1
|
Nouraei H, Ghahartars M, Zareshahrabadi Z, Pakshir K. Beyond the usual suspects: A case report of multi-etiological and multidrug-resistant Candida onychomycosis. Indian J Med Microbiol 2025; 56:100870. [PMID: 40383195 DOI: 10.1016/j.ijmmb.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
This is a rare case of Candida onychomycosis caused by three Candida species that were resistant to several antifungal drugs. A 56-year-old Iranian woman with no previous medical or injury history experienced discoloration and lifting of her left thumbnail for six months. Laboratory tests identified yeast and pseudohyphae consistent with Candida onychomycosis. Conventional and molecular techniques confirmed that onychomycosis was caused by three different Candida species. All strains were resistant to various antifungal drugs. Therapeutic failure, in addition to multi-drug resistance, may be due to the presence of multiple etiological agents.
Collapse
Affiliation(s)
- Hasti Nouraei
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Ghahartars
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Danielsen AS, Ødeskaug LE, Raastad R, Kjerulf A, Andersen AM, Tornes RA, Himmels JPW, Dahle UR, Sare M, Kristensen B, Eriksen-Volle HM, Molvik M. Key Factors to Consider for Candida auris Screening in Healthcare Settings: A Systematic Review. Mycoses 2025; 68:e70043. [PMID: 40072118 DOI: 10.1111/myc.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Candida auris is an emerging fungal pathogen that is often multidrug-resistant. It can persist on skin and in hospital environments, leading to outbreaks and severe infections for patients at risk. Several countries and institutions are working on establishing guidelines and recommendations for prevention. This review aims to assess the evidence on factors associated with C. auris colonisation or infection, the duration of such colonisation, possible colonisation sites, and the risk of secondary cases to inform screening recommendations. METHODS We systematically searched five databases for primary studies and systematic reviews of our four outcomes. We excluded studies on treatment, management, laboratory methods, drug resistance, and environmental screening. From each paper, we extracted relevant data and summarised them in tables. Main findings were described narratively. FINDINGS We selected 117 studies for inclusion. Most of the studies were observational studies. Without taking the method of testing into account, the duration of C. auris colonisation varied, with up to and beyond a year being common. The predominant sites of colonisation were the axillae and groin, with the nares and rectum being less common sites. The risk of secondary cases saw considerable variation across the studies, and the secondary cases primarily involved patients and not healthcare workers. Critical care settings, invasive medical devices, recent antimicrobial use, and comorbidities were often associated with C. auris colonisation and infection. CONCLUSION Our review highlights that, despite relevant findings on factors influencing C. auris colonisation and infection, substantial gaps remain in the evidence supporting screening practices. Most studies were conducted reactively, in outbreak settings, and lack systematic protocols. Given these limitations, screening guidelines are likely to be more successful if grounded in medical theory and yeast microbiology rather than relying solely on current studies. Rigorous, well-designed research is urgently needed to inform future C. auris screening and control efforts.
Collapse
Affiliation(s)
- Anders Skyrud Danielsen
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Liz Ertzeid Ødeskaug
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Raastad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Kjerulf
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Anne-Marie Andersen
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Ragnhild Agathe Tornes
- Library for the Healthcare Administration, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan P W Himmels
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ulf R Dahle
- Centre for Antimicrobial Resistance, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Sare
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Brian Kristensen
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | - Mari Molvik
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Gierke AM, Hessling M. Sensitivity Analysis of C. auris, S. cerevisiae, and C. cladosporioides by Irradiation with Far-UVC, UVC, and UVB. Pathog Immun 2024; 9:135-151. [PMID: 39247685 PMCID: PMC11378758 DOI: 10.20411/pai.v9i2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Background The World Health Organization has published a list of pathogenic fungi with prior-itizing groups and calls for research and development of antifungal measures, with Candida auris belonging to the group with high priority. Methods The photosensitivity towards short wavelength ultraviolet irradiation (Far-UVC, UVC, and UVB) was investigated and compared to other yeasts (Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides). The observed 1-log reduction doses were compared to literature values of other representatives of the genus Candida, but also with S. cerevisiae, Aspergillus niger, and A. fumigatus. Results For the determined 1-log reduction doses, an increase with higher wavelengths was observed. A 1-log reduction dose of 4.3 mJ/cm2 was determined for C. auris when irradiated at 222 nm, a dose of 6.1 mJ/cm2 at 254 nm and a 1-log reduction dose of 51.3 mJ/cm2 was required when irradiated with UVB. Conclusions It was observed that S. cerevisiae is a possible surrogate for C. auris for irradiation with Far-UVC and UVB due to close 1-log reduction doses. No surrogate suitability was verified for C. cladosporioides in relation to A. niger and A. fumigatus for irradiation with a wavelength of 254 nm and for A. niger at 222 nm.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
5
|
