1
|
Yousef RG, Eissa IH, Elkady H, Eldehna WM, Mehany ABM, Nabeeh A, Ibrahim IM, Elwan A, El-Zahabi MA. New nicotinamide derivatives as potential anticancer agents targeting VEGFR-2: design, synthesis, in vitro, and in silico studies. J Biomol Struct Dyn 2025; 43:2120-2137. [PMID: 38100580 DOI: 10.1080/07391102.2023.2294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Herin, new nicotinamide candidates were designed and synthesized as VEGFR-2 inhibitors. In vitro antiproliferative activities were assessed against MCF-7, HepG-2 and HCT-116 cancer cell lines. The top cytotoxic members 15a, 15b, 16, 18a, and 18b were estimated against their selected target (VEGFR-2). Further mechanistic tests were studied for the most potent cytotoxic candidate 18a, these studies revealed the ability of compound 18a to hinder the progression of HCT-116 cells at S and Pre-G1phases besides boosting early and late apoptosis. Also compound 18a was found to significantly decrease the levels immunomodulatory proteins TNF-α and IL-6 while showing a four-fold rise in an apoptotic marker caspase-3 when compared to control cells. The therapeutic index of the designed derivatives was evaluated by computational ADMET and toxicity calculations as well as their potentiality to occupy the VEGFR-2 active site was signposted by molecular docking assessments. Finally, molecular dynamic simulation studies of compound 18a-VEGFR-2 complex indicated the high steadiness of compound 18a in the VEGFR-2 active site. This study presents compound 18a as a lead candidate that can be optimized to get a strong VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Zha H, Li F, Cai L, Liu W, Zhang M, Gu S, Feng H, Xia Z, Guo C, Wu X, Li C, Zhu S, Li R, Shi J, Liu X. Design, synthesis and biological evaluation of indazole derivatives as VEGFR-2 kinase inhibitors with anti-angiogenic properties. Eur J Med Chem 2024; 279:116889. [PMID: 39353237 DOI: 10.1016/j.ejmech.2024.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The strategy of inhibiting angiogenesis, specifically by targeting vascular endothelial growth factor receptor 2 (VEGFR-2), has been proven effective in tumor treatment. In this study, we designed several VEGFR-2 kinase inhibitors based on an indazole scaffold. Among them, the most potent compound, 30, inhibits VEGFR-2 (IC50 = 1.24 nM) with subtle selectivity over other kinases. It demonstrates significant inhibitory activity against HUVEC angiogenesis and inhibits cell migration in a dose-dependent manner. Additionally, it exhibits low acute toxicity in mice. In vivo studies, compound 30 demonstrates favorable pharmacokinetic profiles. It suppresses tumor angiogenesis in the zebrafish subintestinal vessel model, indicating that it may be a potential angiogenesis inhibitor for further development.
Collapse
Affiliation(s)
- Haoyu Zha
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Feilong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Wenhu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Manyu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Shenglong Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Hongyan Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zhenni Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chaohui Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xinjie Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chenxi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Sufen Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Jingbo Shi
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
3
|
Yousef RG, Eissa IH, Elkady H, M Mehany AB, Abo-Saif MA, Radwan MM, ElSohly MA, Ibrahim IM, Elwan A, El-Zahabi MA. Design and synthesis of new nicotinamides as immunomodulatory VEGFR-2 inhibitors and apoptosis inducers. Future Med Chem 2024; 16:2583-2598. [PMID: 39540547 PMCID: PMC11731296 DOI: 10.1080/17568919.2024.2421150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Nicotinamide-based VEGFR-2 inhibitors have good contribution in drug discovery.Aim: Development of novel nicotinamides as VEGFR-2 inhibitors.Methods: different in vitro and in silico assays were conducted to evaluate the VEGFR-2 inhibition and cytotoxicity.Results: Compound 16c displayed strongest anti-VEGFR-2 potentiality and good anti-proliferative effects. Compound 16c enhanced apoptosis and caused cell cycle arrest in the Pre-G1 and S phases. Compound 16c boosted the level of the apoptotic caspase-3 and inhibited the level of TNF-α and IL-6 in tumor cells. Molecular docking and molecular dynamics (MD) simulations indicated the outstanding binding potential of compound 16c against VEGFR-2.Conclusion: Compound 16c is a good candidate for the creation of a novel antiangiogenic lead anticancer medication.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mariam Ali Abo-Saif
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, University, MS38677, USA
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
4
|
Kashyap M, Gupta S, Bansal Y, Bansal G. A critical analysis of design, binding pattern and SAR of benzo-fused heteronuclear compounds as VEGFR-2 inhibitors. Bioorg Med Chem 2024; 115:117966. [PMID: 39488171 DOI: 10.1016/j.bmc.2024.117966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Vascular endothelial growth factors (VEGFs) are a class of homodimeric ligands that bind to their receptors (VEGFRs) to carryout physiological and pathological angiogenesis essential for regulating homeostasis of body. Overexpression of VEGF results in metastasis of benign tumor into malignant tumor. An active role of VEGFR-2 in cancer angiogenesis makes it a major target for cancer therapy. FDA approved VEGFR-2 inhibitors like sorafenib, vemurafenib and dabrafenib, and monoclonal antibodies such as bevacizumab and ramucirumab are available in market but possess side effects like hypertension, CVS disorders, liver damage and adverse effects like Iatrogenicity. Several research groups across the globe have designed and reported varied small molecules from different heteronuclei like quinazoline, pyrimidine, coumarin, pyrazole, indoline, benzimidazole, benzoxazole, etc. as VEGFR-2 inhibitors based on the information available on active site of the receptor, and pharmacophoric features of FDA approved drugs. The present review compiles the information available on benzo-fused heteronuclear compounds including benzimidazole, benzoxazole and benzothiazole in recent years, with emphasis on their design, activity, structure-activity relationship (SAR) and docking analysis for understanding binding interactions in the active site of VEGFR-2. In addition to this, a topological similarity analysis of these compounds is performed taking sorafenib as template, and a comprehensive SAR is proposed for researchers to further explore the anticancer potential of these pharmacophore.
