1
|
Zhang R, Li N, Fan Y, Qing D, Zhao S, Ren X, Wang A, Gao Z, Fan Y. A multi-omics study reveals molecular characteristics and therapeutic targets of salidroside in reducing TGF-β2-induced ECM expression. Exp Eye Res 2025; 256:110386. [PMID: 40216062 DOI: 10.1016/j.exer.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, driven by elevated intraocular pressure (IOP) due to trabecular meshwork (TM) fibrosis, extracellular matrix (ECM) accumulation, and increased aqueous humor outflow resistance. Transforming growth factor-beta 2 (TGF-β2) promotes the expression of fibrosis-related genes, exacerbating these effects. Salidroside, a bioactive compound, has been shown to inhibit TGF-β2-induced ECM expression and alleviate ocular hypertension. However, its underlying molecular mechanisms remain unclear. This study explores the transcriptional, proteomic, and metabolic changes in human TM cells treated with TGF-β2 and salidroside. Human TM cells were treated with TGF-β2 (5 ng/mL) for 48 h, followed by salidroside (30 μM) for 24 h. Multi-omics analyses, including transcriptomics, label-free proteomics, and non-targeted metabolomics, were performed to identify differentially expressed genes (DEGs), proteins (DEPs), and metabolites. The results revealed that TGF-β2 inhibited HTM cell metabolism, affecting pathways like the TCA cycle. Salidroside restores balance by regulating 15 key biomolecules, including MELTF and SLC25A10, through dual-level and post-translation mechanisms. ROC and docking analyses highlight salidroside's role in enhancing metabolic transport and energy activity, with SLC25A10 also linked to RNA processing, showcasing its therapeutic potential. These findings provide valuable insights into POAG pathogenesis and the therapeutic potential of salidroside, offering a foundation for the future development of novel treatment strategies targeting transcriptional, translational, and metabolic dysregulation in POAG.
Collapse
Affiliation(s)
- Rong Zhang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ning Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yuanfu Fan
- Department of Ophthalmology, Huaiyuan Hospital of Traditional Chinese Medicine, Huaiyuan, Anhui, China
| | - Dai Qing
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Sijie Zhao
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaohui Ren
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aiqin Wang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ziqing Gao
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Yuchen Fan
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
2
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
3
|
Kanbay M, Guldan M, Ozbek L, Copur S, Mallamaci F, Zoccali C. Unveiling the intricacies of chronic kidney disease: From ocular manifestations to therapeutic frontiers. Eur J Clin Invest 2025; 55:e14324. [PMID: 39327839 DOI: 10.1111/eci.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Shared anatomical, histological and physiological pathways between the kidney and the eye are well documented, demonstrating that ocular manifestations serve as valuable prognostic indicators in chronic kidney disease (CKD), providing insights into disease severity and progression. Through non-invasive imaging modalities such as retinal fundus photography, early retinal microvascular alterations indicative of CKD progression can be detected, enabling timely intervention and risk stratification. However, the conclusions drawn from the review primarily demonstrate a strong or independent association between glaucoma or retinopathy and CKD. RESULTS AND CONCLUSION Multiple shared pathophysiological events have been implicated in the pathogenesis in the alterations at eye and kidney including renin-angiotensin-aldosterone system. Patients with CKD are more likely to experience glaucoma, age-related macular degeneration, cataracts, uremic optic neuropathy and retinopathy. To establish the role of ocular manifestations in predicting CKD progression, it is crucial to address the limitations of correlation and explore the underlying causality with further research on common disease pathogenesis. Additionally, specific methods for risk stratification based on retinal changes, the effectiveness of timely interventions, and the development of predictive tools combining ocular and renal data are of utmost importance research topics to enlighten the bidirectional causality.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Division of Internal Medicine, Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
4
|
Langer F, Binter M, Hu X, Hufendiek K, Meister R, Tode J, Framme C, Fuchs H. In vitro comparison of human and murine trabecular meshwork cells: implications for glaucoma research. Sci Rep 2024; 14:22002. [PMID: 39313534 PMCID: PMC11420201 DOI: 10.1038/s41598-024-73057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The trabecular meshwork (TM) is crucial for regulating intraocular pressure (IOP), and its dysfunction significantly contributes to glaucoma, a leading cause of vision loss and blindness worldwide. Although rodents are commonly used as animal models in glaucoma research, the applicability of these findings to humans is limited due to the insufficient understanding of murine TM. This study aimed to compare primary human TM (hTM) and murine TM (mTM) cells in vitro to enhance the robustness and translatability of murine glaucoma models. In this in vitro study, we compared primary hTM and mTM cells under simulated physiological and pathological conditions by exposing both cell types to the glucocorticoid dexamethasone (DEX) and Transforming Growth Factor β (TGFB2), both of which are critical in the pathogenesis of several ophthalmological diseases, including glaucoma. Phagocytic properties were assessed using microbeads. Cells were analyzed through immunocytochemistry (ICC) and Western blot (WB) to evaluate the expression of extracellular matrix (ECM) components, such as Fibronectin 1 (FN1) and Collagen IV (COL IV). Filamentous-Actin (F-Act) staining was used to analyze cross-linked actin network (CLAN) formation. Additionally, we evaluated cytoskeletal components, including Vimentin (VIM), Myocilin (MYOC), and Actin-alpha-2 (ACTA2). Our results demonstrated significant similarities between human and murine TM cells in basic morphology, phagocytic properties, and ECM and cytoskeletal component expression under both homeostatic and pathological conditions in vitro. Both human and murine TM cells exhibited epithelial-to-mesenchymal transition (EMT) after exposure to DEX or TGFB2, with comparable CLAN formation observed in both species. However, there were significant differences in FN1 and MYOC induction between human and murine TM cells. Additionally, MYOC expression in hTM cells depended on fibronectin coating. Our study suggests that murine glaucoma models are potentially translatable to human TM. The observed similarities in ECM and cytoskeletal component expression and the comparable EMT response and CLAN formation support the utility of murine models in glaucoma research. The differences in FN1 and MYOC expression between hTM and mTM warrant further investigation due to their potential impact on TM properties. Overall, this study provides valuable insights into the species-specific characteristics of TM and highlights opportunities to refine murine models for better relevance to human glaucoma.
