, Burns J, Izaddoustdar F, Backx PH. Inhibition of soluble TNFα prevents adverse atrial remodeling and atrial arrhythmia susceptibility induced in mice by endurance exercise. J Mol Cell Cardiol 2019; 129:165-173. [DOI: 10.1016/j.yjmcc.2019.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
35
|
Bertog S, Sievert H. Left atrial appendage closure: prevalence and risk of device-associated thrombus formation. Cardiovasc Diagn Ther 2019; 9:104-109. [PMID: 30881888 DOI: 10.21037/cdt.2018.10.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Bertog
- CardioVascular Center Frankfurt, Frankfurt, Germany.,Minneapolis Veterans Affairs Medical Center, Minneapolis, USA
| | | |
Collapse
|
36
|
Vyas V, Lambiase P. Obesity and Atrial Fibrillation: Epidemiology, Pathophysiology and Novel Therapeutic Opportunities. Arrhythm Electrophysiol Rev 2019; 8:28-36. [PMID: 30918664 PMCID: PMC6434511 DOI: 10.15420/aer.2018.76.2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is already a major global public health issue, implicated in a vast array of conditions affecting multiple body systems. It is now also firmly established as an independent risk factor in the incidence and progression of AF. The rapidly rising morbidity, mortality and healthcare costs associated with AF despite implementation of the three pillars of AF management — anticoagulation, rate control and rhythm control — suggest other strategies need to be considered. Compelling data has unveiled novel insights into adipose tissue biology and its effect on arrhythmogenesis while secondary prevention strategies targeting obesity as part of a comprehensive risk factor management programme have been demonstrated to be highly effective. Here, the authors review the epidemiological basis of the obesity—AF relationship, consider its underlying pathophysiology and discuss new therapeutic opportunities on the horizon.
Collapse
Affiliation(s)
- Vishal Vyas
- Barts and The London School of Medicine and Dentistry London, UK.,Queen Mary University of London London, UK.,Barts Heart Centre, St Bartholomew's Hospital London, UK
| | - Pier Lambiase
- Barts Heart Centre, St Bartholomew's Hospital London, UK.,Institute of Cardiovascular Science, University College London London, UK
| |
Collapse
|
37
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
38
|
Zacharia E, Papageorgiou N, Ioannou A, Siasos G, Papaioannou S, Vavuranakis M, Latsios G, Vlachopoulos C, Toutouzas K, Deftereos S, Providência R, Tousoulis D. Inflammatory Biomarkers in Atrial Fibrillation. Curr Med Chem 2019; 26:837-854. [PMID: 28748764 DOI: 10.2174/0929867324666170727103357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
During the last few years, a significant number of studies have attempted to clarify the underlying mechanisms that lead to the presentation of atrial fibrillation (AF). Inflammation is a key component of the pathophysiological processes that lead to the development of AF; the amplification of inflammatory pathways triggers AF, and, in tandem, AF increases the inflammatory state. Indeed, the plasma levels of several inflammatory biomarkers are elevated in patients with AF. In addition, the levels of specific inflammatory biomarkers may provide information regarding to the AF duration. Several small studies have assessed the role of anti-inflammatory treatment in atrial fibrillation but the results have been contradictory. Large-scale studies are needed to evaluate the role of inflammation in AF and whether anti-inflammatory medications should be routinely administered to patients with AF.