Barough RE, Javidnia J, Davoodi A, Talebpour Amiri F, Moazeni M, Sarvi S, Valadan R, Siahposht-Khachaki A, Moosazadeh M, Nosratabadi M, Haghani I, Meis JF, Abastabar M, Badali H. Metabolic Patterns of Fluconazole Resistant and Susceptible Candida auris Clade V and I. J Fungi (Basel) 2024; 10:518. [PMID: 39194844 DOI: 10.3390/jof10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Candida auris, an emerging non-albicans multidrug-resistant yeast, has become a significant cause of invasive candidiasis in healthcare settings. So far, data on the metabolites of C. auris in different clades are minimal, and no studies have focused on clade V metabolites. Therefore, Gas chromatography-mass spectrometry (GC-MS) was used for the metabolomic profiling of clade I C. auris compared with fluconazole-resistant and susceptible C. auris in clade V strains. GC-MS chromatography revealed 28, 22, and 30 compounds in methanolic extracts of the fluconazole-susceptible and fluconazole-resistant C. auris clade V and C. auris clade I strain, respectively. Some compounds, such as acetamide and metaraminol, were found in fluconazole-susceptible and resistant C. auris clade V and clade I. N-methyl-ethanamine and bis(2-ethylhexyl) phthalate metabolites were found in both fluconazole -susceptible and resistant C. auris clade V, as well as 3-methyl-4-isopropylphenol, 3,5-bis(1,1-dimethyl)-1,2-benzenediol, and diisostyl phthalate metabolites in both fluconazole resistant C. auris clade V and I. Identifying these metabolites contributes to understanding the morphogenesis and pathogenesis of C. auris, highlighting their potential role in antifungal drug resistance and the control of fungal growth. However, further experiments are warranted to fully comprehend the identified metabolites' regulatory responses, and there may be potential challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Robab Ebrahimi Barough
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, Communicable Diseases Institute, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Molecular and Cell-Biology Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Siahposht-Khachaki
- Department of Physiology and Pharmacology, Mazandaran University of Medical Sciences, Ramsar International Branch, Sari 48157-33971, Iran
| | - Mahmood Moosazadeh
- Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohsen Nosratabadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, 50923 Cologne, Germany
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Muniz Seif EJ, Icimoto MY, Silva Júnior PI. In silico bioprospecting of receptors associated with the mechanism of action of Rondonin, an antifungal peptide from spider Acanthoscurria rondoniae haemolymph. In Silico Pharmacol 2024; 12:55. [PMID: 38863478 PMCID: PMC11162988 DOI: 10.1007/s40203-024-00224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple drug-resistant fungal species are associated with the development of diseases. Thus, more efficient drugs for the treatment of these aetiological agents are needed. Rondonin is a peptide isolated from the haemolymph of the spider Acanthoscurria rondoniae. Previous studies have shown that this peptide has antifungal activity against Candida sp. and Trichosporon sp. strains, acting on their genetic material. However, the molecular targets involved in its biological activity have not yet been described. Bioinformatics tools were used to determine the possible targets involved in the biological activity of Rondonin. The PharmMapper server was used to search for microorganismal targets of Rondonin. The PatchDock server was used to perform the molecular docking. UCSF Chimera software was used to evaluate these intermolecular interactions. In addition, the I-TASSER server was used to predict the target ligand sites. Then, these predictions were contrasted with the sites previously described in the literature. Molecular dynamics simulations were conducted for two promising complexes identified from the docking analysis. Rondonin demonstrated consistency with the ligand sites of the following targets: outer membrane proteins F (id: 1MPF) and A (id: 1QJP), which are responsible for facilitating the passage of small molecules through the plasma membrane; the subunit of the flavoprotein fumarate reductase (id: 1D4E), which is involved in the metabolism of nitrogenous bases; and the ATP-dependent Holliday DNA helicase junction (id: 1IN4), which is associated with histone proteins that package genetic material. Additionally, the molecular dynamics results indicated the stability of the interaction of Rondonin with 1MPF and 1IN4 during a 10 ns simulation. These interactions corroborate with previous in vitro studies on Rondonin, which acts on fungal genetic material without causing plasma membrane rupture. Therefore, the bioprospecting methods used in this research were considered satisfactory since they were consistent with previous results obtained via in vitro experimentation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00224-1.
Collapse
Affiliation(s)
- Elias Jorge Muniz Seif
- Postgraduate Program of Molecular Biology, Biophysics and Biochemistry Department, Federal University of São Paulo, São Paulo, São Paulo 04021-001 Brazil
- Laboratory for Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling-CeT-ICS/CEPID, Butantan Institute, São Paulo, São Paulo 05503-900 Brazil
| | - Marcelo Yudi Icimoto
- Biophysics Department, Federal University of São Paulo, São Paulo, São Paulo 04024-002 Brazil
| | - Pedro Ismael Silva Júnior
- Postgraduate Program of Molecular Biology, Biophysics and Biochemistry Department, Federal University of São Paulo, São Paulo, São Paulo 04021-001 Brazil
- Laboratory for Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling-CeT-ICS/CEPID, Butantan Institute, São Paulo, São Paulo 05503-900 Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, São Paulo Brazil
| |
Collapse
|
7
|
Gierke AM, Hessling M. Photoinactivation by UVA radiation and visible light of Candida auris compared to other fungi. Photochem Photobiol Sci 2024; 23:681-692. [PMID: 38446403 DOI: 10.1007/s43630-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to the rising number of patients affected by viruses and bacteria, the number of fungal infections has also been rising over the years. Due to the increase in resistance to various antimycotics, investigations into further disinfection options are important. In this study, two yeasts (Candida auris and Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides) were irradiated at 365, 400, and 450 nm individually. The resulting log 1 reduction doses were determined and compared with other studies. Furthermore, fluorescence measurements of C. auris were performed to detect possible involved photosensitizers. A roughly exponential photoinactivation was observed for all three fungi and all irradiation wavelengths with higher D90 doses for longer wavelengths. The determined log 1 reduction doses of C. auris and S. cerevisiae converged with increasing wavelength. However, S. cerevisiae was more photosensitive than C. auris for all irradiation wavelengths and is therefore not a suitable C. auris surrogate for photoinactivation experiments. For the mold C. cladosporioides, much higher D90 doses were determined than for both yeasts. Concerning potential photosensitizers, flavins and various porphyrins were detected by fluorescence measurements. By excitation at 365 nm, another, so far unreported fluorophore and potential photosensitizer was also observed. Based on its fluorescence spectrum, we assume it to be thiamine.Graphic abstract.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany.
