1
|
Silva Angulo F, Joseph CV, Delval L, Deruyter L, Heumel S, Bicharel M, Rodrigues PB, Sencio V, Bourguignon T, Machado MG, Fourcot M, Delhaye S, Salomé-Desnoulez S, Valet P, Adnot S, Wolowczuk I, Sirard JC, Pichavant M, Staels B, Haas JT, Gref R, Vandel J, Machelart A, Duez H, Pourcet B, Trottein F. Rev-erb-α antagonism in alveolar macrophages protects against pneumococcal infection in elderly mice. Cell Rep 2025; 44:115273. [PMID: 39908141 DOI: 10.1016/j.celrep.2025.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day difference in the control of Streptococcus pneumoniae infection is altered in elderly mice. A lung circadian transcriptome analysis revealed that aging alters the daily oscillations in the expression of a specific set of genes and that some pathways that are rhythmic in young-adult mice are non-rhythmic or time shifted in elderly mice. In particular, the circadian expression of the clock component Rev-erb-α and apelin/apelin receptor was altered in elderly mice. In young-adult mice, we discovered an interaction between Rev-erb-α and the apelinergic axis that controls host defenses against S. pneumoniae via alveolar macrophages. Pharmacological repression of Rev-erb-α in elderly mice resulted in greater resistance to pneumococcal infection. These data suggest the causative role of age-associated impairments in circadian rhythms on respiratory infections and have clinical relevance.
Collapse
Affiliation(s)
- Fabiola Silva Angulo
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claudine Vanessa Joseph
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lou Delval
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lucie Deruyter
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Séverine Heumel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Bicharel
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Patricia Brito Rodrigues
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Valentin Sencio
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Tom Bourguignon
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Marina Gomes Machado
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Fourcot
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Stéphane Delhaye
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Sophie Salomé-Desnoulez
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Philippe Valet
- University Paul Sabatier, University Toulouse, INSERM, CNRS, U1301 - UMR 5070 - Institut RESTORE, 31000 Toulouse, France
| | - Serge Adnot
- University Paris-Est Créteil, INSERM, U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Isabelle Wolowczuk
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean-Claude Sirard
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Muriel Pichavant
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Bart Staels
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Joel T Haas
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Ruxandra Gref
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Jimmy Vandel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Arnaud Machelart
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Hélène Duez
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - Benoit Pourcet
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - François Trottein
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| |
Collapse
|
2
|
Firouzeh G, Susan A, Zeinab K. Quercetin prevents rats from type 1 diabetic liver damage by inhibiting TGF-ꞵ/apelin gene expression. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100201. [PMID: 39351284 PMCID: PMC11440311 DOI: 10.1016/j.crphar.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Hyperglycemia-induced oxidative stress is a significant contributor to diabetic complications, including hepatopathy. The current survey aimed to evaluate the ameliorative effect of quercetin (Q) on liver functional disorders and tissue damage developed by diabetes mellitus in rats. Methods Grouping of 35 male Wistar rats was performed as follows: sham; sham + quercetin (sham + Q: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage); diabetic control (Diabetes: streptozotocin (STZ), 65 mg/kg, i.p.); diabetic + quercetin 1 (D + Q1: quercetin, 25 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection); and diabetic + quercetin 2 (D + Q2: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection). Body weight, food intake, and water intake were measured. Ultimately, the samples of plasma and urine, as well as tissue samples of the liver and pancreas were gathered for later assays. Results STZ injection ended in elevated plasma blood glucose levels, decreased plasma insulin levels, liver dysfunction (increased activity levels of AST, ALT, and ALP, increased plasma levels of total bilirubin, cholesterol, LDL, triglyceride, decreased plasma levels of total protein, albumin and HDL), enhanced levels of malondialdehyde, diminished activities of antioxidant enzymes (superoxide dismutase, and catalase), reduced level of glutathione (GSH) increased gene expression levels of apelin and TGF-ꞵ, plus liver histological destruction. All these changes were diminished by quercetin. However, the measure of improvement in the D + Q2 group was higher than that of the D + Q1 group. Conclusions Quercetin improved liver function after diabetes mellitus type 1, possibly due to reduced lipid peroxidation, increased antioxidant systems, and inhibiting the apelin/TGF-ꞵ signaling pathway.
Collapse
Affiliation(s)
| | - Abbasi Susan
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
4
|
Ciftel S, Tumkaya L, Saral S, Mercantepe T, Akyildiz K, Yilmaz A, Mercantepe F. The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study. Histochem Cell Biol 2024:10.1007/s00418-024-02269-x. [PMID: 38368592 DOI: 10.1007/s00418-024-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Apelin-13 is a peptide hormone that regulates pancreatic endocrine functions, and its benefits on the endocrine pancreas are of interest. This study aims to investigate the potential protective effects of apelin-13 in cisplatin-induced endocrine pancreatic damage. Twenty-four rats were divided into four groups: control, apelin-13, cisplatin, and cisplatin + apelin-13. Caspase-3, TUNEL, and Ki-67 immunohistochemical staining were used as markers of apoptosis and mitosis. NF-κB/p65 and TNFα were used to show inflammation. β-cells and α-cells were also evaluated with insulin and glucagon staining in the microscopic examination. Pancreatic tissue was subjected to biochemical analyses of glutathione (GSH) and malondialdehyde (MDA). Apelin-13 ameliorated cisplatin-induced damage in the islets of Langerhans. The immunopositivity of apelin-13 on β-cells and α-cells was found to be increased compared to the cisplatin group (p = 0.001, p = 0.001). Mitosis and apoptosis were significantly higher in the cisplatin group (p = 0.001). Apelin-13 reduced TNFα, NF-κB/p65 positivity, and apoptosis caused by cisplatin (p = 0.001, p = 0.001, p = 0.001). While cisplatin caused a significant increase in MDA levels (p = 0.001), apelin caused a significant decrease in MDA levels (p = 0.001). The results demonstrated a significant decrease in pancreatic tissue GSH levels following cisplatin treatment (p = 0.001). Nevertheless, apelin-13 significantly enhanced cisplatin-induced GSH reduction (p = 0.001). On the other hand, the serum glucose level, which was measured as 18.7 ± 2.5 mmol/L in the cisplatin group, decreased to 13.8 ± 0.7 mmol/L in the cisplatin + apelin-13 group (p = 0.001). The study shows that apelin-13 ameliorated cisplatin-induced endocrine pancreas damage by reducing oxidative stress and preventing apoptosis.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine Recep, Tayyip Erdogan University, 53010, Rize, Turkey.
