1
|
Phogat S, Yadav J, Chaudhary D, Jaiwal R, Jaiwal PK. Synthesis of an Adjuvant-Free Single Polypeptide-Based Tuberculosis Subunit Vaccine that Elicits In Vivo Immunogenicity in Rats. Mol Biotechnol 2025:10.1007/s12033-025-01431-7. [PMID: 40175786 DOI: 10.1007/s12033-025-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
A novel tuberculosis subunit vaccine specific for Mycobacterium tuberculosis dual antigens, culture filtrate protein-10 (CFP-10) and antigen 85B (Ag85B) conjugated with cholera toxin non-toxic B subunit (CTB), was expressed as a single polypeptide in high amounts and cost-effectively in Escherichia coli. The recovery and purification conditions for the recombinant fusion protein were established. This simple peptide vaccine required no exogenous adjuvant as it contained CTB, a potent immune modulator. The vaccine's physiochemical, structural, and immunological properties were determined using the in-silico tools. It was highly antigenic, non-allergenic, and non-toxic. Its BlastP search with human proteomes excluded the chances of autoimmune reactions. The tertiary structure model (3D) was validated by Ramachandran plot assessment. The 3D structure docking with Toll-like receptors, TLR-1, 2, 4, and 6, showed that the binding affinity between the vaccine peptide and TLRs was high, and their complex was stable, indicating a strong immune response. The in-silico immune simulation revealed the vaccine-induced both innate and adaptive immune responses. In-vivo validation of the immunogenicity of CTB.CFP10.Ag85B in Wistar rats revealed higher activation of IgG immune response compared to either antigen protein. Similar results were also obtained using the C-ImmSim simulation online server. A comparison of immunogenicity of CTB.CFP10.Ag85B with the only available TB vaccine, Bacillus Calmette-Guérin (BCG) or as a booster after vaccination of Wistar rats with BCG, indicated that the IgG levels were the highest in rats vaccinated with BCG, followed by a booster dose of CTB.CFP10.Ag85B fusion protein. The fusion protein would be a safe potential vaccine booster candidate in BCG-primed individuals against TB.
Collapse
Affiliation(s)
- Supriya Phogat
- Department of Zoology, M. D. University, Rohtak, 124001, India
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | - Jyoti Yadav
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
2
|
Wang X, Xu Y, Zhong Q, Zhang Z, Kong L, Zhou M, Wang R, Pi X, Qiao S. Construction and expression of multi-stage antigen fusion protein RPC4 vaccine for Mycobacterium tuberculosis and its immunogenicity analysis in combination with adjuvant DIMQ. Tuberculosis (Edinb) 2025; 152:102635. [PMID: 40168905 DOI: 10.1016/j.tube.2025.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Mycobacterium tuberculosis (M. tb) serves as the main pathogen responsible for Tuberculosis (TB). It predominantly targets the lungs and leads to a persistent infectious disease. The spread of drug-resistant tuberculosis and the exacerbation of economic burdens due to co-infections with Human Immunodeficiency Virus (HIV)/M. tb pose significant challenges in prevention and treatment. The BCG vaccine is currently the only approved (TB) vaccine, but its protective effect is limited for adults. In this research, we engineered the fusion protein gene RPC4, incorporating four crucial antigens from M. tb. The study revealed that the IFN-γ levels in the peripheral blood of infected patients significantly surpassed those in healthy individuals. To assess the immune response of RPC4 as a BCG-enhanced vaccine following initial immunity, researchers administered it alongside the novel adjuvant DIMQ to immunize mice. Experiments revealed that the BCG + RPC4/DIMQ vaccine induces a substantial immunogenic response in the mice.
Collapse
Affiliation(s)
- Xiaochun Wang
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, 232001, China; Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yun Xu
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Qiangsen Zhong
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zian Zhang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - LingYun Kong
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Mingming Zhou
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Runlin Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xinxin Pi
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Suwen Qiao
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
3
|
Ouyang J, Guo S, Hu Z, Cao T, Mou J, Gu X, Huang C, Liu J. Recombinant protein Ag85B-Rv2660c-MPT70 promotes quality of BCG-induced immune response against Mycobacterium tuberculosis H37Ra. Front Immunol 2025; 16:1430808. [PMID: 40181958 PMCID: PMC11965932 DOI: 10.3389/fimmu.2025.1430808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mycobacterium tuberculosis (Mtb) infection, has been extensively used worldwide for over 100 years, but the epidemic of tuberculosis (TB) remains a major challenge to human health and well-being. The quest for a more effective vaccination strategy against the Mtb infection continues. Boosting the protective immunity induced by BCG with recombinant protein is a feasible approach to improve the efficacy of BCG, due to the proven safety and effectiveness of recombinant proteins as vaccination regimes against a variety of infectious diseases. While being shown to be promising in clinical trials in preventing Mtb infection, data suggest this strategy requires further improvement. Methods In this study, we developed a novel fusion of proteins derived from major antigenic components of Mtb, including Ag85B, Rv2660c, and MPT70 (ARM), and assessed its antigenicity and ability to boost BCG efficacy in a murine model. Results The results demonstrated that the ARM immunization induced antigen-specific T and B cell responses and reduced the Mtb H37Ra burdens in the lungs and spleen. Mice that were primed with BCG and boosted with the ARM mounted a Th1-type immune response, characterized by an increased proportion of multi-functional ARM- and Mtb lysate-specific CD4+ T cells that produced IFN-γ, TNF-α, and IL-2 compared to BCG alone, and reduced the Mtb burden without the development of severe lung pathological inflammation. Discussion The results of our study demonstrate that the ARM boost improves the quality of the BCG-induced immune response, increases its potency of pathogen reduction, and offers an additional option for enhancing the efficacy of BCG vaccination.