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany
| |
Collapse
|
8
|
Sharma D, Vazquez JA. An evaluation of Rezafungin: the latest treatment option for adults with candidemia and invasive candidiasis. Expert Opin Pharmacother 2024; 25:339-347. [PMID: 38497379 DOI: 10.1080/14656566.2024.2331775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Invasive fungal infections, especially candidemia and invasive candidiasis, continue to cause substantial morbidity and mortality. In addition, the emergence of drug-resistant Candida species, notably C. glabrata and C. auris, along with limitations in available treatments, highlights the urgent need for novel, effective antifungal agents. AREAS COVERED This review discusses the results of in vitro studies evaluating the spectrum and highlights the pharmacokinetic/pharmacodynamic properties. It also includes discussions on two key clinical studies that assess safety, tolerability, and efficacy. EXPERT OPINION Rezafungin has demonstrated comparable efficacy to other echinocandins in two clinical studies and exhibits in vitro activity against a broad range of Candida species and Aspergillus spp. It has a favorable safety profile with minimal side effects, and no drug interactions or effects on QT intervals. In contrast to other echinocandins, it demonstrates dose-dependent killing, a prolonged half-life, and low clearance make it suitable for once-weekly dosing, which is supported by clinical trials confirming its efficacy. Rezafungin offers a promising option for the outpatient management of difficult to treat fungal infections. It has become a valuable addition to the antifungal arsenal, with the potential to reduce hospital length of stay and hospitalization costs and combat drug-resistant Candida species.
Collapse
Affiliation(s)
- Divisha Sharma
- Division of infectious Disease, Department of Medicine, WellStar MCG Health, Augusta University, Augusta, GA, USA
| | - Jose A Vazquez
- Division of infectious Disease, Department of Medicine, WellStar MCG Health, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Maniah K. Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1097-1110. [PMID: 38351615 DOI: 10.1080/10934529.2024.2315922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Drug resistance of pathogenic candidal strains to conventional antifungal agents represents a significant health issue contributing to high morbidity worldwide. Hence, the aim of the current study focused on evaluating the antifungal and synergistic activities of the green synthesized zinc oxide nanoparticles formulated using Laurus nobilis leaf extract. The biogenic ZnONPs were hexagonal in shape with average particle size diameter of 37.98 nm and pure crystalline structure as detected by XRD data. The highest antifungal activity of biogenic ZnONPs was detected against Candida parapsilosis strain demonstrating relative inhibitory zone diameters of 17.13 ± 0.74 and 25.78 ± 0.47 mm, at the concentrations of 100 and 200 µg/disk, respectively. Moreover, the biogenic ZnONPs demonstrated the highest synergistic activity with clotrimazole antifungal agent against Candida glabrata followed by Candida auris strains. MTT assay revealed that the biogenic ZnONPs showed low toxicity demonstrating relative IC50 value of 774.45 µg/mL against normal lung fibroblast cells which further affirmed their biosafety for application. In conclusion, the bioinspired ZnONPs could be utilized for the formulation of effective antifungal agents against drug resistant candidal strains and also could be combined with antifungal agents to boost their antifungal efficiency.
Collapse
Affiliation(s)
- Khalid Maniah
- Department of Biology, King Khalid Military Academy, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Li J, Aubry L, Brandalise D, Coste AT, Sanglard D, Lamoth F. Upc2-mediated mechanisms of azole resistance in Candida auris. Microbiol Spectr 2024; 12:e0352623. [PMID: 38206035 PMCID: PMC10845950 DOI: 10.1128/spectrum.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Candida auris is an emerging yeast pathogen of major concern because of its ability to cause hospital outbreaks of invasive candidiasis and to develop resistance to antifungal drugs. A majority of C. auris isolates are resistant to fluconazole, an azole drug used for the treatment of invasive candidiasis. Mechanisms of azole resistance are multiple, including mutations in the target gene ERG11 and activation of the transcription factors Tac1b and Mrr1, which control the drug transporters Cdr1 and Mdr1, respectively. We investigated the role of the transcription factor Upc2, which is known to regulate the ergosterol biosynthesis pathway and azole resistance in other Candida spp. Genetic deletion and hyperactivation of Upc2 by epitope tagging in C. auris resulted in drastic increases and decreases in susceptibility to azoles, respectively. This effect was conserved in strains with genetic hyperactivation of Tac1b or Mrr1. Reverse transcription PCR analyses showed that Upc2 regulates ERG11 expression and also activates the Mrr1/Mdr1 pathway. We showed that upregulation of MDR1 by Upc2 could occur independently from Mrr1. The impact of UPC2 deletion on MDR1 expression and azole susceptibility in a hyperactive Mrr1 background was stronger than that of MRR1 deletion in a hyperactive Upc2 background. While Upc2 hyperactivation resulted in a significant increase in the expression of TAC1b, CDR1 expression remained unchanged. Taken together, our results showed that Upc2 is crucial for azole resistance in C. auris, via regulation of the ergosterol biosynthesis pathway and activation of the Mrr1/Mdr1 pathway. Notably, Upc2 is a very potent and direct activator of Mdr1.IMPORTANCECandida auris is a yeast of major medical importance causing nosocomial outbreaks of invasive candidiasis. Its ability to develop resistance to antifungal drugs, in particular to azoles (e.g., fluconazole), is concerning. Understanding the mechanisms of azole resistance in C. auris is important and may help in identifying novel antifungal targets. This study shows the key role of the transcription factor Upc2 in azole resistance of C. auris and shows that this effect is mediated via different pathways, including the regulation of ergosterol biosynthesis and also the direct upregulation of the drug transporter Mdr1.