Collapse
Affiliation(s)
- Fridolin Langer
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Maximilian Binter
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Xiaonan Hu
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Roland Meister
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Jan Tode
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Carsten Framme
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Heiko Fuchs
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
6
|
Capasso C, Supuran CT. Biomedical applications of prokaryotic carbonic anhydrases: an update. Expert Opin Ther Pat 2024; 34:351-363. [PMID: 38840307 DOI: 10.1080/13543776.2024.2365407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION This review offers an updated perspective on the biomedical applications of prokaryotic carbonic anhydrases (CAs), emphasizing their potential as targets for drug development against antibiotic-resistant bacterial infections. A systematic review of literature from PubMed, Web of Science, and Google Scholar has been conducted to provide a comprehensive analysis. AREA COVERED It delves into the pivotal roles of prokaryotic CAs in bacterial metabolism and their distinctions from mammalian CAs. The review explores the diversity of CA classes in bacteria, discusses selective inhibitors targeting bacterial CAs, and explores their potential applications in biomedical research. Furthermore, it analyzes clinical trials investigating the efficacy of carbonic anhydrase inhibitors (CAIs) and patented approaches for developing antibacterial CAIs, highlighting their translational potential in creating innovative antibacterial agents. EXPERT OPINION Recent years have witnessed increased recognition of CA inhibition as a promising strategy against bacterial infections. Challenges persist in achieving selectivity over human isoforms and optimizing therapeutic efficacy. Structural biology techniques provide insights into unique active site architectures, guiding selective inhibitor design. The review underscores the importance of interdisciplinary collaborations, innovative drug delivery systems, and advanced drug discovery approaches in unlocking the full therapeutic potential of prokaryotic CA inhibitors. It emphasizes the significance of these efforts in addressing antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Liu M, Honjo M, Yamagishi R, Aihara M. Effects of Brimonidine, Omidenepag Isopropyl, and Ripasudil Ophthalmic Solutions to Protect against H 2O 2-Induced Oxidative Stress in Human Trabecular Meshwork Cells. Curr Eye Res 2023; 48:1014-1025. [PMID: 37466387 DOI: 10.1080/02713683.2023.2235892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE We investigated whether hydrogen peroxide (H2O2)-induced oxidative stress causes human trabecular meshwork (HTM) cell dysfunction observed in open angle glaucoma (OAG) in vitro, and the effects of topical glaucoma medications on oxidative stress in HTM cells. METHODS We used commercially available ophthalmic solutions of brimonidine, omidenepag isopropyl, and ripasudil in the study. HTM cells were exposed to H2O2 for 1 h, with or without glaucoma medications. We assessed cell viability and senescence via WST-1 and senescence-associated-β-galactosidase (SA-β-Gal) activity assays. After exposure to H2O2 and glaucoma medications, we evaluated changes in markers of fibrosis and stress by using real-time quantitative polymerase chain reaction (qPCR) to measure the mRNA levels of collagen type I alpha 1 chain (COL1A1), fibronectin, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), endoplasmic reticulum stress markers of C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and splicing X-box binding protein-1 (sXBP-1). RESULTS HTM cell viability decreased and SA-β-Gal activity increased significantly after exposure to H2O2. Treatment with three ophthalmic solutions attenuated these changes. Real-time qPCR revealed that H2O2 upregulated the mRNA levels of COL1A1, fibronectin, α-SMA, CHOP, GRP78, and sXBP-1, whereas it downregulated MMP-2 mRNA expression significantly. Brimonidine suppressed the upregulation of stress markers CHOP and GRP78. Additionally, omidenepag isopropyl and ripasudil decreased the upregulation of COL1A1 and sXBP-1. Furthermore, ripasudil significantly suppressed fibrotic markers fibronectin and α-SMA, compared with the other two medications. CONCLUSION In vitro, H2O2 treatment of HTM cells induced characteristic changes of OAG, such as fibrosis changes and the upregulation of stress markers. These glaucomatous changes were attenuated by additional treatments with brimonidine, omidenepag isopropyl, and ripasudil ophthalmic solutions.