Collapse
Affiliation(s)
- Jiangshan Ouyang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Shaohua Guo
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Zhiming Hu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Xinxia Gu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Chunxu Huang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jie Liu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
- Department of Healthcare Intelligence, University of North America, Fairfax, VA, United States
| |
Collapse
|
4
|
Zeng L, Zuo Y, Tang M, Lei C, Li H, Ma X, Ji J, Li H. A subunit vaccine Ag85A-LpqH focusing on humoral immunity provides substantial protection against tuberculosis in mice. iScience 2025; 28:111568. [PMID: 39868033 PMCID: PMC11760819 DOI: 10.1016/j.isci.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
The importance of humoral immunity in combating TB has gained extensive recognition. In this study, a subunit vaccine named Ag85A-LpqH (AL) was prepared by fusing the antigen Ag85A proved to induce robust T cell immune responses, and LpqH was shown to produce protective antibodies. The prevention and BCG prime-boost mouse models were established to test the vaccine efficacy. The results indicate that Ag85A-LpqH can induce substantial protection by reducing bacterial loads and pathological lesions. This vaccine can induce robust antibody responses, as well as T cell immune responses especially strong CD8+ T cell responses. Moreover, the serum from AL-immunized mice can reduce the bacterial load and lung pathology in mice. B cell receptor (BCR) sequencing revealed a notable rise in BCR diversity among mice immunized with AL. These results indicate that Ag85A-LpqH can be a promising vaccine candidate for tuberculosis prevention and control.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - You Zuo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hu Z, Xia J, Wu J, Zhao H, Ji P, Gu L, Gu W, Chen Z, Xu J, Huang X, Ma J, Chen A, Li J, Shu T, Fan XY. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg Microbes Infect 2024; 13:2300463. [PMID: 38164736 PMCID: PMC10769537 DOI: 10.1080/22221751.2023.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jingxian Xia
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Huimin Zhao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ping Ji
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ling Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Wenfei Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | | | - Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | | | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
He P, Wang J, Tan D, Hu L, Ma Y, Mi Y, Li F, Zhang T, Du Y, Zhang W, Li J, Jiao L, Zhu B. The combination of Mycobacterium tuberculosis fusion proteins LT33 and LT28 induced strong protective immunity in mice. Front Immunol 2024; 15:1450124. [PMID: 39650665 PMCID: PMC11621036 DOI: 10.3389/fimmu.2024.1450124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Effective subunit vaccines for tuberculosis (TB) must target antigenic components at various stages of infection. In this study, we constructed fusion proteins using secreted antigens from Mycobacterium tuberculosis (M. tuberculosis), specifically ESAT6, CFP10, MPT64, and Rv2645 from the proliferation stage, along with latency-associated antigens Rv1738 and Rv1978. The resulting fusion proteins, designated LT33 (ESAT6-CFP10-Rv1738) and LT28 (MPT6461-170-Rv19788-60-Rv264521-80), were combined with an adjuvant containing dimethyldioctadecylammonium bromide (DDA), polyriboinosinic polyribocytidylic acid (PolyI:C), and cholesterol to construct subunit vaccines. We evaluated the subunit vaccine effect in C57BL/6 mice and revealed that LT33 and LT28 exhibited strong immunogenicity and induced protective efficacy against aerosol challenge with M. tuberculosis H37Rv. Notably, the combination of LT33 and LT28 led to a significant reduction of 0.77 log10 colony-forming units (CFU) of H37Rv in the lungs compared to the adjuvant control group, highlighting their potential as promising candidates for subunit vaccine against M. tuberculosis infection.
Collapse
Affiliation(s)
- Pu He
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Hu
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yanlin Ma
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tingting Zhang
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Kazakova A, Zhelnov P, Sidorov R, Rogova A, Vasileva O, Ivanov R, Reshetnikov V, Muslimov A. DNA and RNA vaccines against tuberculosis: a scoping review of human and animal studies. Front Immunol 2024; 15:1457327. [PMID: 39421744 PMCID: PMC11483866 DOI: 10.3389/fimmu.2024.1457327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To comprehensively identify and provide an overview of in vivo or clinical studies of nucleic acids (NA)-based vaccines against TB we included human or animal studies of NA vaccines for the prevention or treatment of TB and excluded in vitro or in silico research, studies of microorganisms other than M. tuberculosis, reviews, letters, and low-yield reports. Methods We searched PubMed, Scopus, Embase, selected Web of Science and ProQuest databases, Google Scholar, eLIBRARY.RU, PROSPERO, OSF Registries, Cochrane CENTRAL, EU Clinical Trials Register, clinicaltrials.gov, and others through WHO International Clinical Trials Registry Platform Search Portal, AVMA and CABI databases, bioRxiv, medRxiv, and others through OSF Preprint Archive Search. We searched the same sources and Google for vaccine names (GX-70) and scanned reviews for references. Data on antigenic composition, delivery systems, adjuvants, and vaccine efficacy were charted and summarized descriptively. Results A total of 18,157 records were identified, of which 968 were assessed for eligibility. No clinical studies were identified. 365 reports of 345 animal studies were included in the review. 342 (99.1%) studies involved DNA vaccines, and the remaining three focused on mRNA vaccines. 285 (82.6%) studies used single-antigen vaccines, while 48 (13.9%) used multiple antigens or combinations with adjuvants. Only 12 (3.5%) studies involved multiepitope vaccines. The most frequently used antigens were immunodominant secretory antigens (Ag85A, Ag85B, ESAT6), heat shock proteins, and cell wall proteins. Most studies delivered naked plasmid DNA intramuscularly without additional adjuvants. Only 4 of 17 studies comparing NA vaccines to BCG after M. tuberculosis challenge demonstrated superior protection in terms of bacterial load reduction. Some vaccine variants showed better efficacy compared to BCG. Systematic review registration https://osf.io/, identifier F7P9G.