Collapse
Affiliation(s)
- Mayank Kashyap
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Saurabh Gupta
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Yogita Bansal
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Gulshan Bansal
- Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
5
|
Marques CS, Brandão P, Burke AJ. Targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2): Latest Insights on Synthetic Strategies. Molecules 2024; 29:5341. [PMID: 39598729 PMCID: PMC11596329 DOI: 10.3390/molecules29225341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) is a crucial mediator of angiogenesis, playing a pivotal role in both normal physiological processes and cancer progression. Tumors harness VEGFR-2 signaling to promote abnormal blood vessel growth, which is a key step in the metastasis process, making it a valuable target for anticancer drug development. While there are VEGFR-2 inhibitors approved for therapeutic use, they face challenges like drug resistance, off-target effects, and adverse side effects, limiting their effectiveness. The quest for new drug candidates with VEGFR-2 inhibitory activity often starts with the selection of key structural motifs present in molecules currently used in clinical practice, expanding the chemical space by generating novel derivatives bearing one or more of these moieties. This review provides an overview of recent advances in the development of novel VEGFR-2 inhibitors, focusing on the synthesis of new drug candidates with promising antiproliferative and VEGFR-2 inhibition activities, organizing them by relevant structural features.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000-641 Evora, Portugal
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitátio, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Anthony J. Burke
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Di Martino S, De Rosa M. The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents. Top Curr Chem (Cham) 2024; 382:33. [PMID: 39432195 DOI: 10.1007/s41061-024-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
The benzoxazole is one of the most widely exploited heterocycles in drug discovery. Natural occurring and synthetic benzoxazoles show a broad range of biological activities. Many benzoxazoles are available for treating several diseases, and, to date, a few are in clinical trials. Moreover, an ever-increasing number of benzoxazole derivatives are under investigation in the early drug discovery phase and as potential hit or lead compounds. This perspective is an attempt to thoroughly review the rational design, the structure-activity relationship, and the biological activity of the most notable benzoxazoles developed during the past 5 years (period 2019-to date) in cancers, neurological disorders, and inflammation. We also briefly overviewed each target and its role in the disease. The huge amount of work examined suggests the great potential of the scaffold and the high interest of the scientific community in novel biologically active compounds containing the benzoxazole core.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
7
|
Rajput S, Malviya R, Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:281-299. [PMID: 38369298 DOI: 10.1016/j.jcjo.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Retinoblastoma (RB) is a prevalent primitive intraocular malignancy in children, particularly in those younger than age 3 years. RB is caused by mutations in the RB1 gene. In developing countries, mortality rates for this type of cancer are still high, whereas industrialized countries have achieved a survival rate of >95%-98%. Untreated, the condition can be fatal, underscoring the importance of early diagnosis. The existing treatments primarily consist of surgery, radiotherapy, and chemotherapy. The detrimental effects of radiation and chemotherapeutic drugs have been documented as factors that contribute to increased mortality rates and negatively affect the quality of life for patients. MicroRNA (miRNA), a type of noncoding RNA, exerts a substantial influence on RB development and the emergence of treatment resistance by regulating diverse cellular processes. This review highlights recent developments in the involvement of miRNAs in RB. This encompasses the clinical significance of miRNAs in the diagnosis, prognosis, and treatment of RB. Additionally, this paper examines the regulatory mechanisms of miRNAs in RB and explores potential therapeutic interventions. This paper provides an overview of the current and emerging treatment options for RB, focusing on recent studies investigating the application of different types of nanoparticles for the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
8
|
Zhao JM, Wang YK, Shi BW, Wang YX, Jiang YF, Yang GL, Gao XD, Qiang T. Microwave biosensor for the detection of growth inhibition of human liver cancer cells at different concentrations of chemotherapeutic drug. Front Bioeng Biotechnol 2024; 12:1398189. [PMID: 38803847 PMCID: PMC11128630 DOI: 10.3389/fbioe.2024.1398189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.