Collapse
Affiliation(s)
- Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Ruiz-Lozano RE, Azar NS, Mousa HM, Quiroga-Garza ME, Komai S, Wheelock-Gutierrez L, Cartes C, Perez VL. Ocular surface disease: a known yet overlooked side effect of topical glaucoma therapy. FRONTIERS IN TOXICOLOGY 2023; 5:1067942. [PMID: 37547228 PMCID: PMC10403269 DOI: 10.3389/ftox.2023.1067942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Ocular surface disease (OSD), a disorder affecting the lacrimal and meibomian glands and the corneal and conjunctival epithelium, is a well-known complication of topical glaucoma therapy. OSD can present as a new or pre-existing condition that virtually any anti-glaucoma formulation can exacerbate. As such, both glaucoma and OSD frequently coexist. Typical OSD symptoms include ocular discomfort, redness, burning, and dryness, whereas signs include periorbital and eyelid skin pigmentation, conjunctival scarring, and superficial punctate keratitis. Pressure-lowering eyedrops can cause toxic, allergic, and inflammatory reactions on the ocular surface. The latter can result from either preservatives or direct toxicity from the active molecule. Although usually mild, OSD can cause significant symptoms that lead to poor quality of life, decreased compliance to therapy, glaucoma progression, and worse visual outcomes. Given the chronic nature of glaucoma, lack of curative therapy, and subsequent lifelong treatment, addressing OSD is necessary. This manuscript aims to provide an up-to-date overview of OSD's signs, symptoms, and pathogenic mechanisms from glaucoma therapy toxicity.
Collapse
Affiliation(s)
- Raul E. Ruiz-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Monterrey, Mexico
| | - Nadim S. Azar
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Hazem M. Mousa
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Manuel E. Quiroga-Garza
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | - Seitaro Komai
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| | | | - Cristian Cartes
- Unidad Oftalmología, Departamento de Especialidades, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Victor L. Perez
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Agarwal R, Iezhitsa I. Advances in targeting the extracellular matrix for glaucoma therapy: current updates. Expert Opin Ther Targets 2023; 27:1217-1229. [PMID: 38069479 DOI: 10.1080/14728222.2023.2293748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Selective laser trabeculoplasty is safe and effective in patients previously treated with prostaglandin analogs: An evidence-based review. Int Ophthalmol 2023; 43:677-695. [PMID: 35962295 DOI: 10.1007/s10792-022-02460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Prostaglandin analogs (PGAs) are first-line treatments for ocular hypertension (OHT) and open-angle glaucoma (OAG). However, frequent side effects and high costs hinder patient's compliance resulting in disease progression. Evidence suggests selective laser trabeculoplasty (SLT) may be considered a first-line treatment for OHT and OAG due to its safety profile, minor side effects, and reduced costs. Considering that PGAs and SLT share action mechanisms, it is hypothesized that previous PGA therapy may affect subsequent SLT efficacy. Therefore, we analyzed if PGAs reduce SLT efficacy. METHODS An evidence-based review was performed to assess the safety and efficacy of SLT in patients previously treated with PGAs. For this purpose, we performed an extensive literature search using the National Library of Medicine's PubMed and Google Scholar database for all English language articles published until May 2021. RESULTS There is evidence of non-superiority of PGAs therapy versus SLT for OHT and OAG. A multicenter, randomized, observer-masked clinical trial (RCT) of untreated OHT and OAG patients concluded that SLT should be offered as the first-line treatment for these patients. This study was supported by a meta-analysis of RCTs, comparing SLT efficacy versus antiglaucoma drugs only, with the advantage of an SLT lower rate of adverse effects. CONCLUSIONS Cost-effectiveness, patient compliance, and antiglaucoma drugs' side effects, including higher surgical failure, favor consideration of SLT as first-line therapy for OAG and OHT. Furthermore, SLT efficacy does not seem to be affected by prior PGA administration; however, larger cohort, comparative, multicenter RCTs are necessary to answer this question.
Collapse
|
11
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
12
|
Wang L, Tian Y, Cao Y, Ma Q, Zhao S. PBX1 attenuates H 2O 2-induced oxidant stress in human trabecular meshwork cells via promoting NANOG-mediated PI3K/AKT signaling pathway. Cell Stress Chaperones 2022; 27:673-684. [PMID: 36253638 PMCID: PMC9672266 DOI: 10.1007/s12192-022-01304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress-induced excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) tissue is considered the major pathological procedure of glaucoma. This study aimed to explore the role and regulatory mechanism of pre-B-cell leukemia transcription factor 1 (PBX1) in H2O2-induced human trabecular meshwork cells (HTMCs). Expressions of PBX1, NANOG, ECM, and pathway-related factors were detected by qRT-PCR and western blot. Cell viability and apoptosis of HTMCs were measured using CCK-8 and flow cytometry assays. Reactive oxygen species (ROS), superoxide dismutase (SOD), and L-glutathione (GSH) levels were detected to evaluate oxidative stress. Through luciferase reporter assay, the association between PBX1 and NANOG was verified. Results presented that PBX1 was significantly upregulated in H2O2-induced HTMCs. Functionally, PBX1 and NANOG promoted cell viability, inhibited cell apoptosis and ECM deposition, suppressed ROS accumulation, and enhanced the productions of SOD and GSH in H2O2-stimulated HTMCs, while PBX1 inhibition showed the opposite effects. In addition, PBX1 promoted the transcription of NANOG by upregulating the promoter activity of NANOG which activated the PI3K-AKT signaling pathway. What's more, the inhibitions of PI3K-AKT signaling pathway or NANOG reversed the protective effect of PBX1 on H2O2-stimulated HTMCs. In summary, our study firstly revealed that PBX1 attenuated the oxidative damage in HTMCs via regulating NANOG-mediated PI3K/AKT signaling, suggesting that PBX1 might be a potential treatment target for glaucoma patients.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Ying Tian
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Yan Cao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Qiang Ma
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China
| | - Shuai Zhao
- Department of Ophthalmology, Xi'an No. 1 Hospital, No. 30 Powder Lane South Street, Xi'an, 710002, China.