Collapse
Affiliation(s)
- Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Pavel Zhelnov
- Zheln, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Roman Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Perm, Russia
| | - Anna Rogova
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
- Laboratory of Nano- and Microencapsulation of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Albert Muslimov
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
8
|
Chen Z, Zhang Y, Wu J, Xu J, Hu Z, Fan XY. A multistage protein subunit vaccine as BCG-booster confers protection against Mycobacterium tuberculosis infection in murine models. Int Immunopharmacol 2024; 139:112811. [PMID: 39068754 DOI: 10.1016/j.intimp.2024.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The eradication of tuberculosis remains a global challenge. Despite being the only licensed vaccine, Bacillus Calmette-Guérin (BCG) confers limited protective efficacy in adults and individuals with latent tuberculosis infections (LTBI). There is an urgent need to develop novel vaccines that can enhance the protective effect of BCG. Protein subunit vaccines have garnered significant research interest due to their safety and plasticity. Based on previous studies, we selected three antigens associated with LTBI (Rv2028c, Rv2029c, Rv3126c) and fused them with an immunodominant antigen Ag85A, resulting in the construction of a multistage protein subunit vaccine named A986. We evaluated the protective effect of recombinant protein A986 adjuvanted with MPL/QS21 as a booster vaccine for BCG against Mycobacterium tuberculosis (Mtb) infection in mice. The A986 + MPL/QS21 induced the secretion of antigen-specific Th1 (IL-2+, IFN-γ+ and TNF-α+) and Th17 (IL-17A+) cytokines in CD4+ and CD8+ T cells within the lung and spleen of mice, while also increased the frequency of central memory and effector memory T cells. Additionally, it also induced the enhanced production of IgG antibodies. Compared to BCG alone, A986 + MPL/QS21 boosting significantly augmented the proliferation of antigen-specific multifunctional T cells and effectively reduced bacterial load in infected mice. Taken together, A986 + MPL/QS21 formulation induced robust antigen-specific immune responses and provided enhanced protection against Mtb infection as a booster of BCG vaccine.
Collapse
Affiliation(s)
- Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Ying Zhang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China.
| |
Collapse
|
9
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
10
|
Zeng L, Ma X, Qu M, Tang M, Li H, Lei C, Ji J, Li H. Immunogenicity and protective efficacy of Ag85A and truncation of PstS1 fusion protein vaccines against tuberculosis. Heliyon 2024; 10:e27034. [PMID: 38463854 PMCID: PMC10920368 DOI: 10.1016/j.heliyon.2024.e27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Lawrence A. Bacillus Calmette-Guérin (BCG) Revaccination and Protection Against Tuberculosis: A Systematic Review. Cureus 2024; 16:e56643. [PMID: 38646352 PMCID: PMC11032142 DOI: 10.7759/cureus.56643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination remains a cornerstone in global efforts to combat tuberculosis (TB), a persistent public health threat worldwide. The purpose of this systematic review is to find out how well BCG revaccination protects against TB. This systematic review synthesized recent studies investigating the efficacy of BCG vaccination in preventing TB infection and disease. A total of 15 relevant publications were identified through a comprehensive search across multiple databases, including Cochrane Library, PubMed, Medline, and Scopus. The inclusion criteria encompassed studies involving humans, written in English, and categorized as case-control, cohort, meta-analysis, or full-text. Studies were selected based on their relevance to BCG revaccination and protection against TB, and a standardized data extraction form was used to gather pertinent information from each study. Quality assessment was conducted using established tools to evaluate the rigor, study design, and risk of bias in each included study. The findings revealed significant insights into BCG's effectiveness across different populations and age groups. Several studies demonstrated a substantial reduction in latent TB infection (LTBI) and incidence rates of TB following BCG vaccination. However, the protective efficacy of BCG revaccination varied across studies and populations, with some indicating modest protection against TB disease development, particularly in high-risk populations like healthcare workers. Furthermore, investigations into the immunological mechanisms underlying BCG's protective efficacy provided valuable insights into cytokine/chemokine profiles and immunomodulatory properties.