Collapse
Affiliation(s)
- Jun-Ming Zhao
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yi-Ke Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Bo-Wen Shi
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yan-Xiong Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yan-Feng Jiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Gang-Long Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Dong Gao
- School of Biotechnology, the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Tian Qiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
- School of Biotechnology, the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Dahab MA, Mahdy HA, Elkady H, Taghour MS, Elwan A, Elkady MA, Elsakka EGE, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations. J Biomol Struct Dyn 2024; 42:4214-4233. [PMID: 37261471 DOI: 10.1080/07391102.2023.2219333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Computer aided drug discovery (CADD) of a thieno[2,3- d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket. J Biomol Struct Dyn 2024; 42:2369-2391. [PMID: 37129193 DOI: 10.1080/07391102.2023.2204500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Depending on the pharmacophoric characteristics of EGFR inhibitors, a new thieno[2,3-d]pyrimidine derivative has been developed. Firstly, the potential inhibitory effect of the designed compound against EGFR has been proven by docking experiments that showed correct binding modes and excellent binding energies of -98.44 and -88.00 kcal/mol, against EGFR wild-type and mutant type, respectively. Furthermore, MD simulations studies confirmed the precise energetic, conformational, and dynamic alterations that occurred after binding to EGFR. The correct binding was also confirmed by essential dynamics studies. To further investigate the general drug-like properties of the developed candidate, in silico ADME and toxicity studies have also been carried out. The thieno[2,3-d]pyrimidine derivative was synthesized following the earlier promising findings. Fascinatingly, the synthesized compound (4) showed promising inhibitory effects against EGFRWT and EGFRT790M with IC50 values of 25.8 and 182.3 nM, respectively. Also, it exhibited anticancer potentialities against A549 and MCF-7cell lines with IC50 values of 13.06 and 20.13 µM, respectively. Interestingly, these strong activities were combined with selectivity indices of 2.8 and 1.8 against the two cancer cell lines, respectively. Further investigations indicated the ability of compound 4 to arrest the cancer cells' growth at the G2/M phase and to increase early and late apoptosis percentages from 2.52% and 2.80 to 17.99% and 16.72%, respectively. Additionally, it was observed that compound 4 markedly increased the levels of caspase-3 and caspase-9 by 4 and 3-fold compared to the control cells. Moreover, it up-regulated the level of BAX by 3-fold and down-regulated the level of Bcl-2 by 3-fold affording a BAX/Bcl-2 ratio of 9.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
12
|
Eissa IH, Elkady H, Rashed M, Elwan A, Hagras M, Dahab MA, Taghour MS, Ibrahim IM, Husein DZ, Elkaeed EB, Al-ghulikah HA, Metwaly AM, Mahdy HA. Discovery of new thiazolidine-2,4-dione derivatives as potential VEGFR-2 inhibitors: In vitro and in silico studies. Heliyon 2024; 10:e24005. [PMID: 38298627 PMCID: PMC10828660 DOI: 10.1016/j.heliyon.2024.e24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 μM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 μM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Hanan A. Al-ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
13
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
14
|
Abdelmaksoud NM, Sallam AAM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Elrebehy MA, Elshaer SS, Mahmoud NA, Fathi D, Rizk NI, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Alzheimer's disease. Pathol Res Pract 2024; 253:155007. [PMID: 38061270 DOI: 10.1016/j.prp.2023.155007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.
Collapse
Affiliation(s)
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Naira Ali Mahmoud
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
15
|
Al-Noshokaty TM, Fathi D, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Abdelmaksoud NM, Doghish AS. Harnessing the power of miRNAs: The molecular architects of asthma pathogenesis and potential targets for therapeutic innovation. Pathol Res Pract 2024; 253:155054. [PMID: 38142525 DOI: 10.1016/j.prp.2023.155054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Asthma is a chronic non-communicable respiratory disease that is characterized by airway inflammation and hyperreactivity. Defective functions of airway smooth muscle and dysregulated signaling pathways play a crucial role in the pathogenesis of asthma. Anti-inflammatories and targeted therapy are mainly used for the treatment of asthma. Recent studies have investigated the role of non-coding RNAs, especially microRNAs (miRNAs; miR) in regulating gene expression and their involvement in the dysfunctional signaling pathways. In immune-mediated diseases, including asthma, miRNAs govern the actions of cells that form the airway structure and those responsible for the defense mechanisms in the bronchi and lungs. miRNAs control cell survival, proliferation, and growth, as well as the cells' capacity to produce and release chemokines and immune mediators. Moreover, miRNAs have an important role in the response to therapeutic interventions. Collectively, this review highlights the regulatory roles of miRNAs in modulating the different signaling pathways and therapeutic responses in asthma. Patients who suffer from asthma, particularly those with severe disease characteristics, may benefit from the prospective treatment options that include targeting miRNAs in order to reduce airway inflammation, hyperreactivity, and mucus production.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
16
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
17
|
Doghish AS, Zaki MB, Eldeib MG, Radwan AF, Moussa R, Abdel-Wahab MM, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elimam H. The potential relevance of long non-coding RNAs in colorectal cancer pathogenesis and treatment: A review focus on signaling pathways. Pathol Res Pract 2024; 253:155044. [PMID: 38141573 DOI: 10.1016/j.prp.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA's role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
18
|
Abdel-Reheim MA, Nomier Y, Zaki MB, Abulsoud AI, Mohammed OA, Rashad AA, Oraby MA, Elballal MS, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Elrebehy MA, Helal GK, Doghish AS. Unveiling the regulatory role of miRNAs in stroke pathophysiology and diagnosis. Pathol Res Pract 2024; 253:155085. [PMID: 38183822 DOI: 10.1016/j.prp.2023.155085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
19
|
Mohammed OA, Doghish AS, Saleh LA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Alshahrani AM, Alhalafi AH, BinAfif WF, Rezigalla AA, Abdel-Reheim MA, El-Wakeel HS, Attia MA, Elmorsy EA, Al-Noshokaty TM, Nomier Y, Saber S. Itraconazole halts hepatocellular carcinoma progression by modulating sonic hedgehog signaling in rats: A novel therapeutic approach. Pathol Res Pract 2024; 253:155086. [PMID: 38176308 DOI: 10.1016/j.prp.2023.155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/β-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hend S El-Wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia 13518, Egypt; Physiology Department, Al-Baha Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia.
