1
|
Noor S, Aljasir MA, Bashir M, Khan K, Ahmad S, Abideen SA, Khan S, Siddique F, Ahmad H, Ghani K, Iqbal M, Irfan M, Khan A, Wei DQ. Multi-scale computational modeling to identify novel chemical scaffolds as trehalose-6-phosphate phosphatase inhibitors to combat Burkholderia pseudomallei. In Silico Pharmacol 2025; 13:21. [PMID: 39901924 PMCID: PMC11787118 DOI: 10.1007/s40203-025-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Burkholderia pseudomallei causes melioidosis, a deadly infection having high fatality rates (20-50%) and antibiotic resistance, however, there's no effective drug or vaccine available. Trehalose is a vital sugar for B. pseudomallei which influences the pathogen resilience and pathogenicity. This proposed computational strategy focuses on developing novel drugs against Trehalose-6-phosphate Phosphatase (TPP) to combat infections. This study found three novel drugs from Asinex, Zinc, Chembridge, and Drugbank databases through a comprehensive structure-based virtual screening. The process screened the top three compounds: BDG_34042863, BDF_33738612, and DB00139 along with control (2-methyl-6-phenoxytetrahydro-2 H-pyran-3,4,5-triol) with a binding energy score of -8.8 kcal/mol, -8.4 kcal/mol, and - 7.7 kcal/mol, -6.4 kcal/mol respectively. In a molecular dynamics simulation, the Ligand-protein complexes demonstrated substantial non-covalent interactions as well as a stable docked intermolecular binding conformation. Throughout the MDS (molecular dynamic simulation) period, the studied compounds showed stable consistent interactions; there were no noticeable changes in the interactions or binding mode. The BDG_34042863, BDF_33738612, and DB00139 had a mean deviation of 4.04, 7.18, and 7.10 measured in Å, respectively. In addition, the simulation trajectories of complexes underwent MM/GBSA analysis, which revealed binding affinity scores of -33.39, -41.1, -49.16, and - 41.29 measured in kcal/mol for the control, BDG_34042863, BDF_33738612, and DB00139, respectively. According to DFT Analysis, BDF_33738612 showed the smallest energy gap (0.46 eV), indicating high reactivity, while DB00139 showed the largest energy gap (5.66 eV), illustrating good kinetic stability compared to the control. The compounds exhibit notable differences in reactivity and stability levels as their HOMO-1 to LUMO + 1 and HOMO-2 to LUMO + 2 orbitals have greater energy gaps, ranging from 5.06 eV to 6.69 eV and 5.66 eV to 7.09 eV, respectively. The compounds also had favorable pharmacokinetic characteristics and were categorized as druglike. Among the selected compounds, BDF_33738612 demonstrated the most promising findings followed by BDG_34042863 and DB00139. The compounds may be employed in an experimental study to examine their anti-TPP activity against B. pseudomallei. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00309-5.
Collapse
Affiliation(s)
- Sara Noor
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Maryam Bashir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800 Pakistan
| | - Kalsoom Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, People’s Republic of China
| | - Syed Ainul Abideen
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800 Pakistan
| | - Hamza Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25000 Pakistan
| | - Khudija Ghani
- Sarhad Institute of Allied Health Sciences, Sarhad University of Science and Information Technology, Peshawar, 25000 Pakistan
| | - Madiha Iqbal
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | | | - Abbas Khan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan Malaysia
| | - Dong-Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, People’s Republic of China
| |
Collapse
|
2
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Stockton JL, Khakhum N, Stevenson HL, Torres AG. Burkholderia pseudomallei BicA protein promotes pathogenicity in macrophages by regulating invasion, intracellular survival, and virulence. mSphere 2023; 8:e0037823. [PMID: 37768049 PMCID: PMC10597401 DOI: 10.1128/msphere.00378-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Burkholderia pseudomallei (Bpm) is the causative agent of melioidosis disease. Bpm is a facultative intracellular pathogen with a complex life cycle inside host cells. Pathogenic success depends on a variety of virulence factors with one of the most critical being the type 6 secretion system (T6SS). Bpm uses the T6SS to move into neighboring cells, resulting in multinucleated giant cell (MNGC) formation, a strategy used to disseminate from cell to cell. Our prior study using a dual RNA-seq analysis to dissect T6SS-mediated virulence on intestinal epithelial cells identified BicA as a factor upregulated in a T6SS mutant. BicA regulates both type 3 secretion system (T3SS) and T6SSs; however, the extent of its involvement during disease progression is unclear. To fully dissect the role of BicA during systemic infection, we used two macrophage cell lines paired with a pulmonary in vivo challenge murine model. We found that ΔbicA has a distinct intracellular replication defect in both immortalized and primary macrophages, which begins as early as 1 h post-infection. This intracellular defect is linked with the lack of cell-to-cell dissemination and MNGC formation as well as a defect in T3SS expression. The in vitro phenotype translated in vivo as ΔbicA was attenuated in a pulmonary model of infection, demonstrating a distinct macrophage activation profile and a lack of pathological features present in the wild type. Overall, these results highlight the role of BicA in regulating intracellular virulence and demonstrate that specific regulation of secretion systems has a significant effect on host response and Bpm pathogenesis. IMPORTANCE Melioidosis is an understudied tropical disease that still results in ~50% fatalities in infected patients. It is caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm). Bpm is an intracellular pathogen that disseminates from the infected cell to target organs, causing disseminated disease. The regulation of secretion systems involved in entry and cell-to-cell spread is poorly understood. In this work, we characterize the role of BicA as a regulator of secretion systems during infection of macrophages in vitro and in vivo. Understanding how these virulence factors are controlled will help us determine their influence on the host cells and define the macrophage responses associated with bacterial clearance.