Collapse
Affiliation(s)
- Jizhou Li
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lola Aubry
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
12
|
Ajetunmobi OH, Badali H, Romo JA, Ramage G, Lopez-Ribot JL. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023; 5:100126. [PMID: 37193227 PMCID: PMC10182175 DOI: 10.1016/j.bioflm.2023.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Virtually all Candida species linked to clinical candidiasis are capable of forming highly resistant biofilms on different types of surfaces, which poses an additional significant threat and further complicates therapy of these infections. There is a scarcity of antifungal agents, and their effectiveness, particularly against biofilms, is limited. Here we provide a historical perspective on antifungal agents and therapy of Candida biofilms. As we reflect upon the past, consider the present, and look towards the future of antifungal therapy of Candida biofilms, we believe that there are reasons to remain optimistic, and that the major challenges of Candida biofilm therapy can be conquered within a reasonable timeframe.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus A. Romo
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Gordon Ramage
- Glasgow Biofilm Research Network, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author. Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
13
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 PMCID: PMC10859884 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
14
|
Gimenes de Castro B, Mari Fredi B, Dos Santos Bezerra R, Alcantara QA, Milani Neme CE, Mascarelli DE, Carvalho Tahyra AS, Dos-Santos D, Nappi CR, Santos de Oliveira F, Pereira Freire F, Ballestero G, Menuci Lima JB, de Andrade Bolsoni J, Lourenço Gebenlian J, Lopes Bibo N, Soares Silva N, de Carvalho Santos N, Simionatto Zucherato V, Chagas Peronni K, Guariz Pinheiro D, Dias-Neto E, Gambero Gaspar G, Roberto Bollela V, da Silva Silveira V, Maria Fontes A, Maria Martinez-Rossi N, Nanev Slavov S, Paulo Bianchi Ximenez J, Barbosa F, Araújo Silva W. Metabarcoding approach to identify bacterial community profiling related to nosocomial infection and bacterial trafficking-routes in hospital environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:803-815. [PMID: 37565650 DOI: 10.1080/15287394.2023.2243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Nosocomial infections (NIs) appear in patients under medical care in the hospital. The surveillance of the bacterial communities employing high-resolution 16S rRNA profiling, known as metabarcoding, represents a reliable method to establish factors that may influence the composition of the bacterial population during NIs. The present study aimed to utilize high-resolution 16S rRNA profiling to identify high bacterial diversity by analyzing 11 inside and 10 outside environments from the General Hospital of Ribeirão Preto Medical School, Brazil. Our results identified a high bacterial diversity, and among these, the most abundant bacterial genera linked to NIs were Cutibacterium, Streptococcus, Staphylococcus, and Corynebacterium. A Acinetobacter was detected in cafeterias, bus stops, and adult and pediatric intensive care units (ICUs). Data suggest an association between transport and alimentation areas proximal to the hospital ICU environment. Interestingly, the correlation and clusterization analysis showed the potential of the external areas to directly influence the ICU pediatric department microbial community, including the outpatient's clinic, visitor halls, patient reception, and the closest cafeterias. Our results demonstrate that high-resolution 16S rRNA profiling is a robust and reliable tool for bacterial genomic surveillance. In addition, the metabarcoding approach might help elaborate decontamination policies, and consequently reduce NIs.
Collapse
Affiliation(s)
| | - Bruno Mari Fredi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Dos Santos Bezerra
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Queren Apuque Alcantara
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Douglas Dos-Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camilla Rizzo Nappi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Giulia Ballestero
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Naira Lopes Bibo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Kamila Chagas Peronni
- Department of the Research and Innovation, Institute for Cancer Research, Guarapuava, Parana, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, International Research Center, A.C. Camargo Cancer Center, Jaboticabal, São Paulo, Brazil
| | - Gilberto Gambero Gaspar
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valdes Roberto Bollela
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vanessa da Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Svetoslav Nanev Slavov
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Bianchi Ximenez
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of the Research and Innovation, Institute for Cancer Research, Guarapuava, Parana, Brazil
| |
Collapse
|
15
|
Ajetunmobi OH, Chaturvedi AK, Badali H, Vaccaro A, Najvar L, Wormley FL, Wiederhold NP, Patterson TF, Lopez-Ribot JL. Screening the medicine for malaria venture's Pandemic Response Box to identify novel inhibitors of Candida albicans and Candida auris biofilm formation. APMIS 2023; 131:613-625. [PMID: 37337909 PMCID: PMC10592529 DOI: 10.1111/apm.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Candida spp. are opportunistic yeasts capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies. Repurposing existing drugs could significantly accelerate the development of novel therapies against candidiasis. We screened the Pandemic Response Box containing 400 diverse drug-like molecules active against bacteria, viruses or fungi, for inhibitors of Candida albicans and Candida auris biofilm formation. Initial hits were identified based on the demonstration of >70% inhibitory activity. Dose-response assays were used to confirm the antifungal activity of initial hits and establish their potency. The spectrum of antifungal activity of the leading compounds was determined against a panel of medically important fungi, and the in vivo activity of the leading repositionable agent was evaluated in murine models of C. albicans and C. auris systemic candidiasis. The primary screening identified 20 hit compounds, and their antifungal activity and potency against C. albicans and C. auris were validated using dose-response measurements. From these experiments, the rapalog everolimus, emerged as the leading repositionable candidate. Everolimus displayed potent antifungal activity against different Candida spp., but more moderate levels of activity against filamentous fungi. Treatment with everolimus increased survival of mice infected with C. albicans, but not those with C. auris. The screening of the Pandemic Response Box resulted in the identification of several drugs with novel antifungal activity, with everolimus emerging as the main repositionable candidate. Further in vitro and in vivo studies are needed to confirm its potential therapeutic use.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ashok K. Chaturvedi
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Alessandra Vaccaro
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Laura Najvar
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Thomas F. Patterson
