1
|
Bortolin RH, de Souza Leite F, Luchessi AD, Esposito J, Barbosa IN, Freitas RCCD, Sonawane AR, Singh SA, Aikawa E, Telles-Silva KA, Hirata TDC, Rosa Neta AP, Goulart E, Caires-Júnior LC, Mata Martins TMD, Semedo P, Moreira DDP, Naslavsky M, Faludi AA, Gonçalves RM, Araujo DB, Malaquias VB, Ferreira GM, DeOcesano-Pereira C, Chudzinski-Tavassi AM, Pu WT, Zatz M, Hirata RDC, Hirata MH. Translational insights into statin-induced myotoxicity: Differential impact of lipophilic and hydrophilic statins on iPSC-derived skeletal muscle cells from patients with familial hypercholesterolemia. Toxicology 2025; 515:154159. [PMID: 40254247 DOI: 10.1016/j.tox.2025.154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Statins are highly effective cholesterol-lowering drugs that can reduce the risk of cardiovascular events. Statins are well tolerated but some patients experience statin-associated muscle symptoms (SAM) that can reduce adherence to therapy. We investigated molecular mechanisms statin-induced myotoxicity using induced pluripotent stem cells (iPSC)-derived skeletal muscle (SKgM) cells. iPSC-SKgM cells were obtained from patients with familial hypercholesterolemia (FH) experiencing SAM (n = 3) or not (nonSAM, n = 3). iPSC-SkgM cells were treated with atorvastatin and rosuvastatin (1 to 100 µM). Statin cytotoxicity was assessed by functional assays (cell death, mitochondrial damage, caspase 3/7 activity). iPSC-SkgM cells from SAM patients were more sensitive to atorvastatin toxicity than nonSAM cells (p < 0.05), recapitulating the phenotype of SAM patients. Rosuvastatin was less cytotoxic than atorvastatin in iPSC-SkgM (p < 0.05) from both SAM and nonSAM patients. Transcriptomic analysis revealed stronger effects on gene expression in SAM-derived iPSC-SKgM cells treated with atorvastatin (106 genes) than rosuvastatin (33 genes) compared to nonSAM cells. Enrichment analyses predicted associations of these genes with cell growth, muscle function, pro-inflammatory processes, and apoptosis. Proteomic analysis also showed more proteins differentially abundant in atorvastatin (61 proteins) than in rosuvastatin (26 proteins) treated cells. These proteins were related to cell biosynthetic process, signaling and communication, nucleic acid metabolism, and protein processing. In conclusion, atorvastatin has greater toxicity than rosuvastatin to iPSC-SKgM cells, an outcome exacerbated in FH patients who experienced SAM. Atorvastatin has stronger effects on expression of molecules involved in several signaling pathways suggesting novel molecular mechanisms of statin-induced myotoxicity.
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe de Souza Leite
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Joyce Esposito
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Igor Neves Barbosa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhijeet Rajendra Sonawane
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha Anna Singh
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kayque Alves Telles-Silva
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Antonia Pereira Rosa Neta
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luiz Carlos Caires-Júnior
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Thais Maria da Mata Martins
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Patrícia Semedo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Danielle de Paula Moreira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Michel Naslavsky
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | | | - Daniel Branco Araujo
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | - Vanessa Barbosa Malaquias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Carlos DeOcesano-Pereira
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, Brazil
| | | | - William T Pu
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
2
|
Hamayal M, Shahid W, Akhtar CH, Shekiba F, Iftikhar I, Tahir MD, Awwab M, Hussain S, Naeem S, Hafeez M. Risk of cardiovascular outcomes with bempedoic acid in high-risk statin intolerant patients: a systematic review and meta analysis. Future Cardiol 2024; 20:639-650. [PMID: 39140596 PMCID: PMC11520570 DOI: 10.1080/14796678.2024.2388478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: Statin intolerance and myopathy is a major issue with prolonged use of statins myopathy. Bempedoic acid can be a good alternative for those intolerant to statins. This systematic review aims to observe incidence of major adverse cardiovascular events (MACE) and other adverse events, in high-risk statin intolerant patients receiving bempedoic acid.Methods: Literature search was conducted via Google Scholar, Science Direct and PubMed, after which screening, selection and data extraction of articles was done. Meta-analysis was performed on RevMan 5.4. Subgroup analysis was also conducted and heterogeneity was evaluated. Risk of bias was performed using ROB2 assessment scale. (CRD42024536827).Results: Only six randomized controlled trials were used in final analysis consisting of 17,844 patients. Treatment with bempedoic acid was associated with a reduced risk of MACE compared with placebo (RR 0.86; 95% CI [0.79, 0.94] p = 0.0005), with myocardial infarction significantly reduced. Incidence of adverse effects was increased with bempedoic acid (RR: 1.02; 95% [1.00, 1.03] p = 0.01) but no significant difference was observed. Incidence of myalgia was reduced in bempedoic group as well.Conclusion: Bempedoic acid is a safe and effective alternative to statins in high-risk patients intolerant to statins, decreasing the risk of MACE.
Collapse
Affiliation(s)
- Muhammad Hamayal
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Warda Shahid
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Chaudhary Humayun Akhtar
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Fnu Shekiba
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Iqra Iftikhar
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Muhammad Danyal Tahir
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Muhammad Awwab
- Quaid-e-Azam Medical College, Circular Road, Bahawalpur, 63100, Pakistan
| | - Saima Hussain
- University of Regina Saskatoon, The Concourse, Innovation Place, Saskatoon, SKS7N 3R3, Canada
| | - Saman Naeem
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| | - Momina Hafeez
- Federal Medical & Dental College (FMDC), Al-Farabi Center, Hanna Road, G-8/4, Islamabad, 44080, Pakistan
| |
Collapse
|
3
|
Park YA, Chang Y, Lee DH, Kim JS, Park M, Choi SA, Song TJ, Gwak HS. Association between coenzyme Q 10-related genetic polymorphisms and statin-associated myotoxicity in Korean stroke patients. Front Pharmacol 2024; 15:1358567. [PMID: 38774208 PMCID: PMC11106472 DOI: 10.3389/fphar.2024.1358567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction The purpose of this study is to identify the relationship between coenzyme Q 10 (CoQ10)-related gene polymorphisms and statin-related myotoxicity (SRM). Methods We retrospectively analyzed prospectively collected samples from February to May 2021. To investigate the association between CoQ10-related genetic factors and SRM, we selected 37 single nucleotide polymorphisms from five genes (COQ2, COQ3, COQ5, COQ6, and COQ7). The odds ratio (OR) and adjusted OR with 95% confidence intervals (CI) were calculated for univariate and multivariable logistic regression analyses, respectively. Results A total of 688 stroke patients were included in the analysis, including 56 SRM cases. In the multivariable analysis, two models were constructed using demographic factors only in model I, and demographic and genetic factors in model II. Compared to other statins, atorvastatin decreased the SRM risk whereas ezetimibe use increased the SRM risk in model I and model II. Patients with COQ2 rs4693075 G allele, COQ3 rs11548336 TT genotype, and COQ5 rs10849757 A allele had a 2.9-fold (95% CI: 1.6-5.3), 1.9-fold (95% CI: 1.1-3.5), and 3.3-fold (95% CI: 1.5-8.3) higher risk of SRM, respectively. Conclusion This study could be utilized to develop a personalized medicine strategy in patients treated with statins.