| |
Collapse
|
13
|
Morelli-Batters A, Lamont HC, Elghobashy M, Masood I, Hill LJ. The role of Vitamin D3 in ocular fibrosis and its therapeutic potential for the glaucomatous trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2022; 2:897118. [PMID: 38983544 PMCID: PMC11182265 DOI: 10.3389/fopht.2022.897118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The most prevalent subtype, Primary Open Angle Glaucoma (POAG), is characterized by increased intraocular pressure (IOP), damage to the optic nerve head and irreversible visual loss. IOP increases aqueous humor (AqH) outflow is reduced through the trabecular meshwork (TM) and Schlemm's canal (SC). Increased outflow resistance is partly due to TM/SC dysregulation, including loss of normal trabecular meshwork cell (TMC) function, following increased levels of oxidative stress within TMC, dysregulated extracellular matrix (ECM) deposition and remodeling alongside alterations in TMC phenotype and apoptosis. Current widely available POAG treatments do not target the aberrant expression of ECM in the TM directly. As a result, most drug treatments can fail as the underlying pathological process continues unabated. Rho-kinase inhibitors have demonstrated the benefit of restoring TM/SC function, however there is a clear need to develop further treatment strategies that can target the underlying cellular processes which become dysregulated within the TMC during POAG pathogenesis. Vitamin D is suggested to be beneficial in alleviating the symptoms of fibrosis and inflammation in soft tissues. It has important functions in many major organ systems, including regulation of calcium, phosphate and parathyroid hormone. Evidence suggests that Vitamin D3 modulates ECM turnover through the conventional TGFβ-SMAD signaling, which is associated with the development of POAG. The link between Vitamin D3, inflammation and fibrosis within ocular tissues will be discussed and the potential roles of Vitamin D3 in the management of POAG patients will be explored within this review.
Collapse
Affiliation(s)
- Alexander Morelli-Batters
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah C Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Birmingham, United Kingdom
| | - Mirna Elghobashy
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Association between chronic kidney disease and open-angle glaucoma in South Korea: a 12-year nationwide retrospective cohort study. Sci Rep 2022; 12:3423. [PMID: 35232992 PMCID: PMC8888748 DOI: 10.1038/s41598-022-07190-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/19/2022] [Indexed: 02/02/2023] Open
Abstract
Various non-intraocular pressure factors have been identified as possible risk factors for open-angle glaucoma (OAG). However, there is still controversy around the association between OAG and chronic kidney disease (CKD). In this study, we used a nationwide cohort to investigate the risk of OAG in the 12 years following a diagnosis of CKD. This retrospective cohort study included 1,103,302 subjects from the Korean National Health Insurance Service National Sample Cohort database. The CKD group (n = 1318) included patients who were initially diagnosed with CKD between 2003 and 2008. The subjects in the comparison group were matched at a 1:5 ratio using propensity scores. In multivariate Cox regression analysis, a diagnosis of CKD was significantly associated with an increased incidence of OAG (hazard ratio [HR] = 1.546, 95% confidence interval [CI] 1.363–1.754, p < 0.001). Further analysis revealed that the risk of OAG increased with the severity of CKD (mild to moderate CKD [CKD stage 1–3]: HR = 1.280, 95% CI 1.077–1.521, p = 0.005; advanced CKD [CKD stage 4–5]: HR = 1.861, 95% CI 1.589–2.180, p < 0.001). In subgroup analysis, female CKD patients had a greater risk of developing OAG than males, and subjects with CKD aged ≥ 40 years were more likely to develop OAG compared with those aged < 40 years. Our study demonstrates that CKD is a significant risk factor for OAG and that severe CKD is associated with an increased risk of developing OAG.
Collapse
|
15
|
miR-486-5p Restrains Extracellular Matrix Production and Oxidative Damage in Human Trabecular Meshwork Cells by Targeting TGF-β/SMAD2 Pathway. J Ophthalmol 2022; 2022:3584192. [PMID: 35251709 PMCID: PMC8890899 DOI: 10.1155/2022/3584192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glaucoma is characterized by elevated intraocular pressure caused by aqueous outflow dysfunction. Trabecular meshwork plays a key role in controlling intraocular pressure by modulating aqueous outflow. This study investigated the protective effects of miR-486-5p in H2O2-stimulated human trabecular meshwork cells (TMCs). Methods TMCs were disposed with 300 μM H2O2 to establish oxidative damage models in vitro. miR-486-5p mimics and its controls were transfected into TMCs, and cell apoptosis and extracellular matrix production (ECM) genes were measured by flow cytometry, western blotting, and immunofluorescence staining. Activities of superoxide dismutase (SOD) and malondialdehyde (MDA) were also assayed. Online tools and luciferase reporter assays were used to uncover the relationship between miR-486-5p and the TGF-β/SMAD2 pathway. Results We found that H2O2-induced oxidative damage in TMCs and miR-486-5p was downregulated in H2O2-stimulated TMCs. Overexpression of miR-486-5p mitigated H2O2-induced oxidative damage by inhibiting apoptosis, reducing cleaved caspase-3/9 expression, reducing MDA levels, and increasing SOD levels as well as downregulating ECM genes. SMAD2 was demonstrated to be targeted by miR-486-5p, and miR-486-5p inhibited TGF-β/SMAD2 signaling in H2O2-stimulated TMCs. Additionally, SMAD2 was upregulated by H2O2, and SMAD2 upregulation abrogated the protective effects of miR-486-5p against H2O2-induced injury. Conclusion miR-486-5p restrains H2O2-induced oxidative damage in TMCs by targeting the TGF-β/SMAD2 pathway.