| |
Collapse
|
5
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Pisarenko OI, Studneva IM. Apelin C-Terminal Fragments: Biological Properties and Therapeutic Potential. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1874-1889. [PMID: 38105205 DOI: 10.1134/s0006297923110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.
Collapse
Affiliation(s)
- Oleg I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia.
| | - Irina M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
7
|
Masoumi J, Zainodini N, Basirjafar P, Tavakoli T, Zandvakili R, Nemati M, Ramezani M, Rezayati MT, Ayoobi F, Khademalhosseini M, Khorramdelazad H, Arman R, Jafarzadeh A. Apelin receptor antagonist boosts dendritic cell vaccine efficacy in controlling angiogenic, metastatic and apoptotic-related factors in 4T1 breast tumor-bearing mice. Med Oncol 2023; 40:179. [PMID: 37188900 DOI: 10.1007/s12032-023-02030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and "ML221 + DC vaccine". After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-β), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin-eosin staining. The efficiency of combination therapy with "ML221 + DC vaccine" was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-β in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.
Collapse
Affiliation(s)
- Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tayyebeh Tavakoli
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad-Taghi Rezayati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Ayoobi
- Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Khademalhosseini
- Department of Pathology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Rostamlou Arman
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Liu H, Shi Q, Tang L, Wang H, Wang D. APELIN-13 AMELIORATES LPS-INDUCED ENDOTHELIAL-TO-MESENCHYMAL TRANSITION AND POST-ACUTE LUNG INJURY PULMONARY FIBROSIS BY SUPPRESSING TRANSFORMING GROWTH FACTOR-Β1 SIGNALING. Shock 2023; 59:108-117. [PMID: 36377383 DOI: 10.1097/shk.0000000000002046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT The pathophysiology of acute respiratory distress syndrome (ARDS) involves cytokine storms, alveolar-capillary barrier destruction, and fibrotic progression. Pulmonary interstitial fibrosis is an important factor affecting the prognosis of ARDS patients. Endothelial-to-mesenchymal transition (EndMT) plays an important role in the development of fibrotic diseases, and the occurrence of EndMT has been observed in experimental models of LPS-induced acute lung injury (ALI). Apelin is an endogenous active polypeptide that plays an important role in maintaining endothelial cell homeostasis and inhibiting fibrotic progression in various diseases. However, whether apelin attenuates EndMT in ALI and post-ALI pulmonary fibrosis remains unclear. We analyzed the serum levels of apelin-13 in patients with sepsis-associated ARDS to examine its possible clinical value. A murine model of LPS-induced pulmonary fibrosis and an LPS-challenged endothelial cell injury model were used to analyze the protective effect and underlying mechanism of apelin-13. Mice were treated with apelin-13 by i.p. injection, and human pulmonary microvascular endothelial cells were incubated with apelin-13 in vitro . We found that the circulating apelin-13 levels were significantly elevated in sepsis-associated ARDS patients compared with healthy controls. Our study also confirmed that LPS induced EndMT progression and pulmonary fibrosis, which were characterized by decreased CD31 expression and increased α-smooth muscle actin expression and collagen deposition. LPS also stimulated the production of transforming growth factor β1 and activated the Smad signaling pathway. However, apelin-13 treatment significantly attenuated these changes. Our findings suggest that apelin-13 may be a novel biomarker in patients with sepsis-associated ARDS. These results demonstrate that apelin-13 ameliorates LPS-induced EndMT and post-ALI pulmonary fibrosis by suppressing transforming growth factor β1 signaling.