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences , College of Medicine Almaarefa University Diriyiah, 13713, Riyadh, Saudi Arabia.
| | - Elsayed A Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Therapeutics Department, Qassim College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
20
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
21
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk BA, Ibrahim IM, Metwaly AM, Eissa IH. New Thieno[2,3-d]pyrimidines as Anticancer VEGFR-2 Inhibitors with Apoptosis Induction: Design, Synthesis, and Biological and In Silico Studies. Med Chem 2024; 20:876-899. [PMID: 38798211 DOI: 10.2174/0115734064285433240513092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Vascular endothelial growth factor receptor-2 (VEGFR-2) is a critical protein involved in tumor progression, making it an attractive target for cancer therapy. OBJECTIVE This study aimed to synthesize and evaluate novel thieno[2,3-d]pyrimidine analogues as potential anticancer VEGFR-2 inhibitors. METHODS The thieno[2,3-d]pyrimidine analogues were synthesized following the pharmacophoric features of VEGFR-2 inhibitors. The anticancer potential was assessed against PC3 and HepG2 cell lines. The VEGFR-2 inhibition was evaluated through IC50 determination. Cell cycle analysis and apoptosis assays were performed to elucidate the mechanisms of action. Molecular docking, molecular dynamics simulations, MM-GBSA, and PLIP studies were conducted to investigate the binding affinities and interactions with VEGFR-2. Additionally, in silico ADMET studies were performed. RESULTS Compound 8b demonstrated significant anti-proliferative activities with IC50 values of 16.35 μM and 8.24 μM against PC3 and HepG2 cell lines, respectively, surpassing sorafenib and exhibiting enhanced selectivity indices. Furthermore, compound 8b showed an IC50 value of 73 nM for VEGFR-2 inhibition. Cell cycle analysis revealed G2-M phase arrest, while apoptosis assays demonstrated increased apoptosis in HepG2 cells. Molecular docking and dynamic simulations confirmed the binding affinity and interaction of compound 8b with VEGFR-2, supported by MMGBSA and PLIP studies. In silico ADMET studies indicated the drug development potential of the synthesized thieno[2,3-d]pyrimidines. CONCLUSION The study highlights compound 8b as a promising VEGFR-2 inhibitor with potent anti-proliferative activities. Its mechanism of action involves cell cycle arrest and induction of apoptosis. Further, molecular docking and dynamic simulations support the strong binding affinity of compound 8b to VEGFR-2.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shibin-Elkom, Gamal Abd Al-Nasir Street, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
22
|
Elballal MS, Mohammed OA, Zaki MB, Abulsoud AI, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Rashad AA, Abdelmaksoud NM, Elrebehy MA, Nomier Y, Abdel-Reheim MA, Oraby MA, Doghish AS. miRNAs as modulators of neuroinflammation and excitotoxicity: Implications for stroke therapeutics. Pathol Res Pract 2024; 253:155093. [PMID: 38184962 DOI: 10.1016/j.prp.2024.155093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Stroke is a widespread neurological disorder associated with physical disabilities, mortality, and economic burden. In recent decades, substantial progress has been achieved in reducing the impact of this public health problem. However, further understanding of the pathophysiology of stroke and the underlying genetic pathways is required. The pathological mechanisms of stroke comprise multifaceted molecular cascades regulated by various microRNAs (miRNAs). An increasing number of studies have highlighted the role of miRNAs, which have received much attention during the last decades as an important class of post-transcriptional regulators. It was shown that miRNAs exert their role in the etiology of stroke via mediating excitotoxicity and neuroinflammation. Additionally, miRNAs could be helpful as non-invasive or minimally invasive biomarkers and therapeutic agents. Thus, the current review focused on the interplay of these miRNAs in stroke pathology to upgrade the existing therapeutic strategies.