Collapse
|
16
|
Pumphrey SA, Zitek-Morrison E, Pizzirani S, Meola DM. Evaluation of matrix metalloproteinases and tissue inhibitors of metalloproteinases in aqueous humor of dogs with versus without naturally occurring primary angle-closure glaucoma. Am J Vet Res 2021; 83:245-255. [PMID: 34936570 DOI: 10.2460/ajvr.21.04.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare concentrations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in aqueous humor from ophthalmologically normal dogs and dogs with naturally occurring primary angle-closure glaucoma (cPACG). SAMPLE Aqueous humor samples from 12 eyes with cPACG and 18 ophthalmologically normal eyes of dogs. PROCEDURES A multiplex fluorescence-based ELISA was used to measure concentrations of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1, TIMP-2, and TIMP-4. Results for eyes with versus without cPACG were compared. RESULTS Significantly higher mean concentrations of MMP-1 (45% higher), MMP-2 (55% higher), MMP-3 (39% higher), MMP-8 (79% higher), MMP-9 (29% higher), MMP-10 (60% higher), TIMP-1 (63% higher), and TIMP-2 (136% higher) were detected in aqueous humor from eyes with cPACG, compared with ophthalmologically normal eyes. CLINICAL RELEVANCE MMPs and TIMPs have pivotal roles in extracellular matrix turnover and homeostasis in the outflow pathways of the eye. Results of the present study documented higher concentrations of MMPs and TIMPs in aqueous humor samples from dog eyes with late-stage cPACG. Although, to our knowledge, TIMPs have not previously been evaluated in the context of cPACG, the markedly higher concentration of TIMPs in eyes with cPACG suggested that inhibition of proteolysis and extracellular matrix turnover might be a factor in the development of glaucoma in susceptible individuals. However, because the present study used samples from dogs with late-stage cPACG, further work is required to characterize the temporal relationship between MMP and TIMP concentration changes and onset or progression of disease.
Collapse
Affiliation(s)
- Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Emily Zitek-Morrison
- Department of Population and Quantitative Health Sciences, UMass Chan Medical School, University of Massachusetts, Worcester, MA
| | - Stefano Pizzirani
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Dawn M Meola
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| |
Collapse
|
17
|
Long Non-coding RNA GAS5 Knockdown Attenuates H 2O 2-Induced Human Trabecular Meshwork Cell Apoptosis and Promotes Extracellular Matrix Deposition by Suppressing miR-29b-3p and Upregulating STAT3. J Mol Neurosci 2021; 72:516-526. [PMID: 34657232 DOI: 10.1007/s12031-021-01926-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The long non-coding RNA GAS5 (GAS5) is reportedly implicated in glaucoma. However, its significance in human trabecular meshwork cells (HTMCs) remains largely unclear. Here, we investigated the effect of GAS5 on the function of HTMCs and its interaction with miR-29b-3p in HTMCs. We established an H2O2-induced oxidative injury model using HTMCs. RT-qPCR or western blotting was performed to examine the expression of the indicated genes. Luciferase reporter assay was used to determine the interaction between GAS5, miR-29b-3p, miR-29b-3p, and STAT3. CCK8 assay was used to assess the proliferative rate of HTMCs. Exposure to H2O2 increased the expression of Bax, cleaved caspase-3, and extracellular matrix (ECM) proteins, accompanied by reduced Bcl-2 expression. These H2O2-induced changes were effectively alleviated by GAS5 knockdown with sh-GAS5. MiR-29b-3p was directly regulated by GAS5. The effect of sh-GAS5 on ECM protein expression was also observed with the miR-29b-3p mimic. STAT3 was directly regulated by miR-29b-3p. MiR-29b-3p silencing alleviated STAT3 inhibition, followed by the restoration of cell vitality, Bax, Bcl-2, and cleaved caspase-3 expression, and ECM deposition. Our study is the first experimental investigation to shed light on a novel molecular mechanism of the GAS5/miR-29b-3p/STAT3 axis in an H2O2-induced oxidative injury model using HTMCs, which may offer a promising therapeutic approach against glaucoma.