Collapse
Affiliation(s)
- Huang Liu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
9
|
Nyimanu D, Chapman FA, Gallacher PJ, Kuc RE, Williams TL, Newby DE, Maguire JJ, Davenport AP, Dhaun N. Apelin is expressed throughout the human kidney, is elevated in chronic kidney disease & associates independently with decline in kidney function. Br J Clin Pharmacol 2022; 88:5295-5306. [PMID: 35748053 PMCID: PMC9796317 DOI: 10.1111/bcp.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
AIMS Chronic kidney disease (CKD) is common and cardiovascular disease (CVD) is its commonest complication. The apelin system is a potential therapeutic target for CVD but data relating to apelin in CKD are limited. We examined expression of the apelin system in human kidney, and investigated apelin and Elabela/Toddler (ELA), the endogenous ligands for the apelin receptor, in patients with CKD. METHODS Using autoradiography, immunohistochemistry and enzyme-linked immunosorbent assay, we assessed expression of apelin, ELA and the apelin receptor in healthy human kidney, and measured plasma apelin and ELA in 155 subjects (128 patients with CKD, 27 matched controls) followed up for 5 years. Cardiovascular assessments included blood pressure, arterial stiffness (pulse wave velocity) and brachial artery flow-mediated dilation. Surrogate markers of endothelial function (plasma asymmetric dimethylarginine and endothelin-1) and inflammation (C-reactive protein and interleukin-6) were measured. RESULTS The apelin system was expressed in healthy human kidney, throughout the nephron. Plasma apelin concentrations were 60% higher in women than men (6.48 [3.62-9.89] vs. 3.95 [2.02-5.85] pg/mL; P < .0001), and increased as glomerular filtration rate declined (R = -0.41, P < .0001), and albuminuria rose (R = 0.52, P < .0001). Plasma apelin and ELA were associated with vascular dysfunction. Plasma apelin associated independently with a 50% decline in glomerular filtration rate at 5 years. CONCLUSION We show for the first time that the apelin system is expressed in healthy human kidney. Plasma apelin is elevated in CKD and may be a potential biomarker of risk of decline in kidney function. Clinical studies exploring the therapeutic potential of apelin agonism in CKD are warranted.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Fiona A Chapman
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh/British Heart Foundation Centre of Research Excellence, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Peter J Gallacher
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh/British Heart Foundation Centre of Research Excellence, Edinburgh, UK
| | - Rhoda E Kuc
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Thomas L Williams
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - David E Newby
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh/British Heart Foundation Centre of Research Excellence, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh/British Heart Foundation Centre of Research Excellence, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Neuropeptide apelin presented in the dopaminergic neurons modulates the neuronal excitability in the substantia nigra pars compacta. Neuropharmacology 2022; 219:109235. [PMID: 36041497 DOI: 10.1016/j.neuropharm.2022.109235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The dopaminergic neurons in the substantia nigra pars compacta are characterized by autonomous pacemaking activity. The spontaneous firing activity of nigral dopaminergic neurons plays an important role in physiological function and is essential for their survival. Importantly, the spontaneous firing activity may also be involved in the preferential vulnerability of the nigral dopaminergic neurons in Parkinson's disease (PD). The neuropeptide apelin was reported to exert neuroprotective effects in neurodegenerative diseases, including PD. And it was noticed that apelin modulates neuronal activity in some brain regions. The present study investigated the electrophysiological and behavioral effects of apelin in the substantia nigra. Double-labeling immunofluorescence showed that apelin was present in nigral dopaminergic neurons and that these neurons expressed apelin receptor APJ. Further single unit in vivo electrophysiological recordings revealed that endogenous apelin tonically increased the firing rate of nigral dopaminergic neurons in both normal and parkinsonian animals. Exogenous apelin-13 exerted excitatory effects on the majority of nigral dopaminergic neurons, yet reduced excitability in a subset of neurons. In addition, nigral application of apelin-13 increased motor activity in normal rats and blocking endogenous apelin reduced motor activity. Considering the involvement of the spontaneous firing activity of nigral dopaminergic neurons in the development of PD and the possibility that apelin acts in an autocrine manner on apelin receptors expressed by nigral dopaminergic neurons, the modulation of the spontaneous firing activity of nigral dopaminergic neurons by apelin may serve as a neuroprotective factor in PD.
Collapse
|
11
|
Li S, Liu Y, Liu B, Hu YQ, Ding YQ, Zhang J, Feng L. Maternal urban particulate matter exposure and signaling pathways in fetal brains and neurobehavioral development in offspring. Toxicology 2022; 474:153225. [PMID: 35659516 DOI: 10.1016/j.tox.2022.153225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
It is well understood that exposure to particulate matter (PM) can have adverse effects on the nervous system. When pregnant women are exposed to PM, their fetuses are also affected through the placenta. However, the mechanisms by which fetal brain development is regulated between mother and fetus remain unclear. C57BL/6J pregnant mice were exposed to PM at embryonic day (E) 2.5, 5.5, 8.5, 11.5, 14.5, and 17.5 via nasal drip at three doses (3, 6, 12 mg/kg of body weight) or PBS control. Neurobehavioral changes in the offspring were examined at 5-6-week-old by open field test (OFT) and elevated plus maze (EPM). The maternal and fetal brain and placenta were collected at E18.5, and molecular signal changes were explored using transcriptome analysis. We found that both male and female low-dose pups and male middle-dose pups traveled a significantly longer distance than controls in EPM tests. Both male and female low-dose pups showed a higher frequency of entering the center area and female low-dose pups exhibited a higher percentage of distance moved in the center area than controls in OFT tests. Gene expression in the maternal brain, fetal brain, and placenta at E18.5 was altered. Differentially expressed genes were enriched in the neuroactive ligand-receptor interaction pathway in all three tissue types. Pathway analysis revealed that the PI3K-Akt and PKC signaling was dysregulated in the fetal brain in the high-dose group compared with the control group. The pathways play a role in neuronal survival and apoptosis. Furthermore, there is a dose-dependent increase in Caspase-6, neuronal apoptosis and neurodegeneration biomarker, levels in E18.5 fetal brain (P = 0.06). In conclusion, our study demonstrated that prenatal PM exposure enhanced exploration and locomotor activity in adolescent offspring and altered molecular events in maternal brain, fetal brain, and placenta. The connections of these changes warrant further investigations.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
13
|
Palmer ES, Irwin N, O’Harte FPM. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin Med Insights Endocrinol Diabetes 2022; 15:11795514221074679. [PMID: 35177945 PMCID: PMC8844737 DOI: 10.1177/11795514221074679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemic with an ever-increasing global prevalence. Current treatment strategies, although plentiful and somewhat effective, often fail to achieve desired glycaemic goals in many people, leading ultimately to disease complications. The lack of sustained efficacy of clinically-approved drugs has led to a heightened interest in the development of novel alternative efficacious antidiabetic therapies. One potential option in this regard is the peptide apelin, an adipokine that acts as an endogenous ligand of the APJ receptor. Apelin exists in various molecular isoforms and was initially studied for its cardiovascular benefits, however recent research suggests that it also plays a key role in glycaemic control. As such, apelin peptides have been shown to improve insulin sensitivity, glucose tolerance and lower circulating blood glucose. Nevertheless, native apelin has a short biological half-life that limits its therapeutic potential. More recently, analogues of apelin, particularly apelin-13, have been developed that possess a significantly extended biological half-life. These analogues may represent a promising target for future development of therapies for metabolic disease including diabetes and obesity.