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Raza S, Wdowiak M, Grotek M, Adamkiewicz W, Nikiforow K, Mente P, Paczesny J. Enhancing the antimicrobial activity of silver nanoparticles against ESKAPE bacteria and emerging fungal pathogens by using tea extracts. NANOSCALE ADVANCES 2023; 5:5786-5798. [PMID: 37881701 PMCID: PMC10597549 DOI: 10.1039/d3na00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/12/2023] [Indexed: 10/27/2023]
Abstract
The sale of antibiotics and antifungals has skyrocketed since 2020. The increasing threat of pathogens like ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which are effective in evading existing antibiotics, and yeasts like Candida auris or Cryptococcus neoformans is pressing to develop efficient antimicrobial alternatives. Nanoparticles, especially silver nanoparticles (AgNPs), are believed to be promising candidates to supplement or even replace antibiotics in some applications. Here, we propose a way to increase the antimicrobial efficiency of silver nanoparticles by using tea extracts (black, green, or red) for their synthesis. This allows for using lower concentrations of nanoparticles and obtaining the antimicrobial effect in a short time. We found that AgNPs synthesized using green tea extract (G-TeaNPs) are the most effective, causing approximately 80% bacterial cell death in Gram-negative bacteria within only 3 hours at a concentration of 0.1 mg mL-1, which is better than antibiotics. Ampicillin at the same concentration (0.1 mg mL-1) and within the same duration (3 h) causes only up to 40% decrease in the number of S. aureus and E. cloacae cells (non-resistant strains). The tested silver nanoparticles also have antifungal properties and are effective against C. auris and C. neoformans, which are difficult to eradicate using other means. We established that silver nanoparticles synthesized with tea extracts have higher antibacterial properties than silver nanoparticles alone. Such formulations using inexpensive tea extracts and lower concentrations of silver nanoparticles show a promising solution to fight various pathogens.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Mateusz Grotek
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
- Military University of Technology gen. Sylwestra Kaliskiego 2 00-908 Warsaw Poland
| | - Witold Adamkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Pumza Mente
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| |
Collapse
|
17
|
Moore JE, Tang KWK, Millar BC. Improving health literacy of antifungal use-Comparison of the readability of antifungal medicines information from Australia, EU, UK, and US of 16 antifungal agents across 5 classes (allylamines, azoles, echinocandins, polyenes, and others). Med Mycol 2023; 61:myad084. [PMID: 37562942 PMCID: PMC10802897 DOI: 10.1093/mmy/myad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
Adherence to antifungals is poor in high endemic regions where antifungal resistance is high. Poor readability of prescription/over-the-counter (OTC) antifungals may contribute to poor adherence, due to the patient not fully understanding the purpose, importance, and dosage of their antifungal medicine. As there are no reports on the readability of antifungals, this study examined the readability of patient-facing antifungal information. Antifungals (n = 16; five classes [allylamines, azoles, echinocandins, polyenes, and others-flucytosine and griseofulvin]) were selected. Readability of four sources of information, (i) summary of product characteristics, (ii) patient information leaflets (PILs), (iii) OTC patient information, and (iv) patient web-based information, was calculated using Readable software, to obtain readability scores [(i) Flesch Reading Ease [FRE], (ii) Flesch-Kinkaid Grade Level [FKGL], (iii) Gunning Fog Index, and (iv) Simple Measure of Gobbledygook (SMOG) Index) and text metrics [word count, sentence count, words/sentence, and syllables/word]. PILs, web-based resources, and OTC patient information had good readability (FRE mean ± sd = 52.8 ± 6.7, 58.6 ± 6.9, and 57.3 ± 7.4, respectively), just falling short of the ≥ 60 target. For FKGL (target ≤ 8.0), PILs, web-based resources, and OTC patient information also had good readability (mean ± sd = 8.5 ± 1.0, 7.2 ± 0.86, and 7.8 ± 0.1, respectively). Improved readability scores observed correlate with reduced words, words/sentence and syllables/word. Improving readability may lead to improved patient health literacy. Healthcare professionals, academics, and publishers preparing written materials regarding antifungals for the lay/patient community are encouraged to employ readability calculators to check the readability of their work, so that the final material is within recommended readability reference parameters, to support the health literacy of their patients/readers.
Collapse
Affiliation(s)
- John E Moore
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, Northern Ireland, UK
| | - Ka Wah Kelly Tang
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - Beverley C Millar
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, Northern Ireland, UK
| |
Collapse
|
18
|
Ajetunmobi OH, Wall G, Vidal Bonifacio B, Martinez Delgado LA, Chaturvedi AK, Najvar LK, Wormley FL, Patterson HP, Wiederhold NP, Patterson TF, Lopez-Ribot JL. High-Throughput Screening of the Repurposing Hub Library to Identify Drugs with Novel Inhibitory Activity against Candida albicans and Candida auris Biofilms. J Fungi (Basel) 2023; 9:879. [PMID: 37754987 PMCID: PMC10532723 DOI: 10.3390/jof9090879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Candidiasis is one of the most frequent nosocomial infections affecting an increasing number of at-risk patients. Candida albicans remains the most frequent causative agent of candidiasis, but, in the last decade, C. auris has emerged as a formidable multi-drug-resistant pathogen. Both species are fully capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies. Repurposing existing drugs could significantly accelerate the development of novel therapies against candidiasis. Here, we have screened the Repurposing Hub library from the Broad Institute, containing over 6000 compounds, in search for inhibitors of C. albicans and C. auris biofilm formation. The primary screen identified 57 initial hits against C. albicans and 33 against C. auris. Confirmatory concentration-dependent assays were used to validate the activity of the initial hits and, at the same time, establish their anti-biofilm potency. Based on these results, ebselen, temsirolimus, and compound BAY 11-7082 emerged as the leading repositionable compounds. Subsequent experiments established their spectrum of antifungal activity against yeasts and filamentous fungi. In addition, their in vivo activity was examined in the murine models of hematogenously disseminated C. albicans and C. auris infections. Although promising, further in vitro and in vivo studies are needed to confirm their potential use for the therapy of candidiasis and possibly other fungal infections.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (O.H.A.); (A.K.C.)
| | - Gina Wall
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (O.H.A.); (A.K.C.)
| | - Bruna Vidal Bonifacio
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (O.H.A.); (A.K.C.)
| | | | - Ashok K. Chaturvedi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (O.H.A.); (A.K.C.)
| | - Laura K. Najvar
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (L.K.N.); (T.F.P.)
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA;
| | - Hoja P. Patterson
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (H.P.P.); (N.P.W.)
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (H.P.P.); (N.P.W.)
| | - Thomas F. Patterson
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (L.K.N.); (T.F.P.)