Collapse
|
18
|
Yuzhalin AE. Parallels between the extracellular matrix roles in developmental biology and cancer biology. Semin Cell Dev Biol 2021; 128:90-102. [PMID: 34556419 DOI: 10.1016/j.semcdb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Interaction of a tumor with its microenvironment is an emerging field of investigation, and the crosstalk between cancer cells and the extracellular matrix is of particular interest, since cancer patients with abundant and stiff extracellular matrices display a poorer prognosis. At the post-juvenile stage, the extracellular matrix plays predominantly a structural role by providing support to cells and tissues; however, during development, matrix proteins exert a plethora of diverse signals to guide the movement and determine the fate of pluripotent cells. Taking a closer look at the communication between the extracellular matrix and cells of a developing body may bring new insights into cancer biology and identify cancer weaknesses. This review discusses parallels between the extracellular matrix roles during development and tumor growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y. SNHG3 cooperates with ELAVL2 to modulate cell apoptosis and extracellular matrix accumulation by stabilizing SNAI2 in human trabecular meshwork cells under oxidative stress. ENVIRONMENTAL TOXICOLOGY 2021; 36:1070-1079. [PMID: 33522089 DOI: 10.1002/tox.23106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Glaucoma is the main reason for irreversible blindness, and pathological increased intraocular pressure is the leading risk factor for glaucoma. It is reported that trabecular meshwork cell injury is closely associated with the elevated intraocular pressure. The current study aimed to investigate the role of small nucleolar RNA host gene 3 (SNHG3) in human trabecular meshwork (HTM) cells under oxidative stress. A series of experiments including real-time quantitative polymerase chain reaction, subcellular fractionation assay, western blot analysis, cell counting kit-8 assay, RNA pull down, flow cytometry analysis, and RNA immunoprecipitation assay were used to explore the biological function and regulatory mechanism of SNHG3 in HTM cells under oxidative stress. First, we observed that H2 O2 induced SNHG3 upregulation in HTM cells. Then, we found that SNHG3 silencing alleviated H2 O2 -induced oxidative damage in HTM cells. Moreover, snail family transcriptional repressor 2 (SNAI2) knockdown alleviated the oxidative damage induced by H2 O2 in HTM cells. Mechanistically, SNHG3 bound with ELAV like RNA binding protein 2 (ELAVL2) to stabilize SNAI2. Finally, SNAI2 overexpression counteracted the effect of SNHG3 silencing on H2 O2 -treated HTM cells. In conclusion, our results demonstrated that SNHG3 cooperated with ELAVL2 to modulate cell apoptosis and extracellular matrix accumulation by stabilizing SNAI2 in HTM cells under oxidative stress.
Collapse
Affiliation(s)
- Sizhen Li
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Qingsong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Zixiu Zhou
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Min Fu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Kuanxiao Hao
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Yating Liu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Wang Y, Wang W, Yang X, Chen W, Yang X, Pan X, Xu P, Zhu W, Han Y, Chen X. ITGA8 positive cells in the conventional outflow tissue exhibit Schlemm's canal endothelial cell properties. Life Sci 2021; 278:119564. [PMID: 33961857 DOI: 10.1016/j.lfs.2021.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
AIMS Elevated intraocular pressure is primarily induced by the increased resistance of conventional outflow of aqueous humor. Dysfunction of the juxtacanalicular region of trabecular meshwork (TM) and Schlemm's canal (SC) endothelium, as the main conventional outflow tissue, have been implicated as the major reasons for the increased resistance. Integrins are widespread in these tissues, especially alpha8 integrin (ITGA8). We aim to investigate the properties of cells expressing ITGA8 in the conventional outflow tissue. MAIN METHODS Fluorescence in situ hybridization (FISH) and immunofluorescence (IF) were performed to detect the mRNA and protein levels of ITGA8 in human conventional outflow tissue. ITGA8-positive cells were isolated from the cultured human TM cells through a magnetic bead-based approach. Flow Cytometry was used to determine the purification efficiency. The expressions of TM and SC biomarkers and dexamethasone-induced myocilin secretion capacity of ITGA8-positive cells was assessed by Real-time PCR, IF and Western blot. A gel contraction assay was performed to evaluate contractility of ITGA8-positive cells after endothelin 1 treatment. KEY FINDINGS ITGA8 was found with robust expression near the inner wall of SC endothelium. After purification, the proportion of ITGA8-positive cells were increased by about 10%. ITGA8-positive cells were identified with the properties as SC endothelial cells, such as more robust expressions of SC biomarkers, less dexamethasone-inducible myocilin expression, and stronger contractility. SIGNIFICANCE This study demonstrated that cells expressing ITGA8 in SC region possess more properties as SC endothelial cells. Our data implicate a crucial role of ITGA8 in aqueous humor (AH) outflow resistance regulation.
Collapse
Affiliation(s)
- Yanan Wang
- School of Basic Medicine, Qingdao University, Qingdao 266021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenyan Wang
- School of Basic Medicine, Qingdao University, Qingdao 266021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xuejiao Yang
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshi Chen
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xian Yang
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Peilong Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang, University & Capital Medical University, Beijing 100730, China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao 266021, China.
