1
|
Isakova-Sivak I, Rudenko L. Next-generation influenza vaccines based on mRNA technology. THE LANCET. INFECTIOUS DISEASES 2025; 25:2-3. [PMID: 39245056 DOI: 10.1016/s1473-3099(24)00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, 197022, Russia.
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| |
Collapse
|
2
|
Zong Y, Li H, Chang Y, Li J, He L, Shi W, Guo J. Global research trends in the relationship between influenza and CD4 + T/CD8 + T cells: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2435644. [PMID: 39680034 DOI: 10.1080/21645515.2024.2435644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza pathogens cause many illnesses and deaths yearly, posing a serious threat to global public health. As a result, most studies are increasingly focusing on the role of specific CD4+ T/CD8+ T cells in combating influenza. This study examines the key themes and trends in this field using bibliometric analysis. Literature on influenza and CD4+ T/CD8+ T cells were searched (from 1985 to 2023) in the Web of Science Core Collection (WoSCC) database. Eligible articles were screened according to the inclusion and exclusion criteria for bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." A total of 1,071 publications from 47 countries or regions and 1,148 institutions associated with 5,728 authors in the disciplines of immunology, virology, biochemistry, and molecular biology were included. The findings indicate a yearly increase in publications related to influenza and CD4+ T/CD8+ T cells, with the United States, Australia, and China leading in publication volume. The University of Melbourne had the highest volume of publications. Only a few researchers collaborated, and the collaborations were mostly concentrated in the same countries/regions. Professor Katherine Kedzierska, associated with The Peter Doherty Institute for Infection and Immunity, was the most productive academic in this field. According to the analysis of highly cited literature and keywords, the application of cellular immunity in formulating pioneering influenza vaccines is a key direction for future research.The role of CD4+ T/CD8+ T cells in combating the influenza virus has emerged as a significant focus within influenza research literature. This article summarizes the research institutions, authors, journals, hotspots, and application trends of CD4+ T/CD8+ T cells in influenza.
Collapse
Affiliation(s)
- Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiajie Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei He
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Ge P, Mota YC, Richardson RA, Ross TM. A Computationally Optimized Broadly Reactive Hemagglutinin and Neuraminidase Vaccine Boosts Antibody-Secreting Cells and Induces a Robust Serological Response, Preventing Lung Damage in a Pre-Immune Model. Vaccines (Basel) 2024; 12:706. [PMID: 39066344 PMCID: PMC11281495 DOI: 10.3390/vaccines12070706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) surface proteins are the primary and secondary immune targets for most influenza vaccines. In this study, H2, H5, H7, N1, and N2 antigens designed by the computationally optimized broadly reactive antigen (COBRA) methodology were incorporated into an adjuvant-formulated vaccine to assess the protective efficacy and immune response against A/Hong Kong/125/2017 H7N9 virus challenge in pre-immune mice. The elicited antibodies bound to H2, H5, H7, N1, and N2 wild-type antigens; cH6/1 antigens; and cH7/3 antigens, with hemagglutinin inhibition (HAI) activity against broad panels of the H2Nx, H5Nx, and H7Nx influenza strains. Mice vaccinated with the pentavalent COBRA HA/NA vaccine showed little to no weight loss, no clinical signs of diseases, and were protected from mortality when challenged with the lethal H7N9 virus. Virus titers in the lungs of vaccinated mice were lower and cleared more rapidly than in mock-vaccinated mice. Some vaccinated mice showed no detectable lung injury or inflammation. Antibody-secreting cells were significantly increased in COBRA-vaccinated mice, with higher total Ig and H7-specific ASC. Thus, the combination of H2, H5, H7, N1, and N2 COBRA antigens presents a potential for the formulation of a universal influenza virus vaccine.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA (R.A.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| | - Yailin Campos Mota
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| | - Robert A. Richardson
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA (R.A.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA (R.A.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Wong PF, Isakova-Sivak I, Stepanova E, Krutikova E, Bazhenova E, Rekstin A, Rudenko L. Development of Cross-Reactive Live Attenuated Influenza Vaccine Candidates against Both Lineages of Influenza B Virus. Vaccines (Basel) 2024; 12:95. [PMID: 38250908 PMCID: PMC10821225 DOI: 10.3390/vaccines12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.