Collapse
Affiliation(s)
- Ethan S Palmer
- Ethan S Palmer, Diabetes Research Group, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
14
|
Zhao A, Xiao H, Zhu Y, Liu S, Zhang S, Yang Z, Du L, Li X, Niu X, Wang C, Yang Y, Tian Y. Omentin-1: A newly discovered warrior against metabolic related diseases. Expert Opin Ther Targets 2022; 26:275-289. [PMID: 35107051 DOI: 10.1080/14728222.2022.2037556] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION : Chronic metabolism-related diseases are challenging clinical problems. Omentin-1 is mainly expressed in stromal vascular cells of adipose tissue and can also be expressed in airway goblet cells, mesothelial cells, and vascular cells. Omentin-1 has been found to exert important anti-inflammatory, antioxidative and anti-apoptotic roles and to regulate endothelial dysfunction. Moreover, omentin-1 also has protective effects against cancer, atherosclerosis, type 2 diabetes mellitus, and bone metabolic diseases. The current review will discuss the therapeutic potential of omentin-1. AREAS COVERED : This review summarizes the biological actions of omentin-1 and provides an overview of omentin-1 in metabolic-related diseases. The relevant literature was derived from a PubMed search spanning 1998-2021 using these search terms: omentin-1, atherosclerosis, diabetes mellitus, bone, cancer, inflammation, and oxidative stress. EXPERT OPINION : As a novel adipocytokine, omentin-1 is a promising therapeutic target in metabolic-related diseases. Preclinical animal studies have shown encouraging results. Moreover, circulating omentin-1 has excellent potential as a noninvasive biomarker. In the future, strategies for regulating omentin-1 need to be investigated further in clinical trials in a large cohort.
Collapse
Affiliation(s)
- Aizhen Zhao
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Haoxiang Xiao
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shuai Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shaofei Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Luyang Du
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiyang Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| |
Collapse
|
15
|
Banerjee S, Baidya SK, Ghosh B, Adhikari N, Jha T. The first report on predictive comparative ligand-based multi-QSAR modeling analysis of 4-pyrimidinone and 2-pyridinone based APJ inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The APJ system participates in several major disorders including cancer. A multi-QSAR modeling study on some APJ inhibitors was performed for the first time. Some potential molecules were also designed based on the QSAR study conducted.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
16
|
Shipl W, El Wakeel MS, Ahmad I, Mohammed M, Ali SO, El Wahab MA. Correlation of serum apelin level with carotid intima–media thickness and insulin resistance in a sample of Egyptian patients with type 2 diabetes mellitus. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2022; 27:13. [PMID: 35342448 PMCID: PMC8943574 DOI: 10.4103/jrms.jrms_675_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a growing health problem in Egypt, with a significant impact on morbidity and mortality. Measurement of the carotid Intima-media thickness (CIMT) allows early detection of atherosclerotic blood vessel diseases. Apelin is an adipose tissue-derived hormone that may be associated with insulin resistance (IR). This study aimed to assess the level of serum apelin in patients with T2DM and its relation to IR and CIMT. Materials and Methods: A case-control study was conducted on 60 patients with T2DM and 30 healthy controls. T2DM was diagnosed based on American Diabetes Association criteria. The study was carried out at Al-Zahraa University Hospital, Cairo, Egypt, through the period from June to December 2019. The laboratory investigations included serum apelin and blood glucose hemostasis markers. CIMT was assessed using B-mode ultrasonography. Results: Patients’ group had a statistically significant higher apelin level than healthy controls (407.96 ± 291.07 versus 83.32 ± 10.55 ng/dL, P < 0.001). The correlation analysis showed that the serum apelin level correlated positively with glycemic indices, body weight, and waist circumference (P < 0.05). At cutoff value of >96 ng/dL, the serum apelin exhibited a sensitivity of 98.3% and specificity of 96.7%, positive predictive value of 98.1%, and negative predictive value of 96.5%, with a diagnostic accuracy of 95.1%. Serum apelin correlated positively with CIMT (r = 0.296, P = 0.022). Logistic regression analysis showed that systolic and diastolic blood pressures, Homeostasis Model Assessment of IR, and CIMT were independent predictors of serum apelin. Conclusion: Serum apelin may be correlated with the degree of carotid atherosclerosis and hence can be used as a prognostic biomarker.