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
21
|
Wang W, Miao Y, Sui S, Wang Y, Wu S, Cao Q, Duan H, Qi X, Zhou Q, Pan X, Zhang J, Chen X, Han Y, Wang N, Kuehn MH, Zhu W. Xeno- and Feeder-Free Differentiation of Human iPSCs to Trabecular Meshwork-Like Cells by Recombinant Cytokines. Transl Vis Sci Technol 2021; 10:27. [PMID: 34015102 PMCID: PMC8142710 DOI: 10.1167/tvst.10.6.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Stem cell-based therapy has the potential to become one approach to regenerate the damaged trabecular meshwork (TM) in glaucoma. Co-culture of induced pluripotent stem cells (iPSCs) with human TM cells has been a successful approach to generate autologous TM resembling cells. However, the differentiated cells generated using this approach are still problematic for clinical usage. This study aimed to develop a clinically applicable strategy for generating TM-like cells from iPSCs. Methods Highly expressed receptors during iPSC differentiation were identified by AutoSOME, Gene Ontology, and reverse transcription polymerase chain reaction (RT-PCR) analysis. The recombinant cytokines that bind to these receptors were used to generate a new differentiation protocol. The resultant TM-like cells were characterized morphologically, immunohistochemically, and transcriptionally. Results We first determined two stages of iPSC differentiation and identified highly expressed receptors associated with the differentiation at each stage. The expression of these receptors was further confirmed by RT-PCR analysis. Exposure to the recombinant cytokines that bind to these receptors, including transforming growth factor beta 1, nerve growth factor beta, erythropoietin, prostaglandin F2 alpha, and epidermal growth factor, can efficiently differentiate iPSCs into TM-like cells, which express TM biomarkers and can form dexamethasone-inducible CLANs. Conclusions We successfully generated a xeno- and feeder-free differentiation protocol with recombinant cytokines to generate the TM progenitor and TM-like cells from human iPSCs. Translational Relevance The new approach minimizes the risks from contamination and also improves the differentiation efficiency and consistency, which are particularly crucial for clinical use of stem cells in glaucoma treatment.
Collapse
Affiliation(s)
- Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yongzhen Miao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yanan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Haoyun Duan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing, China
| |
Collapse
|
22
|
van Oterendorp C. Endocrine Dysfunction in Open Angle Glaucoma. Klin Monbl Augenheilkd 2021; 238:128-131. [PMID: 33434931 DOI: 10.1055/a-1306-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The eye, like all organs, is exposed to the effects of the body's endocrine system. In addition, however, local branches of the endocrine system control important organ-specific functions, such as the production and drainage of aqueous humour. Similarly, the eye as a sensory organ acts back on endocrine controlled functions of the body, for example the day-night rhythm. This article aims to illustrate the physiological and pathological interactions of the eye and the endocrine functions of the body in the context of glaucoma. 1. The renin-angiotensin-aldosterone system, which as a local system is involved in the control of aqueous humour production and outflow. 2. The hormone endothelin, which as a strong vasoconstrictor plays a role in the dysregulated perfusion of the optic nerve and retina, and 3. the disruption of the day-night rhythm in advanced glaucoma, which is thought to be caused by damage to light-sensitive ganglion cells.
Collapse
|
23
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Receptor-Associated Prorenin System in the Trabecular Meshwork of Patients with Primary Open-Angle Glaucoma and Neovascular Glaucoma. J Clin Med 2020; 9:jcm9082336. [PMID: 32707887 PMCID: PMC7465309 DOI: 10.3390/jcm9082336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022] Open
Abstract
The receptor-associated prorenin system (RAPS) is associated with several pathologic conditions, including diabetic retinopathy, age-related macular degeneration, and uveitis. Here, we show the involvement of RAPS in the trabecular meshwork (TM) from patients with primary open-angle glaucoma (POAG) and neovascular glaucoma (NVG) due to proliferative diabetic retinopathy. Anterior chamber (AC) levels of prorenin significantly increased in both POAG and NVG, as did those of angiotensin II in NVG alone, compared to cataract. In surgically excised TM tissues, (pro)renin receptor ((P)RR) and angiotensin II type 1 receptor (AT1R) co-localized with prorenin and angiotensinogen, respectively. In screening for various genes related to glaucoma, prorenin stimulation to human TM cells exclusively upregulated cell junction constituents connexin 43 and zona occludens 1, while downregulating an extracellular matrix-degrading enzyme tissue plasminogen activator, all of which were reversed by (P)RR blockade. In contrast, angiotensin II application upregulated a pro-angiogenic factor placental growth factor alone, which was abolished by AT1R blockade. Consistently, (P)RR and AT1R co-localized with these corresponding proteins in patient TM tissues. Oxidative stress, a known etiology for glaucoma, induced the expression of prorenin and angiotensinogen in human TM cells. These data suggest the contribution of RAPS to the molecular pathogenesis of POAG and NVG through TM tissue remodeling and AC angle angiogenesis.
Collapse
|
25
|
Skrzypecki J, Ciepiaszuk K, Gawryś-Kopczyńska M. Low-dose Bevacizumab Decreases Ocular Hypotensive Effect of Angiotensin II in Sprague Dawley Rats. Curr Eye Res 2020; 46:127-134. [PMID: 32571093 DOI: 10.1080/02713683.2020.1780264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Although the effectiveness of anti-VEGF agents in ophthalmology has been thoroughly documented, we do not fully comprehend the epidemiology and mechanistic background of their side effects, including intraocular and systemic hypertension. Here, we investigate the interference of a low-dose bevacizumab with key neuronal and humoral mechanisms maintaining blood and intraocular pressure homeostasis. MATERIALS AND METHODS Intraocular pressure (IOP), blood pressure (BP), and heart rate (HR) were measured in SPRD rats pretreated with bevacizumab or 0.9% NaCl at baseline and after infusion of angiotensin II, a humoral mediator involved in BP and IOP regulation. Superior cervical gangliectomy was performed to assess the effect of sympathetic nervous system on the analyzed parameters. Additionally, we studied the expression of a subset of genes related to renin-angiotensin system in the anterior segment of the eye. RESULTS At baseline, there was no significant difference in IOP, BP, and HR between rats pretreated with 0.9% NaCl and bevacizumab. Infusion of angiotensin II lowered IOP in rats pretreated with 0.9% NaCl, but not in rats pretreated with bevacizumab (30 min: ∆4.22 ± 1.2 vs. baseline, p > .05; ∆0.83 ± 0.66 vs. baseline, p < .05) This effect was paralleled by an increased expression of angiotensin II type 1b and type 2 receptors in the anterior segment of the eye (AT1b: 1 ± 0.65 vs 7.35 ± 2.84, p < .05; AT2: 1 ± 0.05 vs. 12.8 ± 0.1, p < .05). Angiotensin II infusion increased BP in both groups (10 min: bevacizumab ∆44.6 ± 3.2, p < .05; 0.9%NaCl ∆37.1 ± 5.1, p < .05), whereas did not have any effect on HR. Sympathetic ocular denervation did not affect any of the analyzed parameters. CONCLUSIONS We found that low-dose bevacizumab interferes with IOP-lowering properties of angiotensin II. This effect might be related to increased expression of angiotensin II receptors in the anterior segment of the eye.