Collapse
Affiliation(s)
- Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
23
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
24
|
Doghish AS, El-Husseiny AA, Khidr EG, Elrebehy MA, Elballal MS, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Khaled R, El-Dakroury WA, Noureldin S, Moustafa YM, Mangoura SA, Gedawy EM, Abulsoud AI. Decoding the role of miRNAs in oral cancer pathogenesis: A focus on signaling pathways. Pathol Res Pract 2023; 252:154949. [PMID: 37992507 DOI: 10.1016/j.prp.2023.154949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Oral cancer (OC) is the predominant type originating in the head and neck region. The incidence of OC is mostly associated with behavioral risk factors, including tobacco smoking and excessive alcohol intake. Additionally, there is a lower but still significant association with viral infections such as human papillomaviruses and Epstein-Barr viruses. Furthermore, it has been observed that heritable genetic variables are linked to the risk of OC, in addition to the previously mentioned acquired risk factors. The current absence of biomarkers for OC diagnosis contributes to the frequent occurrence of advanced-stage diagnoses among patients. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs, and circular RNAs, have been observed to exert a significant effect on the transcriptional control of target genes involved in cancer, either through direct or indirect mechanisms. miRNAs are a class of short ncRNAs that play a role in regulating gene expression by enabling mRNA degradation or translational repression at the post-transcriptional phase. miRNAs are known to play a fundamental role in the development of cancer and the regulation of oncogenic cell processes. Notch signaling, PTEN/Akt/mTOR axis, KRAS mutation, JAK/STAT signaling, P53, EGFR, and the VEGFs have all been linked to OC, and miRNAs have been shown to have a role in all of these. The dysregulation of miRNA has been identified in cases of OC and is linked with prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Salma Noureldin
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr, P.O. Box 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
25
|
Elkady H, Abuelkhir AA, Rashed M, Taghour MS, Dahab MA, Mahdy HA, Elwan A, Al-Ghulikah HA, Elkaeed EB, Ibrahim IM, Husein DZ, Metwaly A, Eissa IH. New thiazolidine-2,4-diones as effective anti-proliferative and anti-VEGFR-2 agents: Design, synthesis, in vitro, docking, MD simulations, DFT, ADMET, and toxicity studies. Comput Biol Chem 2023; 107:107958. [PMID: 37714080 DOI: 10.1016/j.compbiolchem.2023.107958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Abdelrahman A Abuelkhir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hanan A Al-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Ahmed Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
26
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
27
|
Eissa IH, Yousef RG, Asmaey MA, Elkady H, Husein DZ, Alsfouk AA, Ibrahim IM, Elkady MA, Elkaeed EB, Metwaly AM. Computer-assisted drug discovery (CADD) of an anti-cancer derivative of the theobromine alkaloid inhibiting VEGFR-2. Saudi Pharm J 2023; 31:101852. [PMID: 38028225 PMCID: PMC10663924 DOI: 10.1016/j.jsps.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A. Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, 71524, Assiut, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
28
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
29
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
30
|
Elkhawaga SY, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Abdelmaksoud NM, Elsakka EGE, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Shahin RK, Zaki MB, Doghish AS. Possible role of miRNAs in pheochromocytoma pathology - Signaling pathways interaction. Pathol Res Pract 2023; 251:154856. [PMID: 37806171 DOI: 10.1016/j.prp.2023.154856] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| |
Collapse
|
31
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
32
|
Mohammed OA. From strings to signals: Unraveling the impact of miRNAs on diagnosis, and progression of colorectal cancer. Pathol Res Pract 2023; 251:154857. [PMID: 37804545 DOI: 10.1016/j.prp.2023.154857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Colorectal cancer (CRC) stands as the third most prevalent ailment globally and represents the primary cause of mortality associated with cancer. Significant advancements have been made in the clinical management of patients with CRC, encompassing the development of more streamlined methodologies and a diverse array of biomarkers utilized for prognostic, diagnostic, and predictive objectives. MicroRNAs (miRNAs, miRs) play a key role in the development of CRC by modulating the expression of their target genes, which govern a number of metabolic and cellular processes. They are related to malignant traits such as enhanced invasive and proliferative capacity, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis through dysregulation in their function. This review's objectives were to examine miRNA biogenesis, provide an updated list of oncogenic and tumor suppressor miRNAs, and discuss the likely causes of miRNA dysregulation in CRC. Additionally, we discuss the diagnostic and predictive functions of miRNAs in CRC and summarize their biological significance and clinical potential.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
33
|