Collapse
Affiliation(s)
- Yoon-A Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonkyung Chang
- Department of Neurology, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Da Hoon Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Minju Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Seo-A Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu J, Chen J, Lv J, Gong Y, Song J. The mechanisms of ferroptosis in the pathogenesis of kidney diseases. J Nephrol 2024; 37:865-879. [PMID: 38704472 DOI: 10.1007/s40620-024-01927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/07/2024] [Indexed: 05/06/2024]
Abstract
The pathological features of acute and chronic kidney diseases are closely associated with cell death in glomeruli and tubules. Ferroptosis is a form of programmed cell death characterized by iron overload-induced oxidative stress. Ferroptosis has recently gained increasing attention as a pathogenic mechanism of kidney damage. Specifically, the ferroptosis signaling pathway has been found to be involved in the pathological process of acute and chronic kidney injury, potentially contributing to the development of both acute and chronic kidney diseases. This paper aims to elucidate the underlying mechanisms of ferroptosis and its role in the pathogenesis of kidney disease, highlighting its significance and proposing novel directions for its treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Medicine, Henan Technical Institute, Kaifeng, China
| | - Jianheng Chen
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lv
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jie Song
- Department of Nephrology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Wirth T, Guis S. Statin-induced myopathy: A rare entity? Joint Bone Spine 2024; 91:105630. [PMID: 37634874 DOI: 10.1016/j.jbspin.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Theo Wirth
- Service de rhumatologie, AP-HM, Marseille, France; Inserm UMRs1097 arthrites auto-immunes, Aix-Marseille université, Marseille, France
| | - Sandrine Guis
- Service de rhumatologie, AP-HM, Marseille, France; Inserm UMRs1097 arthrites auto-immunes, Aix-Marseille université, Marseille, France.
| |
Collapse
|
6
|
Wu F, Cui M, Wang S, Yu C, Yin W, Li J, Yan X. Effect of berberine on pharmacokinetics and pharmacodynamics of atorvastatin in hyperlipidemia rats. Xenobiotica 2023; 53:644-652. [PMID: 38054840 DOI: 10.1080/00498254.2023.2290648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Atorvastatin, an effective lipid-lowering drug, could reduce the risks of morbidity and mortality of cardiovascular diseases. Patients with cardiovascular diseases often use atorvastatin along with berberine. Atorvastatin is the substrate of CYP3A4 and P-gp. However, berberine is the inhibitor. The combination might lead to DDIs. The aim of this study was to assess the effect of berberine on pharmacokinetics and pharmacodynamics of atorvastatin in rats.Plasma concentrations of atorvastatin with or without berberine were determined by HPLC. Pharmacokinetics parameters were calculated and used to evaluate pharmacokinetics interactions. The effect of berberine on pharmacodynamics of atorvastatin was investigated by detecting blood lipid, SOD, MDA, GSH-Px, AST, ALT, and liver histopathology.Cmax, tmax, and AUC0-t of atorvastatin in combination group significantly increased both in normal and model rats (p < 0.01). The increase of t1/2, AUC0-t in model rats was more significant than that in normal rats (p < 0.05). Pharmacodynamics indexes in treatment groups were significantly improved, especially combination group (p < 0.05). Moreover, it could be found that there is a significant recovery in liver histopathology.In conclusion, berberine could affect pharmacokinetics of atorvastatin, enhance lipid-lowering effect and improve liver injury in rats. More attention should be paid to plasma exposure in clinical to avoid adverse reactions.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingyu Cui
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siwen Wang
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chao Yu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weihong Yin
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiao Li
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueying Yan
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
8
|
Shi Y, Jiang M, Zhang Y, Diao Y, Li N, Liu W, Qiu Z, Qiu Y, Jia A. Hyperoside Nanomicelles Alleviate Atherosclerosis by Modulating the Lipid Profile and Intestinal Flora Structure in High-Fat-Diet-Fed Apolipoprotein-E-Deficient Mice. Molecules 2023; 28:5088. [PMID: 37446750 DOI: 10.3390/molecules28135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a serious threat to human health and the main pathological basis of cardiovascular disease. Hyperoside (Hyp), a flavonoid found mainly in traditional Chinese herbs, can exert antitumor, anti-inflammatory, antioxidant, and cardiovascular-protective effects. Herein, we prepared hybrid nanomicelles (HFT) comprising Hyp loaded into pluronic F-127 and polyethylene glycol 1000 vitamin E succinate and assessed their effects on AS. To establish an AS model, apolipoprotein-E-deficient (ApoE-/-) mice were fed a high-fat diet. We then analyzed the effects of HFT on AS-induced changes in aortic tissues and metabolic markers, simultaneously assessing changes in gut flora community structure. In mice with AS, HFT significantly reduced the aortic plaque area; decreased levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, inflammatory factors, and inducible nitric oxide synthase (NOS); increased high-density lipoprotein cholesterol, endothelial NOS, superoxide dismutase, catalase, and glutathione levels; and promoted the proliferation of beneficial gut bacteria. HFT could regulate intestinal flora structure and lipid metabolism and inhibit inflammatory responses. These beneficial effects may be mediated by inhibiting nuclear factor kappa B signal activation, reducing inflammatory factor expression and improving gut microflora structure and dyslipidemia. The present study provides an empirical basis for the development and clinical application of new dosage forms of Hyp.