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (O.H.A.); (A.K.C.)
| |
Collapse
|
19
|
Abstract
Invasive fungal infections in humans are common in people with compromised immune systems and are difficult to treat, resulting in high mortality. Amphotericin B (AmB) is one of the main antifungal drugs available to treat these infections. AmB binds with plasma membrane ergosterol, causing leakage of cellular ions and promoting cell death. The increasing use of available antifungal drugs to combat pathogenic fungal infections has led to the development of drug resistance. AmB resistance is not very common and is usually caused by changes in the amount or type of ergosterol or changes in the cell wall. Intrinsic AmB resistance occurs in the absence of AmB exposure, whereas acquired AmB resistance can develop during treatment. However, clinical resistance arises due to treatment failure with AmB and depends on multiple factors such as the pharmacokinetics of AmB, infectious fungal species, and host immune status. Candida albicans is a common opportunistic pathogen that can cause superficial infections of the skin and mucosal surfaces, thrush, to life-threatening systemic or invasive infections. In addition, immunocompromised individuals are more susceptible to systemic infections caused by Candida, Aspergillus, and Cryptococcus. Several antifungal drugs with different modes of action are used to treat systemic to invasive fungal infections and are approved for clinical use in the treatment of fungal diseases. However, C. albicans can develop a variety of defenses against antifungal medications. In fungi, plasma membrane sphingolipid molecules could interact with ergosterol, which can lead to the alteration of drug susceptibilities such as AmB. In this review, we mainly summarize the role of sphingolipid molecules and their regulators in AmB resistance.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
20
|
Genetic Diversity of Human Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
21
|
He Z, Huo X, Piao J. Rapid preparation of Candida genomic DNA: combined use of enzymatic digestion and thermal disruption. AMB Express 2023; 13:1. [PMID: 36592236 PMCID: PMC9807692 DOI: 10.1186/s13568-022-01500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/07/2022] [Indexed: 01/03/2023] Open
Abstract
Nucleic acid based molecular technologies are the most promising tools for the early diagnosis of Candida infection. A simple and effective DNA preparation method is of critical for standardizing and applying molecular diagnostics in clinic laboratories. The goal of this study was to develop a Candida DNA preparation method that was quick to do, easy to perform, and bio-safe. Snailase and lyticase were screened and combined in this work to enhance the lysis of Candida cells. The lysis solution composition and metal bath were optimized to boost amplification efficiency and biosafety. A duplex real-time PCR was established to evaluate the sensitivity and specificity of the preparation method. Using the supernatant from the rapid preparation method as templates, the duplex PCR sensitivities for five common Candida species were determined to be as low as 100 CFUs. When compared to conventional preparation methods, the samples prepared by our method showed higher PCR detection sensitivity. PCR identification and ITS sequencing were 100% consistent, which was better than biochemical identification. This study demonstrates a rapid method for Candida DNA preparation that has the potential to be used in clinical laboratories. Meanwhile, the practical application of the method for clinical samples needs to be proven in future investigations.
Collapse
Affiliation(s)
- Zhengxin He
- grid.452440.30000 0000 8727 6165Basic Medical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, 050082 Hebei People’s Republic of China
| | - Xiaosai Huo
- grid.452440.30000 0000 8727 6165Basic Medical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, 050082 Hebei People’s Republic of China
| | - Jingzi Piao
- grid.412557.00000 0000 9886 8131College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 Liaoning People’s Republic of China
| |
Collapse
|
22
|
Ali A, Pervaiz M, Saeed Z, Younas U, Bashir R, Ullah S, Bukhari SM, Ali F, Jelani S, Rashid A, Adnan A. Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
24
|
Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics (Basel) 2022; 11:antibiotics11091154. [PMID: 36139934 PMCID: PMC9495104 DOI: 10.3390/antibiotics11091154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial, fungal, and parasitic infections increase morbimortality rates and hospital costs. This study aimed to assess the antimicrobial and antiparasitic activities of the crude extract from the seeds and peel of the pepper Capsicum chinense Jacq. and of the isolated compound capsaicin and to evaluate their ability to inhibit biofilm formation, eradicate biofilm, and reduce hemolysin production by Candida species. The crude ethanolic and hexane extracts were obtained by maceration at room temperature, and their chemical compositions were analyzed by liquid chromatography coupled to mass spectrometry (LC–MS). The antimicrobial activity of the samples was evaluated by determining the minimum inhibitory concentration. Inhibition of biofilm formation and biofilm eradication by the samples were evaluated based on biomass and cell viability. Reduction of Candida spp. hemolytic activity by the samples was determined on sheep blood agar plates. The antiparasitic action of the samples was evaluated by determining their ability to inhibit Toxoplasma gondii intracellular proliferation. LC–MS-ESI analyses helped to identify organic and phenolic acids, flavonoids, capsaicinoids, and fatty acids in the ethanolic extracts, as well as capsaicinoids and fatty acids in the hexane extracts. Antifungal action was more evident against C. glabrata and C. tropicalis. The samples inhibited biofilm formation and eradicated the biofilm formed by C. tropicalis more effectively. Sub-inhibitory concentrations of the samples significantly reduced the C. glabrata and C. tropicalis hemolytic activity. The samples only altered host cell viability when tested at higher concentrations; however, at non-toxic concentrations, they reduced T. gondii growth. In association with gold standard drugs used to treat toxoplasmosis, capsaicin improved their antiparasitic activity. These results are unprecedented and encouraging, indicating the Capsicum chinense Jacq. peel and seed extracts and capsaicin display antifungal and antiparasitic activities.