Doghish AS, Shehabeldine AM, El-Mahdy HA, Hassanin MMH, Al-Askar AA, Marey SA, AbdElgawad H, Hashem AH. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023; 28:6910. [PMID: 37836753 PMCID: PMC10574288 DOI: 10.3390/molecules28196910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Collapse
Affiliation(s)
- Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
34
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
35
|
El-Metwally SA, Abuelkhir AA, Elkady H, Taghour MS, Ibrahim IM, Husein DZ, Alsfouk AA, Sultan A, Ismail A, Elkhawaga SY, Elkaeed EB, Metwaly AM, Eissa IH. In vitro and in silico evaluation of new thieno[2,3-d]pyrimidines as anti-cancer agents and apoptosis inducers targeting VEGFR-2. Comput Biol Chem 2023; 106:107928. [PMID: 37480629 DOI: 10.1016/j.compbiolchem.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
In this study, new thieno[2,3-d]pyrimidine derivatives that could have potential anticancer activity by inhibiting the VEGFR-2 receptor have been designed, synthesized, and investigated. The thieno[2,3-d]pyrimidine derivatives showed strong in vitro abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two different types of cancer cells, MCF-7 and HepG2. Particularly, compound 22 showed the most potent anti-VEGFR-2 activity with an IC50 value of 0.58 µM. Additionally, compound 22 exhibited good anti-proliferative activity against both MCF-7 and HepG2 cancer cell lines, with IC50 values of 11.32 ± 0.32 and 16.66 ± 1.22 µM, respectively. Further investigations revealed that compound 22 induced cell cycle arrest at the G2/M phase and promoted both early and late apoptosis in the MCF-7 cancer cells. Compound 22 also increased the level of BAX (2.8-fold), and reduced the level of Bcl-2 (2.2-fold), hence increasing the rate of apoptosis. Compound 22 also revealed 2.9-fold and 2.8-fold higher levels of caspase-8 and caspase-9, respectively, in the treated MCF-7 cancer cells compared to the control cell lines. The MD simulations showed that the VEGFR-2-22 complex was structurally and energytically stable over 100 ns, while the MM-GBSA study indicated its stable thermodynamic behavior. The bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-22 complex, while the DFT studies provided optimized geometry, charge distribution, FMO, ESP, the total density of state, and QTAIM maps of compound 22. Finally, computational ADMET studies were performed to assess the drug development potential of the thieno[2,3-d]pyrimidine derivatives. Overall, this study suggests that compound 22 has the potential as an anticancer lead compound by inhibiting VEGFR-2, which may be a guide for future drug design and development.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Abdelrahman A Abuelkhir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahlam Sultan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
36
|
Mohammed OA. Alogliptin exhibits multifaceted effects in thioacetamide-insulted rats: A novel approach to combating hepatic inflammation and fibrogenesis. Pathol Res Pract 2023; 250:154833. [PMID: 37769397 DOI: 10.1016/j.prp.2023.154833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Hepatic fibrosis arising from chronic liver injury is characterized by dysregulated healing, including hepatic stellate cell activation and excessive deposition of extracellular matrix proteins. Administration of the hepatotoxin thioacetamide (TAA) induces liver injury coupled to fibrogenesis in rodents, mimicking aspects of human disease. Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 with purported antifibrotic actions. We investigated the protective effects of alogliptin against TAA-mediated hepatic fibrosis in rats. Adult male Sprague-Dawley rats received intraperitoneal injections of TAA (150 mg/kg) twice weekly for 6 weeks to induce liver fibrosis. A subset of rats also received daily oral alogliptin (20 mg/kg). At 6 weeks, liver injury and fibrosis were assessed by histology, hydroxyproline content, serum liver enzymes, inflammatory cytokines, oxidative stress markers, and genes related to inflammation, apoptosis, and fibrosis. TAA elicited necroinflammation, oxidative stress, upregulation of pro-fibrogenic mediators, increased hydroxyproline content, and excessive collagen deposition, indicating hepatic fibrosis. The administration of Alogliptin led to notable enhancements in liver histology, an extension in survival time, a decrease in hydroxyproline levels and the expression of fibrogenic genes, a reduction in inflammatory cytokines and oxidative stress, and mitigation of hepatocellular apoptosis in rats subjected to TAA treatment. Alogliptin displayed potent antifibrotic, antioxidant, and hepatoprotective properties in this model of toxic liver damage, likely by impeding NFκB while enhanced Nrf2 DNA binding activity which together modulate oxidative stress, inflammation, myofibroblast activation, and apoptosis. These results highlight the potential therapeutic value of alogliptin offering hope for improved treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
37
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
38
|
Ghanem A, Ali MA, Elkady MA, Abdel Mageed SS, El Hassab MA, El-Ashrey MK, Mohammed OA, Doghish AS. Rumex vesicarius L. boosts the effectiveness of sorafenib in triple-negative breast cancer by downregulating BCl2, mTOR, and JNK, and upregulating p21 expression. Pathol Res Pract 2023; 250:154807. [PMID: 37696244 DOI: 10.1016/j.prp.2023.154807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 μM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.