Collapse
Affiliation(s)
- Yuwen Shi
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengcheng Jiang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuhang Zhang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuanyuan Diao
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Na Li
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Weipeng Liu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhidong Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ye Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ailing Jia
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
9
|
Eloso J, Awad A, Zhao X, Cunningham FE, Zhang R, Dong D, Kelley C, Glassman PA, Aspinall SL. PCSK9 Inhibitor Use and Outcomes Using Concomitant Lipid-Lowering Therapies in the Veterans Health Administration. AMERICAN JOURNAL OF MEDICINE OPEN 2023; 9:100035. [PMID: 39035055 PMCID: PMC11256282 DOI: 10.1016/j.ajmo.2023.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 07/23/2024]
Abstract
Background Real-world data on use of PCSK9 inhibitors (PCSK9-Is), with or without statins and/or ezetimibe, and associated outcomes, can inform more effective prescribing. The objective was to evaluate clinical effectiveness and safety of PCSK9-Is within the Veterans Health Administration (VHA). Methods In this retrospective cohort study, we included Veterans who had at least one outpatient prescription for alirocumab and/or evolocumab filled within VHA between August 21, 2015, and September 30, 2020. Analyses included 4 mutually exclusive subgroups: PCSK9-I alone, PCSK9-I+statin, PCSK9-I+ezetimibe, and PCSK9-I+statin+ezetimibe subgroups. Primary outcomes included medication possession ratio, persistence, and low-density lipoprotein (LDL). Results Among Veterans in the analytical cohort (n = 2428), 36.2% were on PCSK9-I monotherapy; 24.0% received a PCSK9-I+statin; 27.4% were on a PCSK9-I+ezetimibe; and 12.4% received triple therapy, that is, PCSK9-I+statin+ezetimibe. The mean medication possession ratio (standard deviation [SD]) for PCSK9-I monotherapy was 83.8% (13.3) compared to 84.3% (11.2) with PCSK9-I+statin therapy, 87.1% (10.1) with PCSK9-I+ezetimibe therapy, and 85.8% (11.7) with triple therapy. The percentage of patients who discontinued PCSK9-I in the monotherapy subgroup was 12.3% vs 9.5%, 6.6%, and 7.4% in the concomitant statin, ezetimibe, and triple-therapy subgroups, respectively (p = .002 among the groups). Mean LDL level was greater in the PCSK9-I monotherapy subgroup (85.6 mg/dL) compared with the concomitant statin (66.5 mg/dL), ezetimibe (65.7 mg/dL), and triple-therapy subgroups (68.1 mg/dL). Conclusions Veterans showed good adherence and/or persistence with PCSK9-I regimens. On average, those receiving concomitant therapy with a statin and/or ezetimibe achieved significantly lower LDL levels.
Collapse
Affiliation(s)
- Jessica Eloso
- VA Center for Medication Safety/Pharmacy Benefits Management Services, Hines, Ill
| | - Asma Awad
- Jesse Brown VA Medical Center, Chicago, Ill
| | - Xinhua Zhao
- VA Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pa
| | | | - Rongping Zhang
- VA Center for Medication Safety/Pharmacy Benefits Management Services, Hines, Ill
| | - Diane Dong
- VA Center for Medication Safety/Pharmacy Benefits Management Services, Hines, Ill
| | - Cathy Kelley
- VA Pharmacy Benefits Management Services, Washington DC
| | - Peter A. Glassman
- VA Pharmacy Benefits Management Services, Washington DC
- VA Greater Los Angeles Healthcare System, Los Angeles, Calif
- David Geffen School of Medicine at UCLA, Los Angeles, Calif
| | - Sherrie L. Aspinall
- VA Center for Medication Safety/Pharmacy Benefits Management Services, Hines, Ill
- VA Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pa
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pa
| |
Collapse
|
10
|
Son Y, Shockey J, Dowd MK, Shieh JG, Cooper JA, Paton CM. A cottonseed oil-enriched diet improves liver and plasma lipid levels in a male mouse model of fatty liver. Am J Physiol Regul Integr Comp Physiol 2023; 324:R171-R182. [PMID: 36503254 DOI: 10.1152/ajpregu.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Michael K Dowd
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Josephine G Shieh
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia.,Department of Food Science & Technology, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Petrosyan AS, Rud' RS, Polyakov PP, Kade AK, Zanin SA. The Pathogenetic Basis of the Action of Bempedoic Acid. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.
Collapse
Affiliation(s)
| | - R. S. Rud'
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
12
|
Pharmacotherapy of the Lipid-Lowering Drugs: Update on Efficacy and Risk. Int J Mol Sci 2023; 24:ijms24020996. [PMID: 36674512 PMCID: PMC9864443 DOI: 10.3390/ijms24020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Lipid-lowering drugs are widely used for the prevention and cure of cardiovascular diseases (CVD) [...].
Collapse
|
13
|
Dheyaa Aziz N, Abbood SH, Al-Mayali AH, Hadi NR. ASSOCIATION OF SOLUTE CARRIER ORGANIC ANION TRANSPORTER 1B1 GENE POLYMORPHISM WITH RESPONSE TO ATORVASTATIN AND ASSOCIATED MYOPATHY IN IRAQI DYSLIPIDEMIA PATIENTS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:496-503. [PMID: 38069850 DOI: 10.36740/merkur202305108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Aim: The study aims to investigate the effect of solute carriers organic anions transporters 1B1 (SLCO1B1) gene polymorphisms rs4149056, rs2306283, rs55901008, and rs729559745 in a sample of patients with dyslipidemia, and relate it to atorvastatin response and associated myopathy. PATIENTS AND METHODS Materials and Methods: A cross sectional enrolled 200 patients both males and females of Arabic race, Iraqi nationality aged between 30-65 years. The patients were divided into two groups: Group 1 (Atorvastatin responders and tolerant), Group 2 (Atorvastatin non responder and intolerant). Blood samples collected from the patients for biochemical studies and analyzed statistically by Student T-test and Chi-square, and DNA extracted for polymerase chains reactions (PCR). RESULTS Results: The results showed insignificant association P≥0.05 between the demographic characteristics of the study population with different genotypes, and significant difference P<0.05 in the biochemical parameters regarding (T-cholesterol, triglycerides, low density lipoproteins, and Creatine kinase-MM) when comparing the two groups. Odds ratio (OR) with confidence intervals CI (95%) used to evaluate the risk association to develop myopathy and poor response to atorvastatin therapy show relevant association for CC and CT genotype of rs4149056, while rs2306283 GG genotype show low association, also rs55901008 show low association for CC genotype, and moderate association for rs72559745 genotypes GG, AG. CONCLUSION Conclusions: The mutant allele's genotypes of rs4149056, rs55901008, and rs72559745, and the wild allele genotype of rs2306283 show significant association with the development of poor response to atorvastatin and elevated the level of CK-MM plasma concentration.