Collapse
Affiliation(s)
- Adewale Lawrence
- Pharmaceutical Medicine, Bioluminux Clinical Research, Naperville, USA
| |
Collapse
|
12
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Lee MH, Seo H, Lee MS, Kim BJ, Kim HL, Lee DH, Oh J, Shin JY, Jin JY, Jeong DH, Kim BJ. Protection against tuberculosis achieved by dissolving microneedle patches loaded with live Mycobacterium paragordonae in a BCG prime-boost strategy. Front Immunol 2023; 14:1178688. [PMID: 37398665 PMCID: PMC10312308 DOI: 10.3389/fimmu.2023.1178688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
INTRODUCTION Skin vaccination using dissolving microneedle patch (MNP) technology for transdermal delivery is a promising vaccine delivery strategy to overcome the limitations of the existing vaccine administration strategies using syringes. To improve the traditional microneedle mold fabrication technique, we introduced droplet extension (DEN) to reduce drug loss. Tuberculosis remains a major public health problem worldwide, and BCG revaccination had failed to increase the protective efficacy against tuberculosis. We developed an MNP with live Mycobacterium paragordonae (Mpg) (Mpg-MNP) as a candidate of tuberculosis booster vaccine in a heterologous prime-boost strategy to increase the BCG vaccine efficacy. MATERIALS AND METHODS The MNPs were fabricated by the DEN method on a polyvinyl alcohol mask film and hydrocolloid-adhesive sheet with microneedles composed of a mixture of mycobacteria and hyaluronic acid. We assessed the transdermal delivery efficiency by comparing the activation of the dermal immune system with that of subcutaneous injection. A BCG prime Mpg-MNP boost regimen was administered to a mouse model to evaluate the protective efficacy against M. tuberculosis. RESULTS We demonstrated the successful transdermal delivery achieved by Mpg-MNP compared with that observed with BCG-MNP or subcutaneous vaccination via an increased abundance of MHCII-expressing Langerin+ cells within the dermis that could migrate into draining lymph nodes to induce T-cell activation. In a BCG prime-boost regimen, Mpg-MNP was more protective than BCG-only immunization or BCG-MNP boost, resulting in a lower bacterial burden in the lungs of mice infected with virulent M. tuberculosis. Mpg-MNP-boosted mice showed higher serum levels of IgG than BCG-MNP-boosted mice. Furthermore, Ag85B-specific T-cells were activated after BCG priming and Mpg-MNP boost, indicating increased production of Th1-related cytokines in response to M. tuberculosis challenge, which is correlated with enhanced protective efficacy. DISCUSSION The MNP fabricated by the DEN method maintained the viability of Mpg and achieved effective release in the dermis. Our data demonstrate a potential application of Mpg-MNP as a booster vaccine to enhance the efficacy of BCG vaccination against M. tuberculosis. This study produced the first MNP loaded with nontuberculous mycobacteria (NTM) to be used as a heterologous booster vaccine with verified protective efficacy against M. tuberculosis.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Moon-Su Lee
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Byoung Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye Lin Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Du Hyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Yeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Ju Young Jin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Do Hyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Mao JJ, Zang X, Yue WL, Zhai PY, Zhang Q, Li CH, Zhuang X, Liu M, Qin G. Population-level health and economic impacts of introducing Vaccae vaccination in China: a modelling study. BMJ Glob Health 2023; 8:bmjgh-2023-012306. [PMID: 37257938 DOI: 10.1136/bmjgh-2023-012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
INTRODUCTION Given the ageing epidemic of tuberculosis (TB), China is facing an unprecedented opportunity provided by the first clinically approved next-generation TB vaccine Vaccae, which demonstrated 54.7% efficacy for preventing reactivation from latent infection in a phase III trial. We aim to assess the population-level health and economic impacts of introducing Vaccae vaccination to inform policy-makers. METHODS We evaluated a potential national Vaccae vaccination programme in China initiated in 2024, assuming 20 years of protection, 90% coverage and US$30/dose government contract price. An age-structured compartmental model was adapted to simulate three strategies: (1) no Vaccae; (2) mass vaccination among people aged 15-74 years and (3) targeted vaccination among older adults (60 years). Cost analyses were conducted from the healthcare sector perspective, discounted at 3%. RESULTS Considering postinfection efficacy, targeted vaccination modestly reduced TB burden (~20%), preventing cumulative 8.01 (95% CI 5.82 to 11.8) million TB cases and 0.20 (0.17 to 0.26) million deaths over 2024-2050, at incremental cost-effectiveness ratio of US$4387 (2218 to 10 085) per disability adjusted life year averted. The implementation would require a total budget of US$22.5 (17.6 to 43.4) billion. In contrast, mass vaccination had a larger bigger impact on the TB epidemic, but the overall costs remained high. Although both preinfection and postinfection vaccine efficacy type might have a maximum impact (>40% incidence rate reduction in 2050), it is important that the vaccine price does not exceed US$5/dose. CONCLUSION Vaccae represents a robust and cost-effective choice for TB epidemic control in China. This study may facilitate the practice of evidence-based strategy plans for TB vaccination and reimbursement decision making.
Collapse
Affiliation(s)
- Jun-Jie Mao
- Joint Division of Clinical Epidemiology, Affilated Hosptial of Nantong University, School of Public Health of Nantong University, Nantong, Jiangsu, China
| | - Xiao Zang
- Division of Health Policy and Management, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Wan-Lu Yue
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pei-Yao Zhai
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qiong Zhang
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chun-Hu Li
- Joint Division of Clinical Epidemiology, Affilated Hosptial of Nantong University, School of Public Health of Nantong University, Nantong, Jiangsu, China
| | - Xun Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health of Nantong University, Nantong, Jiangsu, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Peking University, Beijing, China
| | - Gang Qin
- Joint Division of Clinical Epidemiology, Affilated Hosptial of Nantong University, School of Public Health of Nantong University, Nantong, Jiangsu, China
- National Key Clinical Construction Specialty-Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
16
|
Saelee C, Hanthamrongwit J, Soe PT, Khaenam P, Inthasin N, Ekpo P, Chootong P, Leepiyasakulchai C. Toll-like receptor-mediated innate immune responses by recognition of the recombinant dormancy-associated Mycobacterium tuberculosis proteins Rv2659c and Rv1738. PLoS One 2022; 17:e0273517. [PMID: 36048884 PMCID: PMC9436120 DOI: 10.1371/journal.pone.0273517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) poses a major threat to the global public health. Importantly, latent tuberculosis infection (LTBI) still impedes the elimination of TB incidence since it has a substantial risk to develop active disease. A multi-stage subunit vaccine comprising active and latency antigens of Mtb has been raised as the promising vaccine to trigger immune protection against all stages of TB. Therefore, the discovery of new antigens that could trigger broad immune response is essential. While current development of TB vaccine mainly focuses on protective immunity mediated by adaptive immune response, the knowledge on triggering the innate immune response by antigens is still limited. We showed that recombinant dormancy-associated Mtb proteins Rv2659c and Rv1738 were recognized by human innate immune recognition molecules, Toll-like receptors (TLRs) 2 and 4 by using HEK-Blue™ hTLR2/hTLR4 systems. We further demonstrated that these two proteins activated phosphorylated NF-κB p65 (Ser536) in the human CD14+ blood cells. We also investigated that these two proteins significantly induced level of pro- and anti-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-α) which were mediated through TLR2 and TLR4 pathways in human peripheral blood mononuclear cells (hPBMCs). These findings suggest that proteins Rv2659c and Rv1738 stimulated innate immune response targeting TLR2 and TLR4 to produce inflammatory cytokines, and their benefits would be valuable for the development of an effective prophylactic tuberculosis vaccine.