Collapse
|
17
|
Li C, Cheng H, Adhikari BK, Wang S, Yang N, Liu W, Sun J, Wang Y. The Role of Apelin-APJ System in Diabetes and Obesity. Front Endocrinol (Lausanne) 2022; 13:820002. [PMID: 35355561 PMCID: PMC8959308 DOI: 10.3389/fendo.2022.820002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Nowadays, diabetes and obesity are two main health-threatening metabolic disorders in the world, which increase the risk for many chronic diseases. Apelin, a peptide hormone, exerts its effect by binding with angiotensin II protein J receptor (APJ) and is considered to be linked with diabetes and obesity. Apelin and its receptor are widely present in the body and are involved in many physiological processes, such as glucose and lipid metabolism, homeostasis, endocrine response to stress, and angiogenesis. In this review, we summarize the literatures on the role of the Apelin-APJ system in diabetes and obesity for a better understanding of the mechanism and function of apelin and its receptor in the pathophysiology of diseases that may contribute to the development of new therapies.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | | | - Binay Kumar Adhikari
- Department of Cardiology, Nepal Armed Police Force (APF) Hospital, Kathmandu, Nepal
| | - Shudong Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Wenyun Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yonggang Wang,
| |
Collapse
|
18
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Apelin expression deficiency in mice contributes to vascular stiffening by extracellular matrix remodeling of the aortic wall. Sci Rep 2021; 11:22278. [PMID: 34782679 PMCID: PMC8593139 DOI: 10.1038/s41598-021-01735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
Numerous recent studies have shown that in the continuum of cardiovascular diseases, the measurement of arterial stiffness has powerful predictive value in cardiovascular risk and mortality and that this value is independent of other conventional risk factors, such as age, cholesterol levels, diabetes, smoking, or average blood pressure. Vascular stiffening is often the main cause of arterial hypertension (AHT), which is common in the presence of obesity. However, the mechanisms leading to vascular stiffening, as well as preventive factors, remain unclear. The aim of the present study was to investigate the consequences of apelin deficiency on the vascular stiffening and wall remodeling of aorta in mice. This factor freed by visceral adipose tissue, is known for its homeostasic role in lipid and vascular metabolisms, or again in inflammation. We compared the level of metabolic markers, inflammation of white adipose tissue (WAT), and aortic wall remodeling from functional and structural approaches in apelin-deficient and wild-type (WT) mice. Apelin-deficient mice were generated by knockout of the apelin gene (APL-KO). From 8 mice by groups, aortic stiffness was analyzed by pulse wave velocity measurements and by characterizations of collagen and elastic fibers. Mann-Whitney statistical test determined the significant data (p < 5%) between groups. The APL-KO mice developed inflammation, which was associated with significant remodeling of visceral WAT, such as neutrophil elastase and cathepsin S expressions. In vitro, cathepsin S activity was detected in conditioned medium prepared from adipose tissue of the APL-KO mice, and cathepsin S activity induced high fragmentations of elastic fiber of wild-type aorta, suggesting that the WAT secretome could play a major role in vascular stiffening. In vivo, remodeling of the extracellular matrix (ECM), such as collagen accumulation and elastolysis, was observed in the aortic walls of the APL-KO mice, with the latter associated with high cathepsin S activity. In addition, pulse wave velocity (PWV) and AHT were increased in the APL-KO mice. The latter could explain aortic wall remodeling in the APL-KO mice. The absence of apelin expression, particularly in WAT, modified the adipocyte secretome and facilitated remodeling of the ECM of the aortic wall. Thus, elastolysis of elastic fibers and collagen accumulation contributed to vascular stiffening and AHT. Therefore, apelin expression could be a major element to preserve vascular homeostasis.
Collapse
|
20
|
Chen X, Tang Y, Chen S, Ling W, Wang Q. IGFBP-2 as a biomarker in NAFLD improves hepatic steatosis: an integrated bioinformatics and experimental study. Endocr Connect 2021; 10:1315-1325. [PMID: 34524971 PMCID: PMC8562889 DOI: 10.1530/ec-21-0353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) has become a common chronic liver disease in the world. Simple steatosis (SS) is the early phase of NAFLD. However, the molecular mechanisms underlying the development of steatosis have not yet been fully elucidated. METHODS Two public datasets (GSE48452 and GSE89632) through the Gene Expression Omnibus (GEO) database were used to identify differentially expressed genes (DEGs) in the development of steatosis. A total of 72 participants including 38 normal histological controls and 34 SS patients were included in this study. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analysis were performed to explore the function of DEGs. The results were further confirmed in high-fat diet (HFD)-fed mice and oleate-treated HepG2 cells. RESULTS Total 57 DEGs including 31 up- and 26 down-regulated genes between SS patients and healthy controls were determined. GO and KEGG analysis showed that most of the DEGs were enriched in the ligand-receptor signaling pathways. PPI network construction was used to identify the hub genes of the DEGs. MYC, ANXA2, GDF15, AGTR1, NAMPT, LEPR, IGFBP-2, IL1RN, MMP7, and APLNR were identified as hub genes, and IGFBP-2 expression was found to be reversely associated with hepatic steatosis, fasting insulin, HOMA-IR index, and ALT levels. In HFD-fed mice, hepatic IGFBP-2 was also downregulated and negatively associated with hepatic triglyceride (TG) levels. Moreover, overexpression of IGFBP-2 ameliorated the oleate induced accumulation of TGs in hepatocytes. CONCLUSIONS This study identified novel gene signatures in the hepatic steatosis and will provide new understanding and molecular clues of hepatic steatosis.