Collapse
Affiliation(s)
- Noor Dheyaa Aziz
- DEPARTMENT OF CLINICAL PHARMACY, COLLEGE OF PHARMACY, UNIVERSITY OF KERBALA, KERBALA, IRAQ
| | - Sameer H Abbood
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, SCHOOL OF MEDICINE, KUFA UNIVERSITY, KUFA, IRAQ
| | - Ahmed H Al-Mayali
- DEPARTMENT OF INTERNAL MEDICINE, COLLEGE OF MEDICINE, UNIVERSITY OF KERBALA, KERBALA, IRAQ
| | - Najah Rayish Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| |
Collapse
|
14
|
Wang S, Gao Z, Yang Y, Zhang Q, Huang J, Wang B, Lei S, Tan Q, Liu D, Guo L, Song Y, Liu J, Ma T, Tian Y. Sonodynamic Therapy With Concentric Ultrasound Imaging Array for Precision Theranostics for Atherosclerotic Plaque. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3270-3283. [PMID: 36269912 DOI: 10.1109/tuffc.2022.3215436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of human disability and mortality. Our previous study demonstrated the safety and efficacy of sonodynamic therapy (SDT) on atherosclerotic plaques. However, traditional single-element therapeutic transducer has single acoustic field, and positioning therapeutic and imaging transducers in the same position is difficult during ultrasound imaging-guided SDT. Continuously changing the position of transducers to intervene lesions in different positions is required, increasing the difficulty of treatment. Thus, an SDT device with precise theranostics is required. Therefore, we designed and fabricated a "concentric ultrasound transducer for theranostics" (CUST-T), comprising a central 8-MHz linear array transducer for ultrasound imaging, and a peripheral 1-MHz hollow two-dimensional (2-D) planar array transducer for generating phased-array focused ultrasound (PAFUS). The CUST-T exhibited high imaging resolution at a distance of up to 20 mm from the transducer and could generate a personalized complex PAFUS acoustic field to match various lesions. In vitro biomedical results showed that PAFUS-SDT induced RAW264.7-derived foam cell apoptosis leading to a targeting field apoptotic rate 4.36-6.24 times that of the nontargeting field and the significant apoptotic region was consistent with the PAFUS acoustic field. In vivo, PAFUS-SDT guided by ultrasound imaging significantly increased the lumen area ( ) and collagen level ( ), whereas the wall thickness ( ) and lipid content ( ) of rabbit femoral artery were reduced. In conclusion, CUST-T provided image guidance sufficient for accurate SDT for atherosclerotic plaques in peripheral arteries and could be applied in clinical practice.
Collapse
|
15
|
18 F-FDG Muscular Uptake in Statin-Associated Symptoms Without Myositis : How Long to Stop Treatment for Image Quality Improvement? Clin Nucl Med 2022; 47:1116-1117. [PMID: 36127793 PMCID: PMC9653103 DOI: 10.1097/rlu.0000000000004389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Statin-associated muscle symptoms are a frequent adverse effect of statin treatment and can lead to a statin-associated myopathy characterized by a significant serum creatine kinase increase. We report the case of an 80-year-old man who presented an increased muscular 18 F-FDG uptake in a statin-associated muscle symptom without creatine kinase abnormality or inflammation. Statin treatment was discontinued for 6 hours, 3 days, and 7 days on consecutive follow-up examinations. The 1-week window clearly enhanced image quality. This case illustrates the possibility of diffuse muscular 18 F-FDG uptake without myositis and the need for a minimal 1-week statin discontinuation to reduce muscular uptake.
Collapse
|
16
|
Muñoz-Blanco A, Gómez-Huelgas R, Gómez-Cerezo JF. Statin-associated muscle symptoms: Myth or reality? Rev Clin Esp 2022; 222:602-611. [PMID: 35810133 DOI: 10.1016/j.rceng.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Statin-associated muscle symptoms is an entity that encompasses a constellation of various clinical manifestations of variyng severity. Since the introduction of the first statins, numerous studies have been published regarding its incidence, pathophysiology, diagnosis and treatment; however, to this day these aspects are still controversial. With the progressive increase in the use of statins in the general population, notifications of adverse reactions related to its use have multiplied, particularly those related to muscular toxicity. Nevertheless, the differences between the published studies, both in methodology and in the results obtained, make this relationship a complex issue of great interest for clinicians and patients. The integration of the evidence that we currently have can help us understand better this entity and facilitate its management in clinical practice.
Collapse
Affiliation(s)
- A Muñoz-Blanco
- Servicio de Medicina Interna, Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain.
| | - R Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - J F Gómez-Cerezo
- Servicio de Medicina Interna, Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| |
Collapse
|
17
|
Wu H, Wahane A, Alhamadani F, Zhang K, Parikh R, Lee S, McCabe EM, Rasmussen TP, Bahal R, Zhong XB, Manautou JE. Nephrotoxicity of marketed antisense oligonucleotide drugs. CURRENT OPINION IN TOXICOLOGY 2022; 32:100373. [PMID: 37193356 PMCID: PMC10174585 DOI: 10.1016/j.cotox.2022.100373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of antisense oligonucleotide (ASO)-based therapies have been making strides in precision medicine due to their potent therapeutic application. Early successes in treating some genetic diseases are now attributed to an emerging class of antisense drugs. After two decades, the US Food and Drug Administration (FDA) has approved a considerable number of ASO drugs, primarily to treat rare diseases with optimal therapeutic outcomes. However, safety is one of the biggest challenges to the therapeutic utility of ASO drugs. Due to patients' and health care practitioners' urgent demands for medicines for untreatable conditions, many ASO drugs have been approved. However, a complete understanding of the mechanisms of adverse drug reactions (ADRs) and toxicities of ASOs still need to be resolved. The range of ADRs is unique to a specific drug, while few ADRs are common to a section of drugs as a whole. Nephrotoxicity is an important concern that needs to be addressed considering the clinical translation of any drug candidates ranging from small molecules to ASO-based drugs. This article encompasses what is known about the nephrotoxicity of ASO drugs, the potential mechanisms of action(s), and recommendations for future investigations on the safety of ASO drugs.