Collapse
Affiliation(s)
- J Skrzypecki
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw, Poland
| | - K Ciepiaszuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw, Poland
| | - M Gawryś-Kopczyńska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw, Poland
| |
Collapse
|
26
|
Yan J, Yang X, Jiao X, Yang X, Guo M, Chen Y, Zhan L, Chen W. Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human glaucoma. J Cell Mol Med 2019; 24:814-829. [PMID: 31680442 PMCID: PMC6933396 DOI: 10.1111/jcmm.14792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/31/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
Glaucoma has been the leading cause of irreversible blindness worldwide. High intraocular pressure (IOP) is a high‐risk factor of glaucoma, repression of which has been the important treatment of glaucoma in clinic. Trabecular meshwork is crucial for maintaining IOP in aqueous humour out‐flow system. It is urgent to reveal the molecular mechanism of trabecular meshwork in glaucoma. Previous studies found that some pathways were related to glaucoma, such as extracellular matrix (ECM)‐receptor interaction, phosphatidylinositol 3‐kinase (PI3K)‐protein kinase B (Akt) and apoptosis. To identify novel molecules in glaucoma, we performed high‐throughput transcriptome and proteome analysis to immortal human trabecular meshwork cells (iHTM) and glaucomatous human trabecular meshwork cells (GTM3), respectively. Twenty‐six up‐regulated genes/proteins and 59 down‐regulated genes/proteins were identified as the high‐risk factors based on differential analysis, including some known factors of glaucoma. Furthermore, a glaucoma‐related protein‐protein interaction (PPI) network was constructed for investigating the function roles of risk factors. Some genes were identified as potential regulator in the pathogenesis of glaucoma based on the topology analysis and module analysis to the network. Importantly, we identified and demonstrated that CD9 played key roles in glaucoma by biological experiment. CD9 is down‐regulated in glaucoma, overexpression of CD9 can active integrin α4 (ITGA4), PI3K and Akt, which lead to the decreased apoptosis and attenuate glaucoma. All these results provide a novel molecular therapy of glaucoma.
Collapse
Affiliation(s)
- Junwei Yan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuefei Jiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshi Chen
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Choi JA, Kim JE, Ju HH, Lee J, Jee D, Park CK, Paik SY. The effects of losartan on cytomegalovirus infection in human trabecular meshwork cells. PLoS One 2019; 14:e0218471. [PMID: 31216320 PMCID: PMC6584002 DOI: 10.1371/journal.pone.0218471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Human cytomegalovirus (CMV) has been emerged as one of the causes of acute recurrent or chronic hypertensive anterior uveitis in immunocompetent. In hypertensive anterior uveitis, human trabecular meshwork (TM) cells are considered a focus of inflammation. We investigated the effects of losartan, a selective angiotensin II receptor antagonist, on CMV infection in human TM cells. Methods Human TM cells were infected with CMV AD169. Virus infected and mock-infected cells were treated with losartan or dexamethasone or ganciclovir with or without transforming growth factor (TGF)-β1. Viral DNA accumulation and host cell response were analyzed using real-time PCR. Levels of secreted TGF-β1 were measured by determining its concentration in conditioned medium using a commercially available sandwich enzyme-linked immunosorbent assay (ELISA) kits. Results CMV infection significantly increased the concentrations of the secreted TGF-β1 at 3, 5, and 7 day post infection in TM cells. Treatment with dexamethasone or losartan significantly decreased the levels of TGF-β1, whereas treatment with ganciclovir did not affect TGF-β1 levels. TM cells treated with TGF-β1 along with the presence of losartan for 48 hours showed marked decrease in the expression of α-smooth muscle actin (SMA), lysyl oxidase (LOX), connective tissue growth factor (CTGF), fibronectin and collagen-1A, compared with cells treated with TGF-β1 alone. CMV-infected TM cells stimulated by TGF-β1 significantly increased the expression of α-SMA and CTGF, which were attenuated by additional treatment with losartan. Conclusion Losartan inhibited the expression of TGF-β1 and fibrogenic molecules in human TM cells. Thus, losartan has the potential to decrease TM fibrosis in patients with CMV-induced hypertensive anterior uveitis.
Collapse
Affiliation(s)
- Jin A. Choi
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju-Eun Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun-hee Ju
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Jee
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kee Park
- Department of Ophthalmology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (CKP); (SYP)
| | - Soon-young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (CKP); (SYP)
| |
Collapse
|