Collapse
Affiliation(s)
- Xu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People’s Republic of China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People’s Republic of China
- Correspondence should be addressed to Q Wang:
| |
Collapse
|
21
|
Sainsily X, Coquerel D, Giguère H, Dumont L, Tran K, Noll C, Ionescu AL, Côté J, Longpré JM, Carpentier A, Marsault É, Lesur O, Sarret P, Auger-Messier M. Elabela Protects Spontaneously Hypertensive Rats From Hypertension and Cardiorenal Dysfunctions Exacerbated by Dietary High-Salt Intake. Front Pharmacol 2021; 12:709467. [PMID: 34385922 PMCID: PMC8353398 DOI: 10.3389/fphar.2021.709467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Arterial hypertension, when exacerbated by excessive dietary salt intake, worsens the morbidity and mortality rates associated with cardiovascular and renal diseases. Stimulation of the apelinergic system appears to protect against several circulatory system diseases, but it remains unknown if such beneficial effects are conserved in severe hypertension. Therefore, we aimed at determining whether continuous infusion of apelinergic ligands (i.e., Apelin-13 and Elabela) exerted cardiorenal protective effects in spontaneously hypertensive (SHR) rats receiving high-salt diet. Methods: A combination of echocardiography, binding assay, histology, and biochemical approaches were used to investigate the cardiovascular and renal effects of Apelin-13 or Elabela infusion over 6 weeks in SHR fed with normal-salt or high-salt chow. Results: High-salt intake upregulated the cardiac and renal expression of APJ receptor in SHR. Importantly, Elabela was more effective than Apelin-13 in reducing high blood pressure, cardiovascular and renal dysfunctions, fibrosis and hypertrophy in high-salt fed SHR. Unlike Apelin-13, the beneficial effects of Elabela were associated with a counter-regulatory role of the ACE/ACE2/neprilysin axis of the renin-angiotensin-aldosterone system (RAAS) in heart and kidneys of salt-loaded SHR. Interestingly, Elabela also displayed higher affinity for APJ in the presence of high salt concentration and better resistance to RAAS enzymes known to cleave Apelin-13. Conclusion: These findings highlight the protective action of the apelinergic system against salt-induced severe hypertension and cardiorenal failure. As compared with Apelin-13, Elabela displays superior pharmacodynamic and pharmacokinetic properties that warrant further investigation of its therapeutic use in cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Xavier Sainsily
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Coquerel
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kien Tran
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Noll
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrei L Ionescu
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jérôme Côté
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André Carpentier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
22
|
Berta J, Török S, Tárnoki-Zách J, Drozdovszky O, Tóvári J, Paku S, Kovács I, Czirók A, Masri B, Megyesfalvi Z, Oskolás H, Malm J, Ingvar C, Markó-Varga G, Döme B, László V. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Sci Rep 2021; 11:5798. [PMID: 33707612 PMCID: PMC7952702 DOI: 10.1038/s41598-021-85162-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Apelin, a ligand of the APJ receptor, is overexpressed in several human cancers and plays an important role in tumor angiogenesis and growth in various experimental systems. We investigated the role of apelin signaling in the malignant behavior of cutaneous melanoma. Murine B16 and human A375 melanoma cell lines were stably transfected with apelin encoding or control vectors. Apelin overexpression significantly increased melanoma cell migration and invasion in vitro, but it had no impact on its proliferation. In our in vivo experiments, apelin significantly increased the number and size of lung metastases of murine melanoma cells. Melanoma cell proliferation rates and lymph and blood microvessel densities were significantly higher in the apelin-overexpressing pulmonary metastases. APJ inhibition by the competitive APJ antagonist MM54 significantly attenuated the in vivo pro-tumorigenic effects of apelin. Additionally, we detected significantly elevated circulating apelin and VEGF levels in patients with melanoma compared to healthy controls. Our results show that apelin promotes blood and lymphatic vascularization and the growth of pulmonary metastases of skin melanoma. Further studies are warranted to validate apelin signaling as a new potential therapeutic target in this malignancy.
Collapse
Affiliation(s)
- Judit Berta
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Szilvia Török
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Orsolya Drozdovszky
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ildikó Kovács
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- Department of Anatomy and Cell Biology, Medical Center, University of Kansas, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Bernard Masri
- Department of Endocrinology, Metabolism and Diabetes, Institute Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
- Translational Thoracic Oncology Laboratory, Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| | - Henriett Oskolás
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Malm
- Department of Translational Medicine, Section for Clinical Chemistry, Lund University, Malmö, Sweden
| | | | - György Markó-Varga
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Balázs Döme
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary.
- Translational Thoracic Oncology Laboratory, Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary.
| | - Viktória László
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary.
- Translational Thoracic Oncology Laboratory, Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Wang Q, Cheng S, Qin F, Fu A, Fu C. Application progress of RVG peptides to facilitate the delivery of therapeutic agents into the central nervous system. RSC Adv 2021; 11:8505-8515. [PMID: 35423368 PMCID: PMC8695342 DOI: 10.1039/d1ra00550b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of central nervous system (CNS) diseases is increasing with the aging population. However, it remains challenging to deliver drugs into the CNS because of the existence of a blood-brain barrier (BBB). Notably, rabies virus glycoprotein (RVG) peptides have been developed as delivery ligands for CNS diseases. So far, massive RVG peptide modified carriers have been reported, such as liposomes, micelles, polymers, exosomes, dendrimers, and proteins. Moreover, these drug delivery systems can encapsulate almost all small molecules and macromolecule drugs, including siRNA, microRNAs, DNA, proteins, and other nanoparticles, to treat various CNS diseases with efficient and safe drugs. In this review, targeted delivery systems with RVG peptide modified carriers possessing favorable biocompatibility and delivery efficiency are summarized.