Collapse
Affiliation(s)
- Chutiphon Saelee
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Jariya Hanthamrongwit
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Phyu Thwe Soe
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, University of Medical Technology, Mandalay, Myanmar
| | - Prasong Khaenam
- Faculty of Medical Technology, Center of Standardization and Product Validation, Mahidol University, Bangkok, Thailand
| | - Naharuthai Inthasin
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Pattama Ekpo
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Lv W, He P, Ma Y, Tan D, Li F, Xie T, Han J, Wang J, Mi Y, Niu H, Zhu B. Optimizing the Boosting Schedule of Subunit Vaccines Consisting of BCG and "Non-BCG" Antigens to Induce Long-Term Immune Memory. Front Immunol 2022; 13:862726. [PMID: 35493466 PMCID: PMC9039131 DOI: 10.3389/fimmu.2022.862726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Collapse
Affiliation(s)
- Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
19
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
20
|
Albutti A. An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis. Sci Rep 2021; 11:21929. [PMID: 34753983 PMCID: PMC8578660 DOI: 10.1038/s41598-021-01283-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious disease that mostly affects the lungs and is caused by a bacterial pathogen, Mycobacterium tuberculosis. The associated mortality rate of TB is much higher compared to any other disease and the situation is more worrisome by the rapid emergence of drug resistant strains. Bacillus Calmette-Guerin (BCG) is the only licensed attenuated vaccine available for use in humans however, many countries have stopped its use as it fails to confer protective immunity. Therefore, urgent efforts are required to identify new and safe vaccine candidates that are not only provide high immune protection but also have broad spectrum applicability. Considering this, herein, I performed an extensive computational vaccine analysis to investigate 200 complete sequenced genomes of M. tuberculosis to identify core vaccine candidates that harbor safe, antigenic, non-toxic, and non-allergic epitopes. To overcome literature reported limitations of epitope-based vaccines, I carried out additional analysis by designing a multi-epitopes vaccine to achieve maximum protective immunity as well as to make experimental follow up studies easy by selecting a vaccine that can be easily analyzed because of its favorable physiochemical profile. Based on these analyses, I identified two potential vaccine proteins that fulfill all required vaccine properties. These two vaccine proteins are diacylglycerol acyltransferase and ESAT-6-like protein. Epitopes: DSGGYNANS from diacylglycerol acyltransferase and AGVQYSRAD, ADEEQQQAL, and VSRADEEQQ from ESAT-6-like protein were found to cover all necessary parameters and thus used in a multi-epitope vaccine construct. The designed vaccine is depicting a high binding affinity for different immune receptors and shows stable dynamics and rigorous van der Waals and electrostatic binding energies. The vaccine also simulates profound primary, secondary, tertiary immunoglobulin production as well as high interleukins and interferons count. In summary, the designed vaccine is ideal to be evaluated experimentally to decipher its real biological efficacy in controlling drug resistant infections of M. tuberculosis.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| |
Collapse
|
21
|
Najafi A, Ghazvini K, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci 2021; 282:119806. [PMID: 34252419 DOI: 10.1016/j.lfs.2021.119806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Tuberculosis, a cost and life threatening disease, was being subjected for improving vaccine strategies beyond BCG. Thus, a novel particulate delivery system using alginate-coated chitosan nanoparticles including PPE17 protein and CpG were administered through intranasal (IN) and subcutaneous (SC) routes. METHODS The encapsulated nanoparticles were first characterized for size, surface charge, encapsulation efficiency and in vitro release of PPE17 antigen. The nanoparticles were then administered intranasal and subcutaneously to evaluate the induction of systemic and/or mucosal immune responses in mice. RESULTS According to our result, the mean size of nanoparticles was measured about 427 nm, and exhibited a negative zeta potential of -37 mV. Following subcutaneous and intranasal administration, the results from cytokines assay showed that an increasing in the level of IFN-γ, and adversely a decrease in the level of IL-4 (presumptive Th1 biased immune response) was happened and also a notable elicitation in IL-17 cytokine was observed. CONCLUSION In conclusion, our study demonstrated that alginate-coated chitosan nanoparticles showed to be an effective way to improve BCG efficiency as booster strategy for subcutaneous vaccine, and also can induce strong immune responses as prime strategy through intranasal vaccination.