Collapse
Affiliation(s)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia; (P.-F.W.); (E.S.); (E.K.); (E.B.); (A.R.); (L.R.)
| | | | | | | | | | | |
Collapse
|
6
|
Shi H, Ross TM. Inactivated recombinant influenza vaccine: the promising direction for the next generation of influenza vaccine. Expert Rev Vaccines 2024; 23:409-418. [PMID: 38509022 PMCID: PMC11056089 DOI: 10.1080/14760584.2024.2333338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Vaccination is the most effective method to control the prevalence of seasonal influenza and the most widely used influenza vaccine is the inactivated influenza vaccine (IIV). Each season, the influenza vaccine must be updated to be most effective against current circulating variants. Therefore, developing a universal influenza vaccine (UIV) that can elicit both broad and durable protection is of the utmost importance. AREA COVERED This review summarizes and compares the available influenza vaccines in the market and inactivation methods used for manufacturing IIVs. Then, we discuss the latest progress of the UIV development in the IIV format and the challenges to address for moving these vaccine candidates to clinical trials and commercialization. The literature search was based on the Centers for Disease Control and Prevention (CDC) and the PubMed databases. EXPERT OPINION The unmet need for UIV is the primary aim of developing the next generation of influenza vaccines. The IIV has high antigenicity and a refined manufacturing process compared to most other formats. Developing the UIV in IIV format is a promising direction with advanced biomolecular technologies and next-generation adjuvant. It also inspires the development of universal vaccines for other infectious diseases.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Al Farroukh M, Kiseleva I, Stepanova E, Bazhenova E, Krutikova E, Tkachev A, Chistyakova A, Rekstin A, Puchkova L, Rudenko L. The Effect of Mice Adaptation Process on the Pathogenicity of Influenza A/South Africa/3626/2013 (H1N1)pdm09 Model Strain. Int J Mol Sci 2023; 24:17386. [PMID: 38139214 PMCID: PMC10743444 DOI: 10.3390/ijms242417386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza virus strain A/South Africa/3626/2013 (H1N1)pdm09 (SA-WT) is a non-mouse-adapted model strain that has naturally high pathogenic properties in mice. It has been suggested that the high pathogenicity of this strain for mice could be due to the three strain-specific substitutions in the polymerase complex (Q687R in PB1, N102T in PB2, and E358E/K heterogeneity in PB2). To evaluate the role of these replacements, SA-WT was passaged five times in mouse lungs, and the genome of the mouse-adapted version of the SA-WT strain (SA-M5) was sequenced. SA-M5 lost E358E/K heterogeneity and retained E358, which is the prevalent amino acid at this position among H1N1pdm09 strains. In addition, in the hemagglutinin of SA-M5, two heterogeneous substitutions (G155G/E and S190S/R) were identified. Both viruses, SA-M5 and SA-WT, were compared for their toxicity, ability to replicate, pathogenicity, and immunogenicity in mice. In mice infected with SA-M5 or SA-WT strains, toxicity, virus titer in pulmonary homogenates, and mouse survival did not differ significantly. In contrast, an increase in the immunogenicity of SA-M5 compared to SA-WT was observed. This increase could be due to the substitutions G155G/E and S190S/R in the HA of SA-M5. The prospects for using SA-M5 in studying the immunogenicity mechanisms were also discussed.
Collapse
Affiliation(s)
- Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194021, Russia;
| | - Irina Kiseleva
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Ekaterina Stepanova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Elena Krutikova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Artem Tkachev
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194021, Russia;
| | - Anna Chistyakova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Andrey Rekstin
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Ludmila Puchkova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, St. Petersburg 197022, Russia; (E.S.); (E.B.); (E.K.); (A.C.); (A.R.); (L.P.); (L.R.)