Collapse
Affiliation(s)
- Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | | | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Spyridon Papaioannou
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | - Konstantinos Toutouzas
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Spyridon Deftereos
- Department of Cardiology, "G. Gennimatas" General Hospital of Athens, 154 Mesogion ave., 115 27, Athens, Greece
| | - Rui Providência
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
39
|
Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, Zhang X, Sun Y, He T, Han S, Chen G, Liu N, Gao Y, Hu D, Xing Y, Shang H. Anticancer Therapy-Induced Atrial Fibrillation: Electrophysiology and Related Mechanisms. Front Pharmacol 2018; 9:1058. [PMID: 30386232 PMCID: PMC6198283 DOI: 10.3389/fphar.2018.01058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Some well-established immunotherapy, radiotherapy, postoperation, anticancer drugs such as anthracyclines, antimetabolites, human epidermal growth factor receptor 2 blockers, tyrosine kinase inhibitors, alkylating agents, checkpoint inhibitors, and angiogenesis inhibitors, are significantly linked to cardiotoxicity. Cardiotoxicity is a common complication of several cancer treatments. Some studies observed complications of cardiac arrhythmia associated with the treatment of cancer, including atrial fibrillation (AF), supraventricular arrhythmias, and cardiac repolarization abnormalities. AF increases the risk of cardiovascular morbidity and mortality; it is associated with an almost doubled risk of mortality and a nearly 5-fold increase in the risk of stroke. The occurrence of AF is also usually researched in patients with advanced cancer and those undergoing active cancer treatments. During cancer treatments, the incidence rate of AF affects the prognosis of tumor treatment and challenges the treatment strategy. The present article is mainly focused on the cardiotoxicity of cancer treatments. In our review, we discuss these anticancer therapies and how they induce AF and consequently provide information on the precaution of AF during cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanwei Xing
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Scott L, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol 2018; 287:195-200. [PMID: 30316645 DOI: 10.1016/j.ijcard.2018.10.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Atrial fibrillation (AF), the most prevalent arrhythmia, is often associated with enhanced inflammatory response. Emerging evidence points to a causal role of inflammatory signaling pathways in the evolution of atrial electrical, calcium handling and structural remodeling, which create the substrate of AF development. In this review, we discuss the clinical evidence supporting the association between inflammatory indices and AF development, the molecular and cellular mechanisms of AF, which appear to involve multiple canonical inflammatory pathways, and the potential of anti-inflammatory therapeutic approaches in AF prevention/treatment.
Collapse
Affiliation(s)
- Larry Scott
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
41
|
Risks of Pneumonia in COPD Patients with New-Onset Atrial Fibrillation. J Clin Med 2018; 7:jcm7090229. [PMID: 30134632 PMCID: PMC6162855 DOI: 10.3390/jcm7090229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022] Open
Abstract
The association between Atrial Fibrillation (AF) and pneumonia remains unclear. This study aims to assess the impact of AF on high pneumonia risk group—chronic obstructive pulmonary disease (COPD)—In order to find the association between AF and the risk of pneumonia. The COPD cohort was extracted from National Health Research Institute of Taiwan. The AF cohort comprised all COPD patients with new-onset AF (International Classification of Diseases (ICD)-9 code 427.31) after COPD diagnosis. We further sampled non-AF cohort and performed 1:1 propensity score matched analysis to improve the balance of baseline characteristics between AF and non-AF cohort. The outcomes were pneumonia and pneumonia requiring mechanical ventilation (MV). From 2000–2011, a total of 6228 patients with COPD and AF, and matched 84,106 control subjects were enrolled. After propensity score matching, we identified 6219 patients, each with AF, and matched controls without AF. After propensity score matching, the AF cohorts had higher risk of mortality (adjusted hazard ratio (aHR), 1.24; 95% confidence interval (CI), 1.15–1.34), pneumonia (aHR, 1.17; 95% CI, 1.07–1.27), and pneumonia requiring MV (aHR, 1.33; 95% CI, 1.18–1.50) in comparison with the matched non-AF cohort. After adjusting for mortality from causes other than outcomes of interest as a competing risk, AF remains significantly associated with pneumonia and pneumonia requiring MV. The risks of pneumonia were higher in this population with AF than in those without AF, and the risk was still significant after the adjustment for the competing risk of all-cause mortality.
Collapse
|
42
|
CD4 +CD28 null T Lymphocytes are Associated with the Development of Atrial Fibrillation after Elective Cardiac Surgery. Sci Rep 2018; 8:9624. [PMID: 29941960 PMCID: PMC6018098 DOI: 10.1038/s41598-018-28046-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Post-operative atrial fibrillation (POAF) is postulated as a complex interaction of different pathogenic factors, suggesting inflammatory processes as a main trigger of this particular type of atrial fibrillation. Therefore, the study sought to assess the impact of cellular immunity on the development of POAF. Comparing patients developing POAF to individuals free of POAF the fraction of CD4+CD28null T Lymphocytes was significantly higher in individuals developing POAF (11.1% [POAF] vs. 1.9% [non-POAF]; p < 0.001). CD4+CD28null cells were independently associated with the development of POAF with an adjusted odds ratio per one standard deviation of 4.89 (95% CI: 2.68–8.97; p < 0.001). Compared to N-terminal Pro-Brain Natriuretic Peptide, the fraction of CD4+CD28null cells demonstrated an increased discriminatory power for the development of POAF (NRI: 87.9%, p < 0.001; IDI: 30.9%, p < 0.001). Interestingly, a pre-operative statin-therapy was associated with a lower fraction of CD4+CD28null cells (p < 0.001) and showed an inverse association with POAF (p < 0.001). CD4+CD28null cells proved to be predictive for the development of POAF after cardiac surgery. Our results potentially indicate an auto-immune impact of this preexisting, highly cytotoxic T cell subset in the pathogenesis of POAF, which might be modified via the anti-inflammatory potential of a pre-operative statin-therapy.