Collapse
Affiliation(s)
- Adel Najafi
- Clinical Microbiology Laboratory, Fatemieh Hospital, Hamedan University of Medical Science, Hamedan, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Yousef Amini
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Sirwan Zare
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
22
|
Keikha M, Karbalaei M. Overview on coinfection of HTLV-1 and tuberculosis: Mini-review. J Clin Tuberc Other Mycobact Dis 2021; 23:100224. [PMID: 33681477 PMCID: PMC7918677 DOI: 10.1016/j.jctube.2021.100224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is one of the human retroviruses that causes various complications in humans, including lymphoma. Mycobacterium tuberculosis (Mtb), on the other hand, is a causative agent of tuberculosis (TB), a deadly infectious disease. According to the literature, patients infected with HTLV-1 are prone to TB due to lack of regulation in the immune system. In the present study, we discussed the association between previous HTLV-1 infection and TB susceptibility. We also reviewed the histopathological findings of respiratory involvement following HTLV-1 infection and the management of this infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
23
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Tafaghodi M. Immunogenicity of HspX/EsxS fusion protein of Mycobacterium tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants after subcutaneous administration in animal model. Microb Pathog 2021; 154:104842. [PMID: 33762199 DOI: 10.1016/j.micpath.2021.104842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the most common and dangerous infectious diseases in the world. Despite vaccination with BCG, it is still considered as a major health problem. Therefore, design and production of an effective novel vaccine against TB is necessary. Our aim was to evaluate immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX, PLUSCOM nano-adjuvants and MPLA through the subcutaneous route in mice model. METHODS HspX/EsxS fused protein of M. tuberculosis was cloned, expressed and purified in the prokaryotic system. ISCOMATRIX and PLUSCOM nano-adjuvants were prepared by film hydration method. Subcutaneous immunization of BALB/c mice was performed by different formulations. IFN-γ, IL-4, IL-17 and TGF-β cytokines levels as well as serum IgG1, IgG2a. RESULTS Our results showed that subcutaneous administration of mice with HspX/EsxS along with three adjuvants, ISCOMATRIX, PLUSCOM and MPLA increased immunogenicity of multi-stage fusion protein of M. tuberculosis. Additionally, HspX/EsxS protein + ISCOMATRIX or + PLUSCOM nano-adjuvants induced stronger Th1, IgG2a and IgG1 immune responses compared to MPLA adjuvant. Totally, HspX/EsxS/ISCOMATRIX/MPLA, HspX/EsxS/PLUSCOM/MPLA and two BCG booster groups could significantly induce higher Th1 and IgG2a immune responses. CONCLUSION With regard to ability of ISCOMATRIX, PLUSCOM and MPLA adjuvants to increase immunogenicity of HspX/EsxS protein through induction of IFN-γ and IgG2a immune responses, it seems that these adjuvants and especially ISCOMATRIX and PLUSCOM, could also improve BCG efficacy as a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
In Vivo Antigen Expression Regulates CD4 T Cell Differentiation and Vaccine Efficacy against Mycobacterium tuberculosis Infection. mBio 2021; 12:mBio.00226-21. [PMID: 33879592 PMCID: PMC8092222 DOI: 10.1128/mbio.00226-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions, and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.
Collapse
|
25
|
Clemmensen HS, Dube JY, McIntosh F, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Behr MA, Mortensen R. In vivo antigen expression regulates CD4 T cell differentiation and vaccine efficacy against Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.02.429488. [PMID: 33564764 PMCID: PMC7872352 DOI: 10.1101/2021.02.02.429488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to IFN-γ or nutrient/oxygen deprivation of in vitro infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analysed their corresponding CD4 T cell phenotype and vaccine-protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination and, against the overexpressing strain, vaccination with MPT70 conferred similar protection as ESAT-6. Together our data indicate that high in vivo antigen expression drives T cells towards terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less-differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune-balance in favor of the host.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Jean-Yves Dube
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Immunology and Microbiology, University of Copenhagen
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| |
Collapse
|
26
|
Identification and in silico functional prediction of lineage-specific SNPs distributed in DosR-related proteins and resuscitation-promoting factor proteins of Mycobacterium tuberculosis. Heliyon 2020; 6:e05744. [PMID: 33364506 PMCID: PMC7753917 DOI: 10.1016/j.heliyon.2020.e05744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
One-third of the world population is infected by Mycobacterium tuberculosis, which may persist in the latent or dormant state. Bacteria can shift to dormancy when encountering harsh conditions such as low oxygen, nutrient starvation, high acidity and host immune defenses. Genes related to the dormancy survival regulator (DosR) regulon are responsible for the inhibition of aerobic respiration and replication, which is required to enter dormancy. Conversely, resuscitation-promoting factor (rpf) proteins participate in reactivation from dormancy and the development of active tuberculosis (TB). Many DosR regulon and rpf proteins are immunodominant T cell antigens that are highly expressed in latent TB infection. They could serve as TB vaccine candidates and be used for diagnostic development. We explored the genetic polymorphisms of 50 DosR-related genes and 5 rpf genes among 1,170 previously sequenced clinical M. tuberculosis genomes. Forty-three lineage- or sublineage-specific nonsynonymous single nucleotide polymorphisms (nsSNPs) were identified. Ten nsSNPs were specific to all Mtb isolates belonging to lineage 1 (L1). Two common sublineages, the Beijing family (L2.2) and EAI2 (L1.2.1), differed at as many as 26 lineage- or sublineage-specific SNPs. DosR regulon genes related to membrane proteins and the rpf family possessed mean dN/dS ratios greater than one, suggesting that they are under positive selection. Although the T cell epitope regions of DosR-related and rpf antigens were quite conserved, we found that the epitopes in L1 had higher rates of genetic polymorphisms than the other lineages. Some mutations in immunogenic epitopes of the antigens were specific to particular M. tuberculosis lineages. Therefore, the genetic diversity of the DosR regulon and rpf proteins might impact the adaptation of M. tuberculosis to the dormant state and the immunogenicity of latency antigens, which warrants further investigation.