Collapse
Affiliation(s)
- Jacob L. Stockton
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Khirikoekkong N, Asarath SA, Hill J, Wettana B, Srisawang O, Cheah PY, Dunachie S, Chamnan P. Melioidosis Vaccines (MeVa): Attitudes to vaccines, melioidosis and clinical trials in key stakeholders in Ubon Ratchathani, Thailand. Wellcome Open Res 2023; 8:413. [PMID: 37969481 PMCID: PMC10646340 DOI: 10.12688/wellcomeopenres.18383.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 11/17/2023] Open
Abstract
Background: Melioidosis is a bacterial infection which kills an estimated 89,000 people per year in tropical and sub-tropical regions, chiefly affecting the poorest. Diabetes is the primary risk factor, conferring a 12-fold increase in risk. Despite limited funding compared to other neglected tropical diseases, melioidosis vaccine development has generated several candidates for clinical development. CPS-CRM 197/Hcp1 is a promising vaccine candidate developed at the University of Nevada, Reno which is due to enter a Phase I clinical trial in Oxford, UK in 2024. As we move closer to the possibility of field trials of a melioidosis vaccine, it is critical to work in parallel to understand perceptions toward a vaccine among those living where melioidosis rates are high. Reasons for vaccine acceptance versus hesitancy are complex, and include perceived risk of the target disease, concern about side effects, and above all trust in government, scientists, the pharmaceutical industry and other authorities. Methods: We will carry out a qualitative study in Ubon Ratchathani, Thailand, an endemic region for melioidosis, as groundwork for a potential future melioidosis vaccine efficacy study, and in the longer-term vaccine introduction. This study seeks to explore knowledge and attitudes in three main areas; 1) melioidosis disease, 2) vaccines, and 3) participation in clinical vaccine trials. In-depth interviews and focus group discussions will take place in five participant groups of different risks and exposure to melioidosis. Purposive, convenience sampling will be used, also snowball sampling to reach some participant groups. Sample size will be based on participant's experience, to inform the line of enquiries of study, or until data saturation, expecting 66-90 participants across all groups. Discussion: The findings of this study will be written up and published in an open access journal, and will be valuable to inform future design of clinical trials as well as engagement and communications associated with future vaccine rollout.
Collapse
Affiliation(s)
| | - Supa-at Asarath
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
| | - Jennifer Hill
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- NDM Centre for Global Health Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Benjawan Wettana
- Department of Social Medicine, Sanpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Orathai Srisawang
- Department of Social Medicine, Sanpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
- The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- NDM Centre for Global Health Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Parinya Chamnan
- Department of Social Medicine, Sanpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| |
Collapse
|
5
|
Biryukov SS, Cote CK, Klimko CP, Dankmeyer JL, Rill NO, Shoe JL, Hunter M, Shamsuddin Z, Velez I, Hedrick ZM, Rosario-Acevedo R, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Burtnick MN, Brett PJ, Welkos SL, DeShazer D. Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Front Microbiol 2022; 13:965518. [PMID: 36060742 PMCID: PMC9428723 DOI: 10.3389/fmicb.2022.965518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.
Collapse
Affiliation(s)
- Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- *Correspondence: Christopher K. Cote
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zander M. Hedrick
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- David DeShazer
| |
Collapse
|
6
|
Shetty NS, Karikal A, Radhakrishnan SM. Melioidosis: an unusual diagnosis for deep temporal and masticatory space infection following trauma. BMJ Case Rep 2022; 15:e248866. [PMID: 35732363 PMCID: PMC9226942 DOI: 10.1136/bcr-2022-248866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
We report a patient in his early 70s, with an alleged history of trauma to the right temporal region, following which a swelling developed. A week later, erythematous changes, throbbing pain and occasional fever spikes were noted. A month after the initial trauma, he presented to our institution with necrosed skin over the right temporal region and swelling extending up to the vertex of the skull. The patient was an uncontrolled diabetic and had systemic conditions like chronic obstructive pulmonary disease and chronic kidney disease. A CT scan revealed a collection along the infratemporal space extending into the masticatory space. Routine investigations, blood culture sensitivity, were sent, which revealed the presence of Burkholderia pseudomallei sensitive to ceftazidime and imipenem. Under antibiotic coverage, the treatment was initiated, incision and drainage were done to reduce the bacterial load. However, the patient was lost to underlying systemic conditions and septic shock.
Collapse
Affiliation(s)
| | - Arvind Karikal
- Oral & Maxillofacial Surgery, AB Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India
| | | |
Collapse
|
7
|
Waag DM, Chance TB, Trevino SR, Rossi FD, Fetterer DP, Amemiya K, Dankmeyer JL, Ingavale SS, Tobery SA, Zeng X, Kern SJ, Worsham PL, Cote CK, Welkos SL. Comparison of three non-human primate aerosol models for glanders, caused by Burkholderia mallei. Microb Pathog 2021; 155:104919. [PMID: 33915206 DOI: 10.1016/j.micpath.2021.104919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.
Collapse
Affiliation(s)
- David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Franco D Rossi
- Applied and Advanced Technology-Aerobiology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Susham S Ingavale
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven A Tobery
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven J Kern
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
8
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|