Collapse
|
25
|
Domán M, Bányai K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front Microbiol 2022; 13:919501. [PMID: 35756020 PMCID: PMC9218862 DOI: 10.3389/fmicb.2022.919501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Secondary fungal infections may complicate the clinical course of patients affected by viral respiratory diseases, especially those admitted to intensive care unit. Hospitalized COVID-19 patients are at increased risk of fungal co-infections exacerbating the prognosis of disease due to misdiagnosis that often result in treatment failure and high mortality rate. COVID-19-associated fungal infections caused by predominantly Aspergillus and Candida species, and fungi of the order Mucorales have been reported from several countries to become significant challenge for healthcare system. Early diagnosis and adequate antifungal therapy is essential to improve clinical outcomes, however, drug resistance shows a rising trend highlighting the need for alternative therapeutic agents. The purpose of this review is to summarize the current knowledge on COVID-19-associated mycoses, treatment strategies and the most recent advancements in antifungal drug development focusing on peptides with antifungal activity.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
26
|
Zerrouki H, Ibrahim A, Rebiahi SA, Elhabiri Y, Benhaddouche DE, de Groot T, Meis JF, Rolain JM, Bittar F. Emergence of Candida auris in intensive care units in Algeria. Mycoses 2022; 65:753-759. [PMID: 35546294 PMCID: PMC9328195 DOI: 10.1111/myc.13470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Background Currently, Candida auris is among the most serious emerging pathogens that can be associated with nosocomial infections and outbreaks in intensive care units. Clinicians must be able to identify and manage it quickly. Objective Here, we report for the first time in Algeria seven cases of C. auris infection or colonisation. Methods and Results The strains were isolated from clinical sites including bronchial aspirates (n = 4), wound swabs (n = 1), urine sample (n = 1) and peritoneal fluid (n = 1), in patients admitted to the intensive care unit. Candida auris was identified both by MALDI‐TOF and by sequencing the ITS region and the D1/D2 domain. Antifungal susceptibility testing was performed using the E‐test method. Non‐wildtype susceptibility was observed for five strains against fluconazole, itraconazole, voriconazole and caspofungin. Genotyping showed the presence of four clades (I–IV) in one hospital. Conclusions Appropriate antifungal treatments with rapid and accurate microbial identification are the cornerstone for the management and control of C. auris infections.
Collapse
Affiliation(s)
- Hanane Zerrouki
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | - Ahmad Ibrahim
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Sid-Ahmed Rebiahi
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | | | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands.,Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands.,Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
27
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Shafaroudi AM, Gorji NE, Nasiri P, Javidnia J, Saravi ME. Antifungal Properties of Zataria multiflora on Candida species: A Systematic Review. J Evid Based Integr Med 2022; 27:2515690X221132272. [PMID: 36423242 PMCID: PMC9703571 DOI: 10.1177/2515690x221132272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Candida infections have increased significantly in the antimicrobial resistance era, and synthetic antifungal drugs have limitations. The present work aimed to review the antifungal properties of Zataria multiflora (Z. multiflora) as an herbal remedy. METHOD PubMed, Scopus, ScienceDirect, Web of Science, SID, Civilica, and Magiran databases were searched for the antifungal activity on in vitro, in vivo, dental biofilm, and clinical studies of Z. multiflora on Candida species. RESULTS Overall, 33 articles evaluated the effect of Z. multiflora on Candida species and classified them into four groups, as follows in vitro (23), dental biofilm (6), in vivo (2), and clinical studies (3). All studies considered Z. multiflora effective in reducing or even inhibiting the growth of Candida species. NoMFC significant differences were seen in the effect of Z. multiflora on susceptible Candida compared to the resistant groups of Candida in the studies. It was also influential in inhibiting C. parapsilosis, C. glabrata, C. krusei, C. kefyer, and C. zeylanoides. CONCLUSION Considering the side effects and resistance of current antifungal drugs as well as the benefits of using herbal medicines, such as lower cost, less likely to develop drug resistance, the absence of side effects, and toxicity compared with chemical ones, it is possible as a powerful alternative to replace or combine with the current antifungal for Candida infection therapy along with other therapies.
Collapse
Affiliation(s)
- Ali Malekzadeh Shafaroudi
- Dentistry Student, Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical sciences, Sari, Iran
| | - Nadia Elyassi Gorji
- Dentistry Student, Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical sciences, Sari, Iran
| | - Pegah Nasiri
- Dentistry Student, Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical sciences, Sari, Iran
| | - Javad Javidnia
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ebrahimi Saravi
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Escandón P, Cáceres DH, Lizarazo D, Lockhart SR, Lyman M, Duarte C. Laboratory-based surveillance of Candida auris in Colombia, 2016-2020. Mycoses 2021; 65:222-225. [PMID: 34731508 PMCID: PMC9299663 DOI: 10.1111/myc.13390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Since the first report of Candida auris in 2016, the Colombian Instituto Nacional de Salud (INS) has implemented a national surveillance of the emerging multidrug-resistant fungus. OBJECTIVES This report summarises the findings of this laboratory-based surveillance from March 2016 to December 2020. RESULTS A total of 1720 C. auris cases were identified, including 393 (23%) colonisation cases and 1327 (77%) clinical cases. Cases were reported in 20 of 32 (62%) departments of Colombia and involved hospitals from 33 cities. The median age of patients was 34 years; 317 (18%) cases were children under 16 years, 54% were male. The peak number of cases was observed in 2019 (n = 541). In 2020, 379 (94%) of 404 cases reported were clinical cases, including 225 bloodstream infections (BSI) and 154 non-BSI. Among the 404 cases reported in 2020, severe COVID-19 was reported in 122 (30%). Antifungal susceptibility was tested in 379 isolates. Using CDC tentative breakpoints for resistance, 35% of isolates were fluconazole resistant, 33% were amphotericin B resistant, and 0.3% isolates were anidulafungin resistant, 12% were multidrug resistant, and no pan-resistant isolates were identified. CONCLUSION For five years of surveillance, we observed an increase in the number and geographic spread of clinical cases and an increase in fluconazole resistance. These observations emphasise the need for improved measures to mitigate spread.