Collapse
|
27
|
Preclinical Progress of Subunit and Live Attenuated Mycobacterium tuberculosis Vaccines: A Review following the First in Human Efficacy Trial. Pharmaceutics 2020; 12:pharmaceutics12090848. [PMID: 32899930 PMCID: PMC7559421 DOI: 10.3390/pharmaceutics12090848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is the global leading cause of death from an infectious agent with approximately 10 million new cases of TB and 1.45 million deaths in 2018. Bacille Calmette-Guérin (BCG) remains the only approved vaccine for Mycobacterium tuberculosis (M. tb, causative agent of TB), however clinical studies have shown BCG has variable effectiveness ranging from 0–80% in adults. With 1.7 billion people latently infected, it is becoming clear that vaccine regimens aimed at both post-exposure and pre-exposure to M. tb will be crucial to end the TB epidemic. The two main strategies to improve or replace BCG are subunit and live attenuated vaccines. However, following the failure of the MVA85A phase IIb trial in 2013, more varied and innovative approaches are being developed. These include recombinant BCG strains, genetically attenuated M. tb and naturally attenuated mycobacteria strains, novel methods of immunogenic antigen discovery including for hypervirulent M. tb strains, improved antigen recognition and delivery strategies, and broader selection of viral vectors. This article reviews preclinical vaccine work in the last 5 years with focus on those tested against M. tb challenge in relevant animal models.
Collapse
|
28
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
29
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
30
|
Keikha M, Karbalaei M, Ghazvini K. In Silico Design of Multi-Epitope ESAT-6:Ag85b:Fcγ2a Fusion Protein as a Novel Candidate for Tuberculosis Vaccine. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020; 15. [DOI: 10.5812/archcid.90449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
: Mycobacterium tuberculosis (MTB), which is the causative agent of tuberculosis (TB), is among the most important infectious bacteria with high morbidity and mortality rates worldwide. Bacilli Calmette-Guerin (BCG) vaccine has been discovered for about a century, and it is considered as a major vaccine for humans. However, some factors, such as its attenuated nature and its inefficacy against the latent form of the disease, have led to the use of alternative vaccines. Multi-epitope subunit vaccines are new-generation vaccines that are being developed in clinical trial phases. For the production of a subunit vaccine, the selection of immunodominant antigens and targeted delivery systems to antigen presenting cells (APCs) are considered as basic parameters. In the present study, we designed the novel multi-epitope ESAT-6:Ag85B:Fcγ2a, which was evaluated completely by various online tools as an optimum vaccine against TB. The early secreted antigenic target of 6 kDa (ESAT-6) and antigen 85B (Ag85B) are two immunodominant antigens, and Fcγ2a is a targeted delivery system. This vaccine candidate can be used for future preclinical studies.
Collapse
|
31
|
Deng G, Zhang W, Ji N, Zhai Y, Shi X, Liu X, Yang S. Identification of Secreted O-Mannosylated Proteins From BCG and Characterization of Immunodominant Antigens BCG_0470 and BCG_0980. Front Microbiol 2020; 11:407. [PMID: 32231652 PMCID: PMC7082424 DOI: 10.3389/fmicb.2020.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Bacterial glycoproteins have been investigated as vaccine candidates as well as diagnostic biomarkers. However, they are poorly understood in Mycobacterium bovis strain bacille Calmette-Guérin (BCG), a non-pathogenic model of Mycobacterium tuberculosis. To understand the roles of secreted O-mannosylated glycoproteins in BCG, we conducted a ConA lectin-affinity chromatography and mass spectra analysis to identify O-mannosylated proteins in BCG culture filtrate. Subsequent screening of antigens was performed using polyclonal antibodies obtained from a BCG-immunized mouse, with 15 endogenous O-mannosylated proteins eventually identified. Of these, BCG_0470 and BCG_0980 (PstS3) were revealed as the immunodominant antigens. To examine the protective effects of the antigens, recombinant antigens proteins were first expressed in Mycobacterium smegmatis and Escherichia coli, with the purified proteins then used to boost BCG primed-mice. Overall, the treated mice showed a greater delayed-type hypersensitivity response in vivo, as well as stronger Th1 responses, including higher level of IFN-γ, TNF-α, and specific-IgG. Therefore, mannosylated proteins BCG_0470 and BCG_0980 effectively amplified the immune responses induced by BCG in mice. Together, our results suggest that the oligosaccharide chains containing mannose are the antigenic determinants of glycoproteins, providing key insight for future vaccine optimization and design.