Collapse
|
43
|
Liu DC, Yan JJ, Wang YN, Wang ZM, Xie ZY, Ma Y, Yang Y, Yang L, Wang LS. Low-dose green tea intake reduces incidence of atrial fibrillation in a Chinese population. Oncotarget 2018; 7:85592-85602. [PMID: 27683043 PMCID: PMC5356761 DOI: 10.18632/oncotarget.12243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to assessthe association between green tea intake and incidence of atrial fibrillation (AF) in a Chinese population. A total of 801 (mean age: 62 years; 56% male) subjects were enrolled: 401 AF patients and 400 controls. All subjects completed a questionnaire and the associations between their green tea drinking habits and incidence of AF were assessed using the odds ratio (OR) and binary logistic regression. After multivariate adjustment, green tea intake presented as a protective factor against the incidence of AF (OR: 0.349, 95% CI: 0.253-0.483, P < 0.001). The green tea protection showed downward trend with increasing green tea intake (P for the trend= 0.001). Low frequency, low concentration, short-term tea consumption was classified as low-dose green tea intake. Green tea intake decreased the incidence of both paroxysmal AF (OR: 0.307, 95% CI: 0.216-0.436, P < 0.001) and persistent AF (OR: 0.355, 95% CI: 0.261-0.482, P < 0.001) and may be associated with a decreased incidence of AF. This study suggests that low-dose green tea intake strongly protects against AF.
Collapse
Affiliation(s)
- Dong-Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Jun Yan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - You-Nan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ze-Mu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Yong Xie
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Ma
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Sulzgruber P, Koller L, Winter MP, Richter B, Blum S, Korpak M, Hülsmann M, Goliasch G, Wojta J, Niessner A. The impact of CD4+CD28null T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure. Thromb Haemost 2017; 117:349-356. [DOI: 10.1160/th16-07-0531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
SummaryAtrial fibrillation (AF) represents the most common cardiac arrhythmia. Especially in patients with chronic heart failure (CHF) the development of AF represents a severe complication resulting in haemodynamic deterioration. While pro-inflammatory cytokines proved to have a pivotal role in the development and progression of both AF and CHF, less attention has been paid to the cellular immunity. Therefore we prospectively enrolled 112 patients with CHF and performed fluorescein-activated cell sorting (FACS). Patients were stratified in two subgroups according to patients presenting with AF (n=56) and patients free of AF (n=56). Comparing AF to non-AF patients we found a significantly lower fraction of regulatory T cells (p<0.001) in patients presenting with AF. However there was a higher fraction of CD4+ cells (p=0.007) and more specifically a significantly higher number of cytotoxic T cells characterised by the loss of CD28 within CD4 T cells (CD4+CD28null; p=0.035) in individuals with AF. After a mean follow-up time of 4.5 years 32 (28.6 %) patients died due to cardiovascular causes. CD4+CD28null cells were significantly associated with cardiovascular mortality in patients presenting with AF, with an adjusted HR per one standard deviation (1-SD) of 1.59 (95 % CI 1.13–2.24; p=0.008), but not in patients free of AF with an adjusted HR per 1-SD of 1.27 (95 % CI 0.86–1.87; p=0.216). We found that the fraction of CD4+CD28null cells proved to be predictive on outcome in CHF-patients presenting with AF. Our results might indicate a potential role of CD4+CD28null cells in the pathogenesis of AF which needs to be confirmed in future studies.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
45
|
Rao F, Xue YM, Wei W, Yang H, Liu FZ, Chen SX, Kuang SJ, Zhu JN, Wu SL, Deng CY. Role of tumour necrosis factor-a in the regulation of T-type calcium channel current in HL-1 cells. Clin Exp Pharmacol Physiol 2017; 43:706-11. [PMID: 27119319 DOI: 10.1111/1440-1681.12585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/05/2016] [Accepted: 04/24/2016] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates that inflammation contributes to the initiation and perpetuation of atrial fibrillation (AF). Although tumour necrosis factor (TNF)-α levels are increased in patients with AF, the role of TNF-α in the pathogenesis of AF remains unclear. Besides L-type Ca(2+) currents (IC a,L ), T-type Ca(2+) currents (IC a,T ) also plays an important role in the pathogenesis of AF. This study was designed to use the whole-cell voltage-clamp technique and biochemical assays to explore if TNF-α is involved in the pathogenesis of AF through regulating IC a,T in atrial myocytes. It was found that compared with sinus rhythm (SR) controls, T-type calcium channel (TCC) subunit mRNA levels were decreased, while TNF-α expression levels were increased, in human atrial tissue from patients with AF. In murine atrial myocyte HL-1 cells, after culturing for 24 h, 12.5, 25 and 50 ng/mL TNF-α significantly reduced the protein expression levels of the TCC α1G subunit in a concentration-dependent manner. The peak current was reduced by the application of 12.5 or 25 ng/mL TNF-α in a concentration-dependent manner (from -15.08 ± 1.11 pA/pF in controls to -11.89 ± 0.83 pA/pF and -8.54 ± 1.55 pA/pF in 12.5 or 25 ng/mL TNF-α group respectively). TNF-α application also inhibited voltage-dependent inactivation of IC a,T, shifted the inactivation curve to the left. These results suggest that TNF-α is involved in the pathogenesis of AF, probably via decreasing IC a,T current density in atrium-derived myocytes through impaired channel function and down-regulation of channel protein expression. This pathway thus represents a potential pathogenic mechanism in AF.