Collapse
Affiliation(s)
- Qinghua Wang
- Immunology Research Center of Medical Research Institute, College of Animal Medicine, Southwest University Chongqing 402460 China
| | - Shang Cheng
- Animal Husbandry Technology, Popularization Master Station of Chongqing Chongqing 401121 China
| | - Fen Qin
- The Ninth People's Hospital of Chongqing Chongqing 400702 China
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University Chongqing 400715 China +86-23-68251225 +86-23-68251225
| | - Chen Fu
- College of Pharmaceutical Science, Southwest University Chongqing 400715 China +86-23-68251225 +86-23-68251225
| |
Collapse
|
24
|
Loss of APJ mediated β-arrestin signalling improves high-fat diet induced metabolic dysfunction but does not alter cardiac function in mice. Biochem J 2021; 477:3313-3327. [PMID: 32779693 DOI: 10.1042/bcj20200343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Apelin receptor (APJ) is a G protein-coupled receptor that contributes to many physiological processes and is emerging as a therapeutic target to treat a variety of diseases. For most disease indications the role of G protein vs β-arrestin signalling in mitigating disease pathophysiology remains poorly understood. This hinders the development of G protein biased APJ agonists, which have been proposed to have several advantages over balanced APJ signalling agonists. To elucidate the contribution of APJ β-arrestin signalling, we generated a transgenic mouse harbouring a point mutation (APJ I107A) that maintains full G protein activity but fails to recruit β-arrestin following receptor activation. APJ I107A mutant mice did not alter cardiac function at rest, following exercise challenge or in response to pressure overload induced cardiac hypertrophy. Additionally, APJ I107A mice have comparable body weights, plasma glucose and lipid levels relative to WT mice when fed a chow diet. However, APJ I107A mice showed significantly lower body weight, blood insulin levels, improved glucose tolerance and greater insulin sensitivity when fed a high-fat diet. Furthermore, loss of APJ β-arrestin signalling also affected fat composition and the expression of lipid metabolism related genes in adipose tissue from high-fat fed mice. Taken together, our results suggest that G protein biased APJ activation may be more effective for certain disease indications given that loss of APJ mediated β-arrestin signalling appears to mitigate several aspects of diet induced metabolic dysfunction.
Collapse
|
25
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
26
|
Shao ZQ, Dou SS, Zhu JG, Wang HQ, Wang CM, Cheng BH, Bai B. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 16:1044-1051. [PMID: 33269749 PMCID: PMC8224111 DOI: 10.4103/1673-5374.300725] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apelin-13 is a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, and it may be neuroprotective against cerebral ischemia injury. However, the precise mechanisms of the effects of apelin-13 remain to be elucidated. To investigate the effects of apelin-13 on apoptosis and autophagy in models of cerebral ischemia/reperfusion injury, a rat model was established by middle cerebral artery occlusion. Apelin-13 (50 μg/kg) was injected into the right ventricle as a treatment. In addition, an SH-SY5Y cell model was established by oxygen-glucose deprivation/reperfusion, with cells first cultured in sugar-free medium with 95% N2 and 5% CO2 for 4 hours and then cultured in a normal environment with sugar-containing medium for 5 hours. This SH-SY5Y cell model was treated with 10–7 M apelin-13 for 5 hours. Results showed that apelin-13 protected against cerebral ischemia/reperfusion injury. Apelin-13 treatment alleviated neuronal apoptosis by increasing the ratio of Bcl-2/Bax and significantly decreasing cleaved caspase-3 expression. In addition, apelin-13 significantly inhibited excessive autophagy by regulating the expression of LC3B, p62, and Beclin1. Furthermore, the expression of Bcl-2 and the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was markedly increased. Both LY294002 (20 μM) and rapamycin (500 nM), which are inhibitors of the PI3K/Akt/mTOR pathway, significantly attenuated the inhibition of autophagy and apoptosis caused by apelin-13. In conclusion, the findings of the present study suggest that Bcl-2 upregulation and mTOR signaling pathway activation lead to the inhibition of apoptosis and excessive autophagy. These effects are involved in apelin-13-induced neuroprotection against cerebral ischemia/reperfusion injury, both in vivo and in vitro. The study was approved by the Animal Ethical and Welfare Committee of Jining Medical University, China (approval No. 2018-JS-001) in February 2018.
Collapse
Affiliation(s)
- Zi-Qi Shao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shan-Shan Dou
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Jun-Ge Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hui-Qing Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Mei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bao-Hua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
27
|
Senesi P, Luzi L, Terruzzi I. Adipokines, Myokines, and Cardiokines: The Role of Nutritional Interventions. Int J Mol Sci 2020; 21:ijms21218372. [PMID: 33171610 PMCID: PMC7664629 DOI: 10.3390/ijms21218372] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
It is now established that adipose tissue, skeletal muscle, and heart are endocrine organs and secrete in normal and in pathological conditions several molecules, called, respectively, adipokines, myokines, and cardiokines. These secretory proteins constitute a closed network that plays a crucial role in obesity and above all in cardiac diseases associated with obesity. In particular, the interaction between adipokines, myokines, and cardiokines is mainly involved in inflammatory and oxidative damage characterized obesity condition. Identifying new therapeutic agents or treatment having a positive action on the expression of these molecules could have a key positive effect on the management of obesity and its cardiac complications. Results from recent studies indicate that several nutritional interventions, including nutraceutical supplements, could represent new therapeutic agents on the adipo-myo-cardiokines network. This review focuses the biological action on the main adipokines, myokines and cardiokines involved in obesity and cardiovascular diseases and describe the principal nutraceutical approaches able to regulate leptin, adiponectin, apelin, irisin, natriuretic peptides, and follistatin-like 1 expression.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence:
| |
Collapse
|
28
|
Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg Med Chem Lett 2020; 30:127499. [PMID: 32858124 DOI: 10.1016/j.bmcl.2020.127499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022]
Abstract
Agonism of the endothelial receptor APJ (putative receptor protein related to AT1; AT1: angiotensin II receptor type 1) has the potential to ameliorate congestive heart failure by increasing cardiac output without inducing hypertrophy. Although the endogenous agonist, pyr-apelin-13 (1), has shown beneficial APJ-mediated inotropic effects in rats and humans, such effects are short-lived given its extremely short half-life. Here, we report the conjugation of 1 to a fatty acid, providing a lipidated peptide (2) with increased stability that retains inotropic activity in an anesthetized rat myocardial infarction (MI) model. We also report the preparation of a library of 15-mer APJ agonist peptide-lipid conjugates, including adipoyl-γGlu-OEG-OEG-hArg-r-Q-hArg-P-r-NMeLeuSHK-G-Oic-pIPhe-P-DBip-OH (17), a potent APJ agonist with high plasma protein binding and a half-life suitable for once-daily subcutaneous dosing in rats. A correlation between subcutaneous absorption rate and lipid length/type of these conjugates is also reported.