Collapse
Affiliation(s)
- Hangyu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Feryal Alhamadani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Kristy Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rajvi Parikh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
18
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
19
|
Feng Z, Li X, Tong WK, He Q, Zhu X, Xiang X, Tang Z. Real-world safety of PCSK9 inhibitors: A pharmacovigilance study based on spontaneous reports in FAERS. Front Pharmacol 2022; 13:894685. [PMID: 36506552 PMCID: PMC9729267 DOI: 10.3389/fphar.2022.894685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: We aimed to evaluate alirocumab- and evolocumab-related adverse events (AEs) in real-world compared with all other drugs, overall and by gender and age subgroups; we also aimed to compare their risks of cognitive impairment, musculoskeletal disorders and diabetes with various statins and ezetimibe. Methods: We retrospectively extracted AE reports from the FDA Adverse Event Reporting System (FAERS) database during July 2015-June 2021. Disproportionality analyses were performed using reporting odds ratios (RORs) to detect AE signals of alirocumab and evolocumab in the overall population and in different age and gender subgroups, respectively. Results: Compared with all other drugs, both alirocumab and evolocumab had a significant signal in "musculoskeletal and connective tissue disorders" (ROR1 = 2.626, 95% CI 2.552-2.702; ROR2 = 2.575, 95% CI 2.538-2.613). The highest ROR value of 2.311 (95% CI 2.272-2.351) was for "injury, poisoning and procedural complications" and was found in patients aged ≥65 years on evolocumab. The most frequent AEs were "general disorders and administration site conditions" and "musculoskeletal and connective tissue disorders" for all subpopulations. At the preferred term level, the most frequent AE signal was myalgia for alirocumab and injection site pain for evolocumab, overall and by subgroups. Compared with statins/ezetimibe, PCSK9 inhibitors exhibited lower ROR values for adverse events associated with SOC "nervous system disorders", "psychiatric disorders" and "metabolism and nutrition disorders" (all RORs < 1), but mixed results for musculoskeletal disorders. Compared with all other drugs, undocumented AEs, such as acute cardiac event (ROR = 30.0, 95% CI 9.4-95.3) and xanthoma (ROR = 9.3, 95% CI 3.4-25.5), were also reported. Conclusion: Real-world evidence showed that PCSK9 inhibitors were associated with an increased risk of musculoskeletal and connective tissue disorders and general disorders and administration site conditions, overall and by subgroups. Muscle toxicity, injection site reactions, and influenza-like illness were significant AE signals. Compared with various statins and ezetimibe, PCSK9 inhibitors have shown a favorable safety profile in muscle-related events, cognitive impairment and diabetes. Some undocumented AE signals were also reported. Due to the limitations of spontaneous reporting databases, further studies are still needed to establish causality and validate our results.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoye Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wai Kei Tong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China,*Correspondence: Zhijia Tang,
| |
Collapse
|
20
|
Chin YH, Lim O, Lin C, Chan YY, Kong G, Ng CH, Chong B, Syn N, Chan KE, Muthiah MD, Siddiqui MS, Wang JW, Figtree G, Chan MY, Chew NWS. Meta-analysis of the Placebo and Nocebo Effects Associated with Placebo Treatment in Randomized Trials of Lipid Lowering Therapy. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2022:qcac060. [PMID: 36107462 DOI: 10.1093/ehjqcco/qcac060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Randomized controlled trials (RCTs) of lipid-lowering therapy (LLT) in which the control groups received placebo without background LLT offer unique insights into the placebo and nocebo effects of lipid-lowering RCTs. METHODS Embase and Medline were searched for hyperlipidemia RCTs with placebo-controlled arms. Placebo arms with background LLT were excluded. A single arm meta-analysis of proportions was used to estimate major adverse cardiovascular events (MACE) and adverse events (AE). A meta-analysis of means was used to estimate the pooled mean differences of total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoproteins (HDL) and triglycerides. RESULTS A total of 40 RCTs and 37 668 placebo-treated participants were included. The pooled mean changes for TC, LDL, HDL, and triglycerides were -0.019 mmol/L, -0.028 mmol/L, 0.013 mmol/L and 0.062 mmol/L respectively among placebo-treated participants, indicating a modest placebo effect. The pooled average nocebo effect among placebo-treated participants was 42.62% for all AEs and 3.38% for musculoskeletal-related AEs, 11.36% for gastrointestinal-related AEs and 6.62% for headaches. Placebo-treated participants in secondary prevention RCTs had a far higher incidence of these nocebo effects than primary prevention RCTs: any AEs (OR 6.76, 95%CI: 5.56-8.24, P < 0.001), and gastrointestinal-related AE (OR 1.23, 95%CI: 1.00-1.51, P = 0.049). No differences in nocebo effects were found between the placebo arms of statin and non-statin trials. CONCLUSION Our meta-analysis of placebo-treated participants in RCTs with no background LLT indicate a modest placebo effect but prominent nocebo effect of musculoskeletal, headache and gastrointestinal symptoms that was greatest among secondary prevention RCTs. These findings may inform the design of future LLT RCTs.
Collapse
Affiliation(s)
- Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oliver Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaoxing Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Yi Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mohammad Shadab Siddiqui
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, USA
| | - Jiong-Wei Wang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
| | - Gemma Figtree
- Northern Clinical School, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Mark Y Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, Singapore
| |
Collapse
|
21
|
Sintomatología muscular asociada a estatinas: ¿mito o realidad? Rev Clin Esp 2022. [DOI: 10.1016/j.rce.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
23
|
Doerfler AM, Han J, Jarrett KE, Tang L, Jain A, Saltzman A, De Giorgi M, Chuecos M, Hurley AE, Li A, Morand P, Ayala C, Goodlett DR, Malovannaya A, Martin JF, de Aguiar Vallim TQ, Shroyer N, Lagor WR. Intestinal Deletion of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Promotes Expansion of the Resident Stem Cell Compartment. Arterioscler Thromb Vasc Biol 2022; 42:381-394. [PMID: 35172604 PMCID: PMC8957608 DOI: 10.1161/atvbaha.122.317320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kelsey E. Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
| | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Marcel Chuecos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Ang Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Pauline Morand
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
| | - Claudia Ayala
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Goodlett
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - James F. Martin
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA
| | - Noah Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
24