Collapse
Affiliation(s)
- Fang Rao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang-Zhou Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shao-Xian Chen
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shu-Lin Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
46
|
Prabhu S, Voskoboinik A, Kaye DM, Kistler PM. Atrial Fibrillation and Heart Failure - Cause or Effect? Heart Lung Circ 2017; 26:967-974. [PMID: 28684095 DOI: 10.1016/j.hlc.2017.05.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
There are emerging epidemics of atrial fibrillation (AF) and heart failure in most developed countries, with a significant health burden. Due to many shared pathophysiological mechanisms, which facilitate the maintenance of each condition, AF and heart failure co-exist in up to 30% of patients. In the circumstance where known structural causes of heart failure (such as myocardial infarction) are absent, patients presenting with both conditions present a unique challenge, particularly as the temporal relationship of each condition can often remain elusive from the clinical history. The question of whether the AF is driving, or significantly contributing to the left ventricular (LV) dysfunction, rather than merely a consequence of heart failure, has become ever more pertinent, especially as catheter ablation now offers a significant advancement over existing rhythm control strategies. This paper will review the inter-related physiological drivers of AF and heart failure before considering the implications from the outcomes of recent clinical trials in patients with AF and heart failure.
Collapse
Affiliation(s)
- Sandeep Prabhu
- The Alfred Hospital, Melbourne, Vic, Australia; Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia
| | - Aleksandr Voskoboinik
- The Alfred Hospital, Melbourne, Vic, Australia; Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia
| | - David M Kaye
- The Alfred Hospital, Melbourne, Vic, Australia; Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Peter M Kistler
- The Alfred Hospital, Melbourne, Vic, Australia; Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia.
| |
Collapse
|
47
|
Sharma R, Oni OA, Gupta K, Sharma M, Sharma R, Singh V, Parashara D, Kamalakar S, Dawn B, Chen G, Ambrose JA, Barua RS. Normalization of Testosterone Levels After Testosterone Replacement Therapy Is Associated With Decreased Incidence of Atrial Fibrillation. J Am Heart Assoc 2017; 6:JAHA.116.004880. [PMID: 28487389 PMCID: PMC5524065 DOI: 10.1161/jaha.116.004880] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Atrial fibrillation (AF) is the most common cardiac dysrhythmia associated with significant morbidity and mortality. Several small studies have reported that low serum total testosterone (TT) levels were associated with a higher incidence of AF. In contrast, it is also reported that anabolic steroid use is associated with an increase in the risk of AF. To date, no study has explored the effect of testosterone normalization on new incidence of AF after testosterone replacement therapy (TRT) in patients with low testosterone. Methods and Results Using data from the Veterans Administrations Corporate Data Warehouse, we identified a national cohort of 76 639 veterans with low TT levels and divided them into 3 groups. Group 1 had TRT resulting in normalization of TT levels (normalized TRT), group 2 had TRT without normalization of TT levels (nonnormalized TRT), and group 3 did not receive TRT (no TRT). Propensity score–weighted stabilized inverse probability of treatment weighting Cox proportional hazard methods were used for analysis of the data from these groups to determine the association between post‐TRT levels of TT and the incidence of AF. Group 1 (40 856 patients, median age 66 years) had significantly lower risk of AF than group 2 (23 939 patients, median age 65 years; hazard ratio 0.90, 95% CI 0.81–0.99, P=0.0255) and group 3 (11 853 patients, median age 67 years; hazard ratio 0.79, 95% CI 0.70–0.89, P=0.0001). There was no statistical difference between groups 2 and 3 (hazard ratio 0.89, 95% CI 0.78– 1.0009, P=0.0675) in incidence of AF. Conclusions These novel results suggest that normalization of TT levels after TRT is associated with a significant decrease in the incidence of AF.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO
| | - Olurinde A Oni
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO
| | - Kamal Gupta