| |
Collapse
|
8
|
Rak A, Isakova-Sivak I, Rudenko L. Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines (Basel) 2023; 11:1810. [PMID: 38140214 PMCID: PMC10747980 DOI: 10.3390/vaccines11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The new SARS-CoV-2 coronavirus, which emerged in late 2019, is a highly variable causative agent of COVID-19, a contagious respiratory disease with potentially severe complications. Vaccination is considered the most effective measure to prevent the spread and complications of this infection. Spike (S) protein-based vaccines were very successful in preventing COVID-19 caused by the ancestral SARS-CoV-2 strain; however, their efficacy was significantly reduced when coronavirus variants antigenically different from the original strain emerged in circulation. This is due to the high variability of this major viral antigen caused by escape from the immunity caused by the infection or vaccination with spike-targeting vaccines. The nucleocapsid protein (N) is a much more conserved SARS-CoV-2 antigen than the spike protein and has therefore attracted the attention of scientists as a promising target for broad-spectrum vaccine development. Here, we summarized the current data on various N-based COVID-19 vaccines that have been tested in animal challenge models or clinical trials. Despite the high conservatism of the N protein, escape mutations gradually occurring in the N sequence can affect its protective properties. During the three years of the pandemic, at least 12 mutations have arisen in the N sequence, affecting more than 40 known immunogenic T-cell epitopes, so the antigenicity of the N protein of recent SARS-CoV-2 variants may be altered. This fact should be taken into account as a limitation in the development of cross-reactive vaccines based on N-protein.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (I.I.-S.); (L.R.)
| | | | | |
Collapse
|
9
|
Isakova-Sivak I, Rudenko L. A promising candidate for a universal influenza vaccine. THE LANCET. INFECTIOUS DISEASES 2023; 23:1327-1329. [PMID: 37517421 DOI: 10.1016/s1473-3099(23)00366-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Affiliation(s)
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg 197376, Russia.
| |
Collapse
|
10
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
11
|
Tian J, Fu W, Xie Z, Wang X, Miao M, Shan F, Yu X. Methionine enkephalin(MENK) upregulated memory T cells in anti-influenza response. BMC Immunol 2023; 24:38. [PMID: 37828468 PMCID: PMC10571428 DOI: 10.1186/s12865-023-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Novel prophylactic drugs and vaccination strategies for protection against influenza virus should induce specific effector T-cell immune responses in pulmonary airways and peripheral lymphoid organs. Designing approaches that promote T-cell-mediated responses and memory T-cell differentiation would strengthen host resistance to respiratory infectious diseases. The results of this study showed that pulmonary delivery of MENK via intranasal administration reduced viral titres, upregulated opioid receptor MOR and DOR, increased the proportions of T-cell subsets including CD8+ T cells, CD8+ TEM cells, NP/PA-effector CD8+ TEM cells in bronchoalveolar lavage fluid and lungs, and CD4+/CD8+ TCM cells in lymph nodes to protect mice against influenza viral challenge. Furthermore, we demonstrated that, on the 10th day of infection, the proportions of CD4+ TM and CD8+ TM cells were significantly increased, which meant that a stable TCM and TEM lineage was established in the early stage of influenza infection. Collectively, our data suggested that MENK administered intranasally, similar to the route of natural infection by influenza A virus, could exert antiviral activity through upregulating T-cell-mediated adaptive immune responses against influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Wenrui Fu
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zifeng Xie
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaonan Wang
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Miao Miao
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Xiaodong Yu
- Department of Nursing, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
12
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
13
|
Qiao Z, Liao Y, Pei M, Qiu Z, Liu Z, Jin D, Zhang J, Ma Z, Yang X. RSAD2 Is an Effective Target for High-Yield Vaccine Production in MDCK Cells. Viruses 2022; 14:v14112587. [PMID: 36423196 PMCID: PMC9695692 DOI: 10.3390/v14112587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Increasingly, attention has focused on improving vaccine production in cells using gene editing technology to specifically modify key virus regulation-related genes to promote virus replication. In this study, we used DIA proteomics analysis technology to compare protein expression differences between two groups of MDCK cells: uninfected and influenza A virus (IAV) H1N1-infected cells 16 h post infection (MOI = 0.01). Initially, 266 differentially expressed proteins were detected after infection, 157 of which were upregulated and 109 were downregulated. We screened these proteins to 23 genes related to antiviral innate immunity regulation based on functional annotation database analysis and verified the mRNA expression of these genes using qPCR. Combining our results with published literature, we focused on the proteins RSAD2, KCNN4, IDO1, and ISG20; we verified their expression using western blot, which was consistent with our proteomics results. Finally, we knocked down RSAD2 using lentiviral shRNA expression vectors and found that RSAD2 inhibition significantly increased IAV NP gene expression, effectively promoting influenza virus replication with no significant effect on cell proliferation. These results indicate that RSAD2 is potentially an effective target for establishing high-yield vaccine MDCK cell lines and will help to fully understand the interaction mechanism between host cells and influenza viruses.