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effect of Green Tea Extract and Soy Isoflavones on the Pharmacokinetics of Rosuvastatin in Healthy Volunteers. Front Nutr 2022; 9:850318. [PMID: 35399656 PMCID: PMC8987933 DOI: 10.3389/fnut.2022.850318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIM Green tea and soy products are extensively consumed in daily life. Research has shown that green tea catechins and soy isoflavones may influence the activity of drug metabolizing enzymes and drug transporters. We examined whether regular consumption of green tea extract or soy isoflavones affected the pharmacokinetics of a single dose of rosuvastatin in healthy subjects and whether any interactions were influenced by the polymorphism in the drug transporter ABCG2. STUDY DESIGN This was an open-label, three-phase randomized crossover study with single doses of rosuvastatin. METHODS Healthy Chinese male subjects were given a single dose of rosuvastatin 10 mg on 3 occasions: 1. without herbs; 2. with green tea extract; 3. with soy isoflavone extract. The green tea and soy isoflavone extract were given at a dose containing EGCG 800 mg once daily or soy isoflavones-80 mg once daily for 14 days before statin dosing and at the same time as the statin dosing with at least 4-weeks washout period between phases. RESULTS Twenty healthy male subjects completed the study and the intake of green tea extract significantly reduced the systemic exposure to rosuvastatin by about 20% reducing AUC0-24h from [geometric mean (% coefficient of variation)] 108.7 (28.9) h·μg/L to 74.1 (35.3) h·μg/L and Cmax from 13.1 (32.2) μg/L to 7.9 (38.3) μg/L (P < 0.001 for both), without affecting the elimination half-life. The ABCG2 421C>A polymorphism had a significant effect on rosuvastatin exposure but no impact on the interaction with green tea. Soy isoflavones had no significant effect on rosuvastatin pharmacokinetics. CONCLUSION This study showed that repeated administration of green tea extract significantly reduced the systemic exposure of rosuvastatin in healthy volunteers. These effects might be predicted to either reduce or increase the lipid-lowering effect of rosuvastatin depending on the mechanism of the effect.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
25
|
Campos LM, Guapyassu L, Gomes C, Midlej V, Benchimol M, Mermelstein C, Costa ML. Simvastatin and Muscle: Zebrafish and Chicken Show that the Benefits are not Worth the Damage. Front Cell Dev Biol 2022; 10:778901. [PMID: 35359432 PMCID: PMC8964290 DOI: 10.3389/fcell.2022.778901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Simvastatin is one of the most common medicines prescribed to treat human hypercholesterolemia. Simvastatin acts through the inhibition of cholesterol synthesis. Unfortunately, simvastatin causes unwanted side effects on muscles, such as soreness, tiredness, or weakness. Therefore, to understand the mechanism of action of simvastatin, it is important to study its physiological and structural impacts on muscle in varied animal models. Here we report on the effects of simvastatin on two biological models: zebrafish embryos and chicken muscle culture. In the last years, our group and others showed that simvastatin treatment in zebrafish embryos reduces fish movements and induces major structural alterations in skeletal muscles. We also showed that simvastatin and membrane cholesterol depletion induce major changes in proliferation and differentiation of muscle cells in chick muscle cultures. Here, we review and discuss these observations considering reported data on the use of simvastatin as a potential therapy for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Laise M. Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Livia Guapyassu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cyro Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade do Grande Rio (UNIGRANRIO), Duque de Caxias, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Claudia Mermelstein, r
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Simvastatin Downregulates Cofilin and Stathmin to Inhibit Skeletal Muscle Cells Migration. Int J Mol Sci 2022; 23:ijms23052848. [PMID: 35269994 PMCID: PMC8911248 DOI: 10.3390/ijms23052848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Statins are the most effective therapeutic agents for reducing cholesterol synthesis. Given their widespread use, many adverse effects from statins have been reported; of these, musculoskeletal complications occurred in 15% of patients after receiving statins for 6 months, and simvastatin was the most commonly administered statin among these cases. This study investigated the negative effects of simvastatin on skeletal muscle cells. We performed RNA sequencing analysis to determine gene expression in simvastatin-treated cells. Cell proliferation and migration were examined through cell cycle analysis and the transwell filter migration assay, respectively. Cytoskeleton rearrangement was examined through F-actin and tubulin staining. Western blot analysis was performed to determine the expression of cell cycle-regulated and cytoskeleton-related proteins. Transfection of small interfering RNAs (siRNAs) was performed to validate the role of cofilin and stathmin in the simvastatin-mediated inhibition of cell migration. The results revealed that simvastatin inhibited the proliferation and migration of skeletal muscle cells and affected the rearrangement of F-actin and tubulin. Simvastatin reduced the expression of cofilin and stathmin. The knockdown of both cofilin and stathmin by specific siRNA synergistically impaired cell migration. In conclusion, our results indicated that simvastatin inhibited skeletal muscle cell migration by reducing the expressions of cofilin and stathmin.
Collapse
|
27
|
Musculoskeletal Adverse Events Associated with PCSK9 Inhibitors: Disproportionality Analysis of the FDA Adverse Event Reporting System. Cardiovasc Ther 2022; 2022:9866486. [PMID: 35140810 PMCID: PMC8808238 DOI: 10.1155/2022/9866486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Background. Some studies suggest that potential safety issues about PCSK9 inhibitors have not been sufficiently explored in clinical trials, including musculoskeletal adverse events (MAEs). Objective. To examine the association between use of PCSK9 inhibitors with and without concurrent statins and risk of MAEs. Patients and Methods. FDA Adverse Event Reporting System (FAERS) dataset of PCSK9 inhibitors and statins from October 2015 to June 2021 was queried. The reporting odds ratio (ROR) with relevant 95% confidence interval (95% CI) was calculated as the index of disproportionality. Outcome of MAEs of different PCSK9 inhibitors regimens was also investigated. Results. 3,185 cases of PCSK9 inhibitor-associated MAEs were recorded. PCSK9 inhibitor class alone demonstrated a strong link to MAEs (ROR 5.92; 95% CI 5.70-6.15), and evolocumab was associated with more reports of MAEs than alirocumab. Concomitant use with statins leaded to an increased occurrence of MAEs (ROR 32.15 (25.55-40.46)), and the risk differed among different statins. The PCSK9 inhibitors were safer than statins in terms of hospitalization rate and death rate (15.64% vs. 36.83%; 0.72% vs. 3.53%). Conclusions. This pharmacovigilance investigation suggests that PCSK9 inhibitors are associated with MAEs. The risk significantly increases when combined with statins. Increased laboratory and clinical monitoring are required to timely diagnose and manage MAEs.