- Division of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Mukut Sharma
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO
| | - Ram Sharma
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO
| | - Vikas Singh
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO
| | - Deepak Parashara
- Division of Cardiovascular Medicine, Kansas City VA Medical Center, Kansas City, MO.,Division of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Surineni Kamalakar
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO
| | - Buddhadeb Dawn
- Division of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Guoqing Chen
- Division of Health Services Research, University of Kansas Medical Center, Kansas City, KS
| | - John A Ambrose
- Division of Cardiovascular Medicine, University of California San Francisco, Fresno, CA
| | - Rajat S Barua
- Division of Cardiovascular Medicine, Kansas City VA Medical Center, Kansas City, MO .,Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO.,Division of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
48
|
Smorodinova N, Bláha M, Melenovský V, Rozsívalová K, Přidal J, Ďurišová M, Pirk J, Kautzner J, Kučera T. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One 2017; 12:e0172691. [PMID: 28225836 PMCID: PMC5321459 DOI: 10.1371/journal.pone.0172691] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia and despite obvious clinical importance remains its pathogenesis only partially explained. A relation between inflammation and AF has been suggested by findings of increased inflammatory markers in AF patients. Objective The goal of this study was to characterize morphologically and functionally CD45-positive inflammatory cell populations in atrial myocardium of patients with AF as compared to sinus rhythm (SR). Methods We examined 46 subjects (19 with AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atrial tissue were examined using immunohistochemistry. Results The number of CD3+ T-lymphocytes and CD68-KP1+ cells were elevated in the left atrial myocardium of patients with AF compared to those in SR. Immune cell infiltration of LA was related to the rhythm, but not to age, body size, LA size, mitral regurgitation grade, type of surgery, systemic markers of inflammation or presence of diabetes or hypertension. Most of CD68-KP1+ cells corresponded to dendritic cell population based on their morphology and immunoreactivity for DC-SIGN. The numbers of mast cells and CD20+ B-lymphocytes did not differ between AF and SR patients. No foci of inflammation were detected in any sample. Conclusions An immunohistochemical analysis of samples from patients undergoing open heart surgery showed moderate and site-specific increase of inflammatory cells in the atrial myocardium of patients with AF compared to those in SR, with prevailing population of monocyte-macrophage lineage. These cells and their cytokine products may play a role in atrial remodeling and AF persistence.
Collapse
Affiliation(s)
- Natalia Smorodinova
- Institute of Histology and Embryology, The First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Bláha
- Institute for Clinical and Experimental Medicine-IKEM, Department of Cardiology, Prague, Czech Republic
| | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine-IKEM, Department of Cardiology, Prague, Czech Republic
| | - Karolína Rozsívalová
- Institute of Histology and Embryology, The First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaromír Přidal
- Institute of Histology and Embryology, The First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mária Ďurišová
- Institute of Histology and Embryology, The First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Pirk
- Institute for Clinical and Experimental Medicine-IKEM, Department of Cardiovascular Surgery, Prague, Czech Republic
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine-IKEM, Department of Cardiology, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, The First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
49
|
Negreva M, Georgiev S, Prodanova K. Significant Increase in C-Reactive Protein and Serum Amyloid A in the Early Hours of Paroxysmal Atrial Fibrillation. Cardiol Res 2017; 7:1-8. [PMID: 28197262 PMCID: PMC5295528 DOI: 10.14740/cr455w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/23/2023] Open
Abstract