Collapse
Affiliation(s)
- Zilin Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Mengyuan Pei
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Dongwu Jin
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
- Correspondence:
| |
Collapse
|
14
|
Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines (Basel) 2022; 10:vaccines10071142. [PMID: 35891306 PMCID: PMC9318028 DOI: 10.3390/vaccines10071142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.
Collapse
|
15
|
Isakova-Sivak I, Rudenko L. The future of haemagglutinin stalk-based universal influenza vaccines. THE LANCET. INFECTIOUS DISEASES 2022; 22:926-928. [PMID: 35461523 DOI: 10.1016/s1473-3099(22)00056-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia.
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| |
Collapse
|
16
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Al Farroukh M, Kiseleva I, Bazhenova E, Stepanova E, Puchkova L, Rudenko L. Understanding the Variability of Certain Biological Properties of H1N1pdm09 Influenza Viruses. Vaccines (Basel) 2022; 10:395. [PMID: 35335027 PMCID: PMC8954537 DOI: 10.3390/vaccines10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
The influenza virus continually evolves because of the high mutation rate, resulting in dramatic changes in its pathogenicity and other biological properties. This study aimed to evaluate the evolution of certain essential properties, understand the connections between them, and find the molecular basis for the manifestation of these properties. To that end, 21 A(H1N1)pdm09 influenza viruses were tested for their pathogenicity and toxicity in a mouse model with a ts/non-ts phenotype manifestation and HA thermal stability. The results demonstrated that, for a strain to have high pathogenicity, it must express a toxic effect, have a non-ts phenotype, and have a thermally stable HA. The ancestor A/California/07/2009 (H1N1)pdm influenza virus expressed the non-ts phenotype, after which the cycling trend of the ts/non-ts phenotype was observed in new strains of A(H1N1)pdm09 influenza viruses, indicating that the ratio of the ts phenotype will increase in the coming years. Of the 21 tested viruses, A/South Africa/3626/2013 had the high pathogenicity in the mouse model. Sequence alignment analysis showed that this virus has three unique mutations in the polymerase complex, two of which are in the PB2 gene and one that is in the PB1 gene. Further study of these mutations might explain the distinguishing pathogenicity.
Collapse
Affiliation(s)
- Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
- Peter the Great St. Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Graduate School of Biomedical Systems and Technologies, 195251 St. Petersburg, Russia
| | - Irina Kiseleva
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ekaterina Stepanova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ludmila Puchkova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| |
Collapse
|
18
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
19
|
Mezhenskaya D, Isakova-Sivak I, Gupalova T, Bormotova E, Kuleshevich E, Kramskaya T, Leontieva G, Rudenko L, Suvorov A. A Live Probiotic Vaccine Prototype Based on Conserved Influenza a Virus Antigens Protect Mice against Lethal Influenza Virus Infection. Biomedicines 2021; 9:biomedicines9111515. [PMID: 34829744 PMCID: PMC8615285 DOI: 10.3390/biomedicines9111515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Due to the highly variable nature of the antigenic properties of the influenza virus, many efforts have been made to develop broadly reactive influenza vaccines. Various vaccine platforms have been explored to deliver conserved viral antigens to the target cells to induce cross-reactive immune responses. Here, we assessed the feasibility of using Enterococcus faecium L3 as a bacterial vector for oral immunization against influenza virus. Methods: we generated two vaccine prototypes by inserting full-length HA2 (L3-HA2) protein or its long alpha helix (LAH) domain in combination with four M2e tandem repeats (L3-LAH+M2e) into genome of E.faecium L3 probiotic strain. The immunogenicity and protective potential of these oral vaccines were assessed in a lethal challenge model in BALB/c mice. Results: as expected, both vaccine prototypes induced HA stem-targeting antibodies, whereas only L3-LAH+4M2e vaccine induced M2e-specific antibody. The L3-HA2 vaccine partially protected mice against lethal challenge with two H1N1 heterologous viruses, while 100% of animals in the L3-LAH+4M2e vaccine group survived in both challenge experiments, and there was significant protection against weight loss in this group, compared to the L3 vector-immunized control mice. Conclusions: the recombinant enterococcal strain L3-LAH+4M2e can be considered as a promising live probiotic vaccine candidate for influenza prevention and warrants further evaluation in relevant pre-clinical models.
Collapse
|