Collapse
|
28
|
Vahedian-Azimi A, Shojaie S, Banach M, Heidari F, Cicero AFG, Khoshfetrat M, Jamialahmadi T, Sahebkar A. Statin therapy in chronic viral hepatitis: a systematic review and meta-analysis of nine studies with 195,602 participants. Ann Med 2021; 53:1227-1242. [PMID: 34296976 PMCID: PMC8317925 DOI: 10.1080/07853890.2021.1956686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Conflicting data suggest that statins could cause chronic liver disease in certain group of patients, while improving prognosis in those with chronic viral hepatitis (CVH). PURPOSE To quantify the potential protective role of statins on some main liver-related health outcomes in clinical studies on CVH patients.Data Sources: The search strategy was explored by a medical librarian using bibliographic databases, from January 2015 to April 2020.Data synthesis: The results showed no significant difference in the risk of mortality between statin users and non-users in the overall analysis. However, the risk of mortality significantly reduced by 39% in statin users who were followed for more than three years. Moreover, the risk of HCC, fibrosis, and cirrhosis in those on statins decreased by 53%, 45% and 41%, respectively. Although ALT and AST reduced slightly following statin therapy, this reduction was not statistically significant. LIMITATIONS A significant heterogeneity among studies was observed, resulting from differences in clinical characteristics between statin users and non-users, study designs, population samples, diseases stage, comorbidities, and confounding covariates. CONCLUSION Not only long-term treatment with statins seems to be safe in patients affected by hepatitis, but also it significantly improves their prognosis.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaie
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Farshad Heidari
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo F. G. Cicero
- Atherosclerosis Research Unit, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Masoum Khoshfetrat
- Department of Anesthesiology and Critical Care, Khatamolanbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Statins and Bempedoic Acid: Different Actions of Cholesterol Inhibitors on Macrophage Activation. Int J Mol Sci 2021; 22:ijms222212480. [PMID: 34830364 PMCID: PMC8623589 DOI: 10.3390/ijms222212480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023] Open
Abstract
Statins represent the most prescribed class of drugs for the treatment of hypercholesterolemia. Effects that go beyond lipid-lowering actions have been suggested to contribute to their beneficial pharmacological properties. Whether and how statins act on macrophages has been a matter of debate. In the present study, we aimed at characterizing the impact of statins on macrophage polarization and comparing these to the effects of bempedoic acid, a recently registered drug for the treatment of hypercholesterolemia, which has been suggested to have a similar beneficial profile but fewer side effects. Treatment of primary murine macrophages with two different statins, i.e., simvastatin and cerivastatin, impaired phagocytotic activity and, concurrently, enhanced pro-inflammatory responses upon short-term lipopolysaccharide challenge, as characterized by an induction of tumor necrosis factor (TNF), interleukin (IL) 1β, and IL6. In contrast, no differences were observed under long-term inflammatory (M1) or anti-inflammatory (M2) conditions, and neither inducible NO synthase (iNOS) expression nor nitric oxide production was altered. Statin treatment led to extracellular-signal regulated kinase (ERK) activation, and the pro-inflammatory statin effects were abolished by ERK inhibition. Bempedoic acid only had a negligible impact on macrophage responses when compared with statins. Taken together, our data point toward an immunomodulatory effect of statins on macrophage polarization, which is absent upon bempedoic acid treatment.
Collapse
|
30
|
Liu T, Zhong S, Zhai Q, Zhang X, Jing H, Li K, Liu S, Han S, Li L, Shi X, Bao Y. Optimal Course of Statins for Patients With Aneurysmal Subarachnoid Hemorrhage: Is Longer Treatment Better? A Meta-Analysis of Randomized Controlled Trials. Front Neurosci 2021; 15:757505. [PMID: 34759796 PMCID: PMC8573116 DOI: 10.3389/fnins.2021.757505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Statins are used in clinical practice to prevent from complications such as cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (aSAH). However, the efficacy and safety of statins are still controversial due to insufficient evidence from randomized controlled trials and inconsistent results of the existing studies. This meta-analysis aimed to systematically review the latest evidence on the time window and complications of statins in aSAH. The randomized controlled trials in the databases of The Cochrane Library, PubMed, Web of Science, Embase, CNKI, and Wanfang from January 2005 to April 2021 were searched and analyzed systematically. Data analysis was performed using Stata version 16.0. The fixed-effects model (M-H method) with effect size risk ratio (RR) was used for subgroups with homogeneity, and the random-effects model (D-L method) with effect size odds ratio (OR) was used for subgroups with heterogeneity. The primary outcomes were poor neurological prognosis and all-cause mortality, and the secondary outcomes were cerebral vasospasm (CVS) and statin-related complications. This study was registered with PROSPERO (International Prospective Register of Systematic Reviews; CRD42021247376). Nine studies comprising 1,464 patients were included. The Jadad score of the patients was 5–7. Meta-analysis showed that poor neurological prognosis was reduced in patients who took oral statins for 14 days (RR, 0.73 [0.55–0.97]; I2 = 0%). Surprisingly, the continuous use of statins for 21 days had no significant effect on neurological prognosis (RR, 1.04 [0.89–1.23]; I2 = 17%). Statins reduced CVS (OR, 0.51 [0.36–0.71]; I2 = 0%) but increased bacteremia (OR, 1.38 [1.01–1.89]; I2 = 0%). In conclusion, a short treatment course of statins over 2 weeks may improve neurological prognosis. Statins were associated with reduced CVS. Based on the pathophysiological characteristics of CVS and the evaluation of prognosis, 2 weeks could be the optimal time window for statin treatment in aSAH, although bacteremia may increase.
Collapse
Affiliation(s)
- Tao Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qingqing Zhai
- School of Management, Shanghai University, Shanghai, China
| | - Xudong Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiquan Jing
- School of Public Health, Capital Medical University, Beijing, China
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengyu Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Han
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lishuai Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Shi
- School of Maths and Information Science, Shandong Institute of Business and Technology, Yantai, China.,Business School, Manchester Metropolitan University, Manchester, United Kingdom
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Warren T, McAllister R, Morgan A, Rai TS, McGilligan V, Ennis M, Page C, Kelly C, Peace A, Corfe BM, Mc Auley M, Watterson S. The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism. Cells 2021; 10:2007. [PMID: 34440777 PMCID: PMC8392689 DOI: 10.3390/cells10082007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin D and cholesterol metabolism overlap significantly in the pathways that contribute to their biosynthesis. However, our understanding of their independent and co-regulation is limited. Cardiovascular disease is the leading cause of death globally and atherosclerosis, the pathology associated with elevated cholesterol, is the leading cause of cardiovascular disease. It is therefore important to understand vitamin D metabolism as a contributory factor. From the literature, we compile evidence of how these systems interact, relating the understanding of the molecular mechanisms involved to the results from observational studies. We also present the first systems biology pathway map of the joint cholesterol and vitamin D metabolisms made available using the Systems Biology Graphical Notation (SBGN) Markup Language (SBGNML). It is shown that the relationship between vitamin D supplementation, total cholesterol, and LDL-C status, and between latitude, vitamin D, and cholesterol status are consistent with our knowledge of molecular mechanisms. We also highlight the results that cannot be explained with our current knowledge of molecular mechanisms: (i) vitamin D supplementation mitigates the side-effects of statin therapy; (ii) statin therapy does not impact upon vitamin D status; and critically (iii) vitamin D supplementation does not improve cardiovascular outcomes, despite improving cardiovascular risk factors. For (iii), we present a hypothesis, based on observations in the literature, that describes how vitamin D regulates the balance between cellular and plasma cholesterol. Answering these questions will create significant opportunities for advancement in our understanding of cardiovascular health.