Collapse
Affiliation(s)
- Guoying Deng
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Ji
- Department of Clinical Laboratory, Dalian Third People's Hospital, Dalian, China
| | - Yunpeng Zhai
- Department of Clinical Laboratory, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Keikha M, Soleimanpour S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020; 23:100632. [DOI: 10.1016/j.mgene.2019.100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
33
|
Hu Z, Jiang W, Gu L, Qiao D, Shu T, Lowrie DB, Lu SH, Fan XY. Heterologous prime-boost vaccination against tuberculosis with recombinant Sendai virus and DNA vaccines. J Mol Med (Berl) 2019; 97:1685-1694. [PMID: 31786669 DOI: 10.1007/s00109-019-01844-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022]
Abstract
In an earlier study, a novel Sendai virus-vectored anti-tuberculosis vaccine encoding Ag85A and Ag85B (SeV85AB) was constructed and shown to elicit antigen-specific T cell responses and protection against Mycobacterium tuberculosis (Mtb) infection in a murine model. In this study, we evaluate whether the immune responses induced by this novel vaccine might be elevated by a recombinant DNA vaccine expressing the same antigen in a heterologous prime-boost vaccination strategy. The results showed that both SeV85AB prime-DNA boost (SeV85AB-DNA) and DNA prime-SeV85AB boost (DNA-SeV85AB) vaccination strategies significantly enhanced the antigen-specific T cell responses induced by the separate vaccines. The SeV85AB-DNA immunization regimen induced higher levels of recall T cell responses after Mtb infection and conferred better immune protection compared with DNA-SeV85AB or a single immunization. Collectively, our study lends strong evidence that a DNA vaccine boost might be included in a novel SeV85AB immunization strategy designed to enhance the immune protection against Mtb. KEY MESSAGES: A heterologous prime-boost regimen with a novel recombinant SeV85AB and a DNA vaccine increase the T cell responses above those from a single vaccine. The heterologous prime-boost regimen provided protection against Mtb infection. The DNA vaccine might be included in a novel SeV85AB immunization strategy designed to enhance the immune protection against Mtb.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Weimin Jiang
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Dan Qiao
- Ruijin Hospital (North), Shanghai Jiaotong University, Shanghai, 201801, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| |
Collapse
|
34
|
Yousefi Avarvand A, Khademi F, Tafaghodi M, Ahmadipour Z, Moradi B, Meshkat Z. The roles of latency-associated antigens in tuberculosis vaccines. ACTA ACUST UNITED AC 2019; 66:487-491. [DOI: 10.1016/j.ijtb.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
|
35
|
Can Multi-Stage Recombinant Fusion Proteins Be Considered as Reliable Vaccines Against Tuberculosis? A Letter to the Editor. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/modernc.91493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
37
|
Moreno-Mendieta S, Barrera-Rosales A, Mata-Espinosa D, Barrios-Payán J, Sánchez S, Hernández-Pando R, Rodríguez-Sanoja R. Raw starch microparticles as BCG adjuvant: Their efficacy depends on the virulence of the infection strains. Vaccine 2019; 37:5731-5737. [PMID: 31000412 DOI: 10.1016/j.vaccine.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
The persistence of tuberculosis (TB) as one of the top 10 causes of death worldwide, the growing incidence of multidrug-resistant tuberculosis and the controversial efficacy of the Bacille Calmette-Guérin (BCG) vaccine drives the development of new generation multistage vaccines against this disease that can boost BCG-primed immunity. The use of polymeric microparticles for this purpose increases due to their advantages, especially their good safety levels and intrinsic immunostimulant properties. We recently explored and demonstrated the reinforcing and adjuvant potential of starch microparticles (SMPs) that administered intranasally to BCG-primed BALB/c mice, alone or in combination with a recombinant antigen, increased survival rates and induced a reduction of bacterial load in the lungs of mice infected with tuberculosis. Here, we tested the effect of SMPs added to the BCG vaccine as adjuvant to the whole-cell vaccine and investigated their contribution to the improvement of the protective efficacy of subcutaneous vaccination in mice challenged with virulent strains of Mycobacterium tuberculosis. As expected, our results were dependent on the infection strains, showing that virulence is a crucial factor that affects the adjuvant activity of SMPs. Our results also confirm the adjuvant activity of this carbohydrate and its usefulness in diverse vaccination strategies not only for mucosal but also for parenteral administration.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
38
|
Tuberculosis, the unsung infectious disease. Tuberculosis (Edinb) 2019; 115:24-25. [DOI: 10.1016/j.tube.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 11/22/2022]
|
39
|
A novel antigen of Mycobacterium tuberculosis and MPLA adjuvant co-entrapped into PLGA:DDA hybrid nanoparticles stimulates mucosal and systemic immunity. Microb Pathog 2018; 125:507-513. [DOI: 10.1016/j.micpath.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022]
|
40
|
Keikha M, Moghim S, Fazeli H, Nasr-Esfahani B. The Fusion Multistage Synthetic Peptides as the Best Candidates for New Tuberculosis Vaccine. Adv Biomed Res 2018; 7:122. [PMID: 30211135 PMCID: PMC6124223 DOI: 10.4103/abr.abr_116_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Masoud Keikha
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr-Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Can Fusion Proteins Be Considered a New Candidate for Tuberculosis Vaccine? ACTA ACUST UNITED AC 2018. [DOI: 10.5812/gct.79943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Khademi F, Taheri RA, Yousefi Avarvand A, Vaez H, Momtazi-Borojeni AA, Soleimanpour S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb Pathog 2018; 121:218-223. [DOI: 10.1016/j.micpath.2018.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
43
|
Khademi F, Sahebkar A, Fasihi-Ramandi M, Taheri RA. Induction of strong immune response against a multicomponent antigen ofMycobacterium tuberculosisin BALB/c mice using PLGA and DOTAP adjuvant. APMIS 2018; 126:509-514. [DOI: 10.1111/apm.12851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Farzad Khademi
- Department of Microbiology; School of Medicine; Ardabil University of Medical Sciences; Ardabil Iran
- Nanobiotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center; System Biology and Poisonings Institute; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|