Background A number of data have been accumulated on inflammation in persistent and permanent atrial fibrillation (AF). Our aim was to study the process in paroxysmal AF (PAF) by measuring plasma concentrations of high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA) and fibrinogen in dynamics. Methods The markers were investigated in 51 patients (26 males and 25 females; 59.84 ± 1.60 years) at hospital admission (baseline), 24 hours and 28 days after sinus rhythm restoration. Fifty-two controls (26 males and 26 females; 59.50 ± 1.46 years) were selected. Results At baseline, hs-CRP and SAA concentrations were higher in patients (8.12 ± 0.82 vs. 5.57 ± 0.21 mg/L, P = 0.003; 16.04 ± 0.93 vs. 5.12 ± 0.23 ng/mL, P < 0.001, respectively) and these changes persisted 24 hours after sinus rhythm restoration (8.16 ± 0.71 vs. 5.57 ± 0.21 mg/L, P < 0.001; 12.99 ± 0.75 vs. 5.12 ± 0.23 ng/mL, P < 0.001, respectively). On the 28th day, no significant difference was measured (5.42 ± 0.29 vs. 5.57 ± 0.21 mg/L, P = 0.68; 5.89 ± 0.38 vs. 5.12 ± 0.23 ng/mL, P = 0.08, respectively). At any measurement, fibrinogen levels did not differ between patients and controls (3.30 ± 0.17 vs. 3.22 ± 0.11 g/L, P = 0.70; 3.32 ± 0.11 vs. 3.22 ± 0.11 g/L, P = 0.52; 3.24 ± 0.13 vs. 3.22 ± 0.11 g/L, P = 0.90, respectively). Conclusion PAF is associated with dynamics in hs-CRP and SAA plasma levels. The results suggest that inflammation is closely related to the arrhythmia initiation.
Collapse
Affiliation(s)
- Mariya Negreva
- First Clinic of Cardiology, Varna University Hospital "St. Marina", Bulgaria
| | - Svetoslav Georgiev
- Second Clinic of Cardiology, Varna University Hospital "St. Marina", Varna, Bulgaria
| | - Krasimira Prodanova
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, bul. Kl. Ohridski 8, Sofia, Bulgaria
| |
Collapse
|
50
|
Lancefield TF, Patel SK, Freeman M, Velkoska E, Wai B, Srivastava PM, Horrigan M, Farouque O, Burrell LM. The Receptor for Advanced Glycation End Products (RAGE) Is Associated with Persistent Atrial Fibrillation. PLoS One 2016; 11:e0161715. [PMID: 27627677 PMCID: PMC5023161 DOI: 10.1371/journal.pone.0161715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Objective Upregulation of the receptor for advanced glycation end products (RAGE) has been proposed as a pathophysiological mechanism underlying the development of atrial fibrillation (AF). We sought to investigate if soluble RAGE levels are associated with AF in Caucasian patients. Methods Patients (n = 587) were prospectively recruited and serum levels of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) measured. The patients included 527 with sinus rhythm, 32 with persistent AF (duration >7 days, n = 32) and 28 with paroxysmal AF (duration <7 days, n = 28). Results Patients with AF were older and had a greater prevalence of heart failure than patients in sinus rhythm. Circulating RAGE levels were higher in patients with persistent AF [median sRAGE 1190 (724–2041) pg/ml and median esRAGE 452 (288–932) pg/ml] compared with paroxysmal AF [sRAGE 799 (583–1033) pg/ml and esRAGE 279 (201–433) pg/ml, p ≤ 0.01] or sinus rhythm [sRAGE 782 (576–1039) pg/ml and esRAGE 289 (192–412) pg/ml, p < 0.001]. In multivariable logistic regression analysis, independent predictors of persistent AF were age, heart failure, sRAGE [odds ratio 1.1 per 100 pg/ml, 95% confidence interval (CI) 1.0–1.1, p = 0.001] and esRAGE [odds ratio 1.3 per 100 pg/ml, 95% CI 1.1–1.4, p < 0.001]. Heart failure and age were the only independent predictors of paroxysmal AF. In AF patients, sRAGE [odds ratio 1.1 per 100 pg/ml, 95% CI 1.1–1.2, p = 0.007] and esRAGE [odds ratio 1.3 per 100 pg/ml, 95% CI 1.0–1.5, p = 0.017] independently predicted persistent compared with paroxysmal AF. Conclusions Soluble RAGE is elevated in Caucasian patients with AF, and both sRAGE and esRAGE predict the presence of persistent AF.
Collapse
Affiliation(s)
- Terase F. Lancefield
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
- * E-mail:
| | - Sheila K. Patel
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Melanie Freeman
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Box Hill Hospital, Box Hill, Victoria, Australia
| | - Elena Velkoska
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Bryan Wai
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Piyush M. Srivastava
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Mark Horrigan
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Omar Farouque
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|