Collapse
Affiliation(s)
- Tara Warren
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Roisin McAllister
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Amy Morgan
- Department of Chemical Engineering, Faculty of Science & Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ, UK; (A.M.); (M.M.A.)
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Matthew Ennis
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Christopher Page
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Aaron Peace
- Cardiology Unit, Western Health and Social Care Trust, Altnagelvin Regional Hospital, Derry BT47 6SB, UK;
| | - Bernard M. Corfe
- Human Nutrition Research Centre, Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Mark Mc Auley
- Department of Chemical Engineering, Faculty of Science & Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ, UK; (A.M.); (M.M.A.)
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| |
Collapse
|
32
|
Giglio RV, Pantea Stoian A, Al-Rasadi K, Banach M, Patti AM, Ciaccio M, Rizvi AA, Rizzo M. Novel Therapeutical Approaches to Managing Atherosclerotic Risk. Int J Mol Sci 2021; 22:4633. [PMID: 33924893 PMCID: PMC8125277 DOI: 10.3390/ijms22094633] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifactorial vascular disease that leads to inflammation and stiffening of the arteries and decreases their elasticity due to the accumulation of calcium, small dense Low Density Lipoproteins (sdLDL), inflammatory cells, and fibrotic material. A review of studies pertaining to cardiometabolic risk factors, lipids alterations, hypolipidemic agents, nutraceuticals, hypoglycaemic drugs, atherosclerosis, endothelial dysfunction, and inflammation was performed. There are several therapeutic strategies including Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) inhibitors, inclisiran, bempedoic acid, Glucagon-Like Peptide-1 Receptor agonists (GLP-1 RAs), and nutraceuticals that promise improvement in the atheromatous plaque from a molecular point of view, because have actions on the exposure of the LDL-Receptor (LDL-R), on endothelial dysfunction, activation of macrophages, on lipid oxidation, formations on foam cells, and deposition extracellular lipids. Atheroma plaque reduction both as a result of LDL-Cholesterol (LDL-C) intensive lowering and reducing inflammation and other residual risk factors is an integral part of the management of atherosclerotic disease, and the use of valid therapeutic alternatives appear to be appealing avenues to solving the problem.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat 123, Oman;
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital, 90127 Palermo, Italy
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Manfredi Rizzo
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University, 050474 Bucharest, Romania;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
33
|
Camerino GM, Tarantino N, Canfora I, De Bellis M, Musumeci O, Pierno S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int J Mol Sci 2021; 22:ijms22042070. [PMID: 33669797 PMCID: PMC7921957 DOI: 10.3390/ijms22042070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Nancy Tarantino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
- Correspondence:
| |
Collapse
|
34
|
Banach M, Penson PE. Drucebo effect - the challenge we should all definitely face! Arch Med Sci 2021; 17:542-543. [PMID: 33747289 PMCID: PMC7959055 DOI: 10.5114/aoms/132304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/20/2023] Open
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland
| | | |
Collapse
|
35
|
Sachinidis AG, Nikolic D, Stoian AP, Toth PP, Rizzo M. Nutraceuticals and Lipid Management. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-56514-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
37
|
Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in Relation to COVID-19: Should We Care about It? J Clin Med 2020; 9:1909. [PMID: 32570882 PMCID: PMC7356583 DOI: 10.3390/jcm9061909] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Current data suggest that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing corona virus disease-19 (COVID-19) seems to follow a more severe clinical course in patients with cardiovascular disease (CVD), hypertension, and overweight/obesity. It appears that lipid-lowering pharmacological interventions, in particular statins, might reduce the risk of cardiovascular complications caused by COVID-19 and might potentially have an additional antiviral activity. It has been shown that high cholesterol levels are associated with more lipid rafts, subdomains of the plasma membrane that can harbour angiotensin-converting enzyme 2 (ACE2) receptors for the S-protein of SARS-CoV-2. Evidence of the importance of cholesterol for viral entry into host cells could suggest a role for cholesterol-lowering therapies in reducing viral infectivity. In addition to their lipid-lowering and plaque-stabilisation effects, statins possess pleiotropic effects including anti-inflammatory, immunomodulatory, and antithrombotic activities. Lower rates of mortality and intubation have been reported in studies investigating statin therapy in influenza infection, and statin therapy was shown to increase viral clearance from the blood during chronic hepatitis C infection. Statins may also serve as potential SARS-CoV-2 main protease inhibitors, thereby contributing to the control of viral infection. In this review, we elaborate on the role of cholesterol level in the process of the coronavirus infection and provide a critical appraisal on the potential of statins in reducing the severity, duration, and complications of COVID-19.
Collapse
Affiliation(s)
- Dina Radenkovic
- Guy’s and St Thomas’ Hospital, London SE1 7EH, UK;
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK;
| | - Shreya Chawla
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK;
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran 314715311, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz (MUL), Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| |
Collapse
|
38
|
Banach M, Penson PE, Fras Z, Vrablik M, Pella D, Reiner Ž, Nabavi SM, Sahebkar A, Kayikcioglu M, Daccord M. Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res 2020; 158:104891. [PMID: 32389859 PMCID: PMC7204727 DOI: 10.1016/j.phrs.2020.104891] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Individuals with Familial Hypercholesterolaemia (FH) are at very high risk of cardiovascular disease, which is associated with poor outcomes from coronavirus infections. COVID-19 puts strain on healthcare systems and may impair access to routine FH services. On behalf of the International Lipid Expert Panel (ILEP) and the European FH Patient Network (FH Europe), we present brief recommendations on the management of adult patients with FH during the COVID-19 pandemic. We discuss the implications of COVID-19 infections for FH patients, the importance of continuing lipid-lowering therapy where possible, issues relating to safety monitoring and service delivery. We summarise the evidence for additional benefits of statins and other lipid-lowering drugs during viral infections. The recommendations do not override in any way the individual responsibility of physicians to make appropriate and accurate decisions taking into account the condition of a given patient and the doses, rules, and regulations applicable to drugs and devices at the time of their prescription/use.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Zlatko Fras
- Division of Medicine, Centre for Preventive Cardiology, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michal Vrablik
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Prague, Czech Republic
| | - Daniel Pella
- Department of Cardiology of the East Slovak Institute of Cardiovascular Disease and Faculty of Medicine PJ Safarik University, Kosice, Slovak Republic
| | - Željko Reiner
- Department of Internal Diseases University Hospital Center Zagreb School of Medicine, Zagreb University, Zagreb, Croatia
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meral Kayikcioglu
- Department of Cardiology, Ege Üniversitesi School of Medicine, Izmir, Turkey
| | | |
Collapse
|