Collapse
|
29
|
Lv S, Zhang X, Zhou Y, Feng Y, Yang Y, Wang X. Intrathecally Administered Apelin-13 Alleviated Complete Freund's Adjuvant-Induced Inflammatory Pain in Mice. Front Pharmacol 2020; 11:1335. [PMID: 32982745 PMCID: PMC7485460 DOI: 10.3389/fphar.2020.01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Apelin is the endogenous ligand for APJ, a G-protein-coupled receptor. Apelin gene and protein are widely distributed in the central nervous system and peripheral tissues. The role of apelin in chronic inflammatory pain is still unclear. In the present study, a mouse model of complete Freund’s adjuvant (CFA)-induced inflammatory pain was utilized, and the paw withdrawal latency/threshold in response to thermal stimulation and Von Frey filament stimulation were recorded after intrathecal (i.t.) injection of apelin-13 (0.1, 1, and 10 nmol/mouse). The mRNA and protein expression, concentration of glutamic acid (Glu), and number of c-Fos immunol staining in lumbar spinal cord (L4/5) were determined. The results demonstrated that Apln gene expression in the lumbar spinal cord was down-regulated in the CFA pain model. Apelin-13 (10 nmol/mouse, i.t.) alleviated CFA-induced inflammatory pain, and it exhibited a more potent antinociceptive effect than apelin-36 and (pyr)apelin-13. The antinociception of apelin-13 could be blocked by APJ antagonist apelin-13(F13A). I.T. apelin-13 attenuated the increased levels of Aplnr, Grin2b, Camk2d, and c-Fos genes expression, Glu concentration, and NMDA receptor 2B (GluN2B) protein expression caused by CFA. Apelin-13 significantly reduced the number of Fos-positive cells in laminae III and IV/V of the dorsal horn. This study indicated that i.t. apelin-13 exerted an analgesic effect against inflammatory pain, which was mediated by activation of APJ, and inhibition of Glu/GluN2B function and neural activity of the spinal dorsal horn.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinchun Wang
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
30
|
Bardanzellu F, Puddu M, Fanos V. The Human Breast Milk Metabolome in Preeclampsia, Gestational Diabetes, and Intrauterine Growth Restriction: Implications for Child Growth and Development. J Pediatr 2020; 221S:S20-S28. [PMID: 32482230 DOI: 10.1016/j.jpeds.2020.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy.
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Italy
| |
Collapse
|
31
|
Castan-Laurell I, El Boustany R, Pereira O, Potier L, Marre M, Fumeron F, Valet P, Gourdy P, Velho G, Roussel R. Plasma Apelin and Risk of Type 2 Diabetes in a Cohort From the Community. Diabetes Care 2020; 43:e15-e16. [PMID: 31806652 DOI: 10.2337/dc19-1865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/27/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Isabelle Castan-Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, University of Toulouse, Toulouse, France
| | - Ray El Boustany
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France
| | - Ophélie Pereira
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, University of Toulouse, Toulouse, France
| | - Louis Potier
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, DHU FIRE, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR de Médecine, Université de Paris, Paris, France
| | - Michel Marre
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France.,UFR de Médecine, Université de Paris, Paris, France.,Centre Médico Chirurgicaux Ambroise Paré, Neuilly-sur-Seine, France
| | - Frédéric Fumeron
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France.,UFR de Médecine, Université de Paris, Paris, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, University of Toulouse, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, University of Toulouse, Toulouse, France.,Service de Diabétologie, Maladies Métaboliques et Nutrition, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Gilberto Velho
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France
| | - Ronan Roussel
- INSERM Research Unit 1138, Cordeliers Research Center, Sorbonne Université, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, DHU FIRE, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR de Médecine, Université de Paris, Paris, France
| |
Collapse
|
32
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
33
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
34
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
35
|
Rengasamy KRR, Khan H, Ahmad I, Lobine D, Mahomoodally F, Suroowan S, Hassan STS, Xu S, Patel S, Daglia M, Nabavi SM, Pandian SK. Bioactive peptides and proteins as alternative antiplatelet drugs. Med Res Rev 2019; 39:2153-2171. [PMID: 31006878 DOI: 10.1002/med.21579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Antiplatelet drugs reduce the risks associated with atherothrombotic events and show various applications in diverse cardiovascular diseases including myocardial infarctions. Efficacy of the current antiplatelet medicines including aspirin, clopidogrel, prasugrel and ticagrelor, and the glycoprotein IIb/IIIa antagonists, are limited due to their increased risks of bleeding, and antiplatelet drug resistance. Hence, it is important to develop new effective antiplatelet drugs, with fewer side-effects. The vast repertoire of natural peptides can be explored towards this goal. Proteins and peptides derived from snake venoms and plants represent exciting candidates for the development of novel and potent antiplatelet agents. Consequently, this review discusses multiple peptides that have displayed antiplatelet aggregation activity in preclinical drug development stages. This review also describes the antiplatelet mechanisms of the peptides, emphasizing the signaling pathways intervened by them. Also, the hurdles encountered during the development of peptides into antiplatelet drugs have been listed. Finally, hitherto unexplored peptides with the potential to prevent platelet aggregation are explored.
Collapse
Affiliation(s)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, California
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|