Collapse
Affiliation(s)
- Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Mohamed K El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
39
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|
40
|
Elkaeed EB, Yousef RG, Elkady H, Mehany ABM, Alsfouk BA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. In silico, in vitro VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl)naphthalene-2-ol derivative. J Biomol Struct Dyn 2023; 41:7986-8001. [PMID: 36184591 DOI: 10.1080/07391102.2022.2127907] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 10/07/2022]
Abstract
In agreement with the general features of VEGFR-2 inhibitors, a new naphthalene analog (compound 7) has been designed and synthesized. The inhibitory potential of compound 7 was indicated by the proper binding and the perfect energy of -21.10 kcal/mol compared to sorafenib (-21.22) in the molecular docking studies. Next, six MD simulation studies over 100 ns (RMSD, RMSF, SASA, RoG, hydrogen bonding, and distance between the center of mass) confirmed the accurate interaction of compound 7 with the catalytic pocket of VEGFR-2. Similarly, an MM-GBSA established proper binding showing an exact total binding energy of -36.95 ± 3.03 kcal/Mol. Additionally, the MM-GBSA experiment indicated the vital amino acids in the binding process. Types and number of interactions of compound 7 with catalytic pocket of VEGFR-2 were determined through Protein-Ligand Interaction Profiler (PLIP). As a new compound, the DFT was employed to optimize the molecular structure of compound 7. The DFT experiments also verified the interaction features of compound 7 with the VEGFR-2 active site. In silico ADMET experiments revealed the general drug-likeness of compound 7. Fascinatingly, the in vitro examinations were consistent with the in silico experiments as compound 7 inhibited the VEGFR-2 enzyme with an IC50 value of 37 nM. Captivatingly, compound 7 inhibited both MCF-7 and HCT 116 cancer cells exhibiting IC50 values of 10.56 and 7.07 µM exhibiting excellent selectivity indexes of 9.04 and 13.50, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
41
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk BA, Ibrahim IM, Metwaly AM, Eissa IH. A novel thieno[2,3-d]pyrimidine derivative inhibiting vascular endothelial growth factor receptor-2: A story of computer-aided drug discovery. Drug Dev Res 2023; 84:1247-1265. [PMID: 37232504 DOI: 10.1002/ddr.22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Following the pharmacophoric features of vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, a novel thieno[2,3-d]pyrimidine derivative has been designed and its activity against VEGFR-2 has been demonstrated by molecular docking studies that showed an accurate binding mode and an excellent binding energy. Furthermore, the recorded binding was confirmed by a series of molecular dynamics simulation studies, which also revealed precise energetic, conformational, and dynamic changes. Additionally, molecular mechanics with generalized Born and surface area solvation and polymer-induced liquid precursors studies were conducted and verified the results of the MD simulations. Next, in silico absorption, distribution, metabolism, excretion, and toxicity studies have also been conducted to examine the general drug-like nature of the designed candidate. According to the previous results, the thieno[2,3-d]pyrimidine derivative was synthesized. Fascinatingly, it inhibited VEGFR-2 (IC50 = 68.13 nM) and demonstrated strong inhibitory activity toward human liver (HepG2), and prostate (PC3) cell lines with IC50 values of 6.60 and 11.25 µM, respectively. As well, it was safe and showed a high selectivity index against normal cell lines (WI-38). Finally, the thieno[2,3-d]pyrimidine derivative arrested the growth of the HepG2 cells at the G2/M phase inducing both early and late apoptosis. These results were further confirmed through the ability of the thieno[2,3-d]pyrimidine derivative to induce significant changes in the apoptotic genes levels of caspase-3, caspase-9, Bcl-2 associated X-protein, and B-cell lymphoma 2.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shibin-Elkom, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
42
|
Korkmaz A, Kurtay G, Kaya E, Bursal E. Design, synthesis, spectroscopic characterizations, in vitro pancreatic lipase as well as tyrosinase inhibition evaluations and in silico analysis of novel aryl sulfonate-naphthalene hybrids. J Biomol Struct Dyn 2023; 41:7128-7143. [PMID: 36069113 DOI: 10.1080/07391102.2022.2116600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
One of the primary purposes of this study is to synthesize new aryl sulfonate-naphthalene hybrid structures possessing divergent electron-withdrawing and electron-releasing functional groups. Following the improved reaction conditions, we successfully gathered ten distinct sulfonate derivatives (3a-j) with good yields. The synthesized naphthalene-based sulfonate derivatives were then characterized using appropriate analytical methods (FT-IR, 1H-NMR, 13C-NMR, HRMS, and elemental analysis). Additionally, in vitro and in silico enzyme inhibitory properties of the prepared aryl sulfonate-naphthalene hybrid structures were evaluated against pancreatic lipase and tyrosinase enzymes. Corresponding in vitro enzyme activity investigations revealed that the produced compounds inhibit pancreatic lipase and tyrosinase enzymes significantly. According to the lowest IC50 values, 3h (95.3 ± 4.0 µM) demonstrated the most effective inhibition against pancreatic lipase, whereas 3a (40.8 ± 3.3 µM) was found as the most effective inhibition against the tyrosinase. According to in silico studies, 3a exhibited the highest affinity value (-9.9 kcal/mol) against pancreatic lipase, whereas 3f demonstrated the best affinity value (-8.7 kcal/mol) against tyrosinase.Furthermore, we investigated various structural and physicochemical properties of the target molecules, namely frontier orbital' (HOMO, LUMO, and bandgap) energies (including their corresponding contour plots), global reactivity descriptors (ionization energy and electron affinity), and electronegativity values gathered from ground-state (GS) density functional theory (DFT) calculations. These investigations demonstrated that the observed electrostatic interactions effectively contributed to the studied molecules' experimentally demonstrated enzyme inhibition potential. Also, ADMET studies were evaluated to enlighten the molecular interactions of the compounds with the enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adem Korkmaz
- Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Gülbin Kurtay
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Esin Kaya
- Faculty of Education, Muş Alparslan University, Muş, Turkey
| | - Ercan Bursal
- Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
43
|
Elkady H, El-Adl K, Sakr H, Abdelraheem AS, Eissa SI, El-Zahabi MA. Novel promising benzoxazole/benzothiazole-derived immunomodulatory agents: Design, synthesis, anticancer evaluation, and in silico ADMET analysis. Arch Pharm (Weinheim) 2023; 356:e2300097. [PMID: 37379240 DOI: 10.1002/ardp.202300097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Adel S Abdelraheem
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sally I Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
44
|
Al-Noshokaty TM, Elballal MS, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Midan HM, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Zewail MB, Mohammed OA, Doghish AS. miRNAs driving diagnosis, prognosis and progression in Merkel cell carcinoma. Pathol Res Pract 2023; 249:154763. [PMID: 37595447 DOI: 10.1016/j.prp.2023.154763] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
45
|
Rizk NI, Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Elrebehy MA, El-Dakroury WA, Abulsoud LA, Doghish AS. The emerging role of miRNAs in Merkel cell carcinoma pathogenesis: Signaling pathway crosstalk. Pathol Res Pract 2023; 249:154771. [PMID: 37611429 DOI: 10.1016/j.prp.2023.154771] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Merkel cell carcinoma (MCC) is an uncommon invasive form of skin cancer that typically manifests as a nodule on the face, head, or neck that is flesh-colored or bluish-red in appearance. Rapid growth and metastasis are hallmarks of MCC. MCC has the second-greatest mortality rate among skin cancers after melanoma. Despite the recent cascade of molecular investigations, no universal molecular signature has been identified as responsible for MCC's pathogenesis. The microRNAs (miRNAs) play a critical role in the post-transcriptional regulation of gene expression. Variations in the expression of these short, non-coding RNAs have been associated with various malignancies, including MCC. Although the incidence of MCC is very low, a significant amount of study has focused on the interaction of miRNAs in MCC. As such, the current survey is a speedy intensive route revealing the potential involvement of miRNAs in the pathogenesis of MCC beyond their association with survival in MCC.
Collapse
Affiliation(s)
- Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
46
|
Doghish AS, Moustafa HAM, Elballal MS, Sallam AAM, El-Dakroury WA, Abdel Mageed SS, Elesawy AE, Abdelmaksoud NM, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of testicular germ cell tumors - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154611. [PMID: 37315401 DOI: 10.1016/j.prp.2023.154611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat, City Menoufia 32897, Egypt
| | | | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
47
|
El-Husseiny AA, Abdelmaksoud NM, Mageed SSA, Salman A, Zaki MB, El-Mahdy HA, Ismail A, Abd-Elmawla MA, El-Husseiny HM, Abulsoud AI, Elshaer SS, Elsakka EGE, Fathi D, El-Dakroury WA, Doghish AS. miRNAs orchestration of salivary gland cancer- Particular emphasis on diagnosis, progression, and drug resistance. Pathol Res Pract 2023; 248:154590. [PMID: 37295259 DOI: 10.1016/j.prp.2023.154590] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Cancer of the salivary glands is one of the five major types of head and neck cancer. Due to radioresistance and a strong propensity for metastasis, the survival rate for nonresectable malignant tumors is dismal. Hence, more research is needed on salivary cancer's pathophysiology, particularly at the molecular level. The microRNAs (miRNAs) are a type of noncoding RNA that controls as many as 30% of all genes that code for proteins at the posttranscriptional level. Signature miRNA expression profiles have been established in several cancer types, suggesting a role for miRNAs in the incidence and progression of human malignancies. Salivary cancer tissues were shown to have significantly aberrant levels of miRNAs compared to normal salivary gland tissues, supporting the hypothesis that miRNAs play a crucial role in the carcinogenesis of salivary gland cancer (SGC). Besides, several SGC research articles reported potential biomarkers and therapeutic targets for the miRNA-based treatment of this malignancy. In this review, we will explore the regulatory impact of miRNAs on the processes underlying the molecular pathology of SGC and provide an up-to-date summary of the literature on miRNAs that impacted this malignancy. We will eventually share information about their possible use as diagnostic, prognostic, and therapeutic biomarkers in SGC.
Collapse
Affiliation(s)
- Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
48
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
49
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
50
|
El-Dakroury WA, Midan HM, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, Hashem AH, Moustafa YM, Doghish AS. miRNAs orchestration of adrenocortical carcinoma - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154665. [PMID: 37418996 DOI: 10.1016/j.prp.2023.154665] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884 Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt.
| |
Collapse
|