Collapse
Affiliation(s)
- Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Diego H Cáceres
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Diana Lizarazo
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Meghan Lyman
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
30
|
Segala FV, Bavaro DF, Di Gennaro F, Salvati F, Marotta C, Saracino A, Murri R, Fantoni M. Impact of SARS-CoV-2 Epidemic on Antimicrobial Resistance: A Literature Review. Viruses 2021; 13:2110. [PMID: 34834917 PMCID: PMC8624326 DOI: 10.3390/v13112110] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to public health and global development; in this scenario, the SARS-CoV2 pandemic has caused a major disruption of healthcare systems and practices. A narrative review was conducted on articles focusing on the impact of COVID-19 on multidrug-resistant gram-negative, gram-positive bacteria, and fungi. We found that, worldwide, multiple studies reported an unexpected high incidence of infections due to methicillin-resistant S. aureus, carbapenem-resistant A. baumannii, carbapenem-resistant Enterobacteriaceae, and C. auris among COVID-19 patients admitted to the intensive care unit. In this setting, inappropriate antimicrobial exposure, environmental contamination, and discontinuation of infection control measures may have driven selection and diffusion of drug-resistant pathogens.
Collapse
Affiliation(s)
- Francesco Vladimiro Segala
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Federica Salvati
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
| | - Claudia Marotta
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy;
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Rita Murri
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Fantoni
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
31
|
Bapat PS, Nobile CJ. Photodynamic Therapy Is Effective Against Candida auris Biofilms. Front Cell Infect Microbiol 2021; 11:713092. [PMID: 34540717 PMCID: PMC8446617 DOI: 10.3389/fcimb.2021.713092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide. The paucity of available antifungal drug classes, combined with the increased occurrence of multidrug resistance in fungi, has led to new clinical challenges in the treatment of fungal infections. Candida auris is a recently emerged multidrug resistant human fungal pathogen that has become a worldwide public health threat. C. auris clinical isolates are often resistant to one or more antifungal drug classes, and thus, there is a high unmet medical need for the development of new therapeutic strategies effective against C. auris. Additionally, C. auris possesses several virulence traits, including the ability to form biofilms, further contributing to its drug resistance, and complicating the treatment of C. auris infections. Here we assessed red, green, and blue visible lights alone and in combination with photosensitizing compounds for their efficacies against C. auris biofilms. We found that (1) blue light inhibited and disrupted C. auris biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential; (2) red light inhibited and disrupted C. auris biofilms, but only in combination with photosensitizing compounds; and (3) green light inhibited C. auris biofilms in combination with photosensitizing compounds, but had no effects on disrupting C. auris biofilms. Taken together, our findings suggest that photodynamic therapy could be an effective non-drug therapeutic strategy against multidrug resistant C. auris biofilm infections.
Collapse
Affiliation(s)
- Priyanka S Bapat
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, United States
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States.,Health Sciences Research Institute, University of California Merced, Merced, CA, United States
| |
Collapse
|
32
|
In Vitro Antifungal Activity of Luliconazole, Efinaconazole, and Nine Comparators Against Aspergillus and Candida Strains Isolated from Otomycosis. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Aspergillus and Candida species are the most commonly identified fungal pathogens in otomycosis. However, we usually encounter some difficulties in its treatment because many patients show resistance to antifungal agents and present a high recurrence rate. Objectives: The current research was conducted to compare the in vitro activities of luliconazole (LUL), and efinaconazole (EFN) and the nine comparators on Aspergillus and Candida strains isolated from otomycosis. Methods: The in vitro activities of nine common antifungal drugs (amphotericin B (AMB), voriconazole (VRC), fluconazole (FLU), itraconazole (ITC), ketoconazole (KTO), clotrimazole (CLO), nystatin (NYS), terbinafine (TRB), and caspofungin (CAS)) and two novel new azoles (LUL and EFN) against 108 clinical isolates of Aspergillus and Candida species obtained from otomycosis were assessed according to the CLSI broth microdilution document. Results: The LUL and EFN had the geometric mean minimum inhibitory concentrations (GM MICs) of 0.098 and 0.109 μg/mL against all Aspergillus strains, respectively. Furthermore, the GM MICs of all Candida isolates for LUL, EFN, CAS, CLO, VRC, AMB, ITC, KTO, FLU, NYS, and TRB were calculated to be 0.133, 0.144, 0.194, 0.219, 0.475, 0.537, 0.655, 1.277, 4.905, 9.372, and 13.592 μg/mL, respectively. Additionally, 6 (35.29%), 2 (11.7%), and 1 (5.88%) Candida isolates were resistant to FLU, CAS, and VRC, respectively. Conclusions: As the findings indicated, LUL and EFN showed the lowest GM MIC values against the examined species. Accordingly, these novel imidazole and triazole antifungal agents can be regarded as proper candidates for the treatment of otomycosis caused by Aspergillus and Candida strains.
Collapse
|
33
|
Nobrega de Almeida J, Brandão IB, Francisco EC, de Almeida SLR, de Oliveira Dias P, Pereira FM, Santos Ferreira F, de Andrade TS, de Miranda Costa MM, de Souza Jordão RT, Meis JF, Colombo AL. Axillary Digital Thermometers uplifted a multidrug-susceptible Candida auris outbreak among COVID-19 patients in Brazil. Mycoses 2021; 64:1062-1072. [PMID: 34009677 PMCID: PMC8242760 DOI: 10.1111/myc.13320] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Objectives To describe the first outbreak of Candidaauris in Brazil, including epidemiological, clinical and microbiological data. Methods After the first Candidaauris‐colonised patient was diagnosed in a COVID‐19 ICU at a hospital in Salvador, Brazil, a multidisciplinary team conducted a local C. auris prevalence investigation. Screening cultures for C. auris were collected from patients, healthcare workers and inanimate surfaces. Risk factors for C. auris colonisation were evaluated, and the fungemia episodes that occurred after the investigation were also analysed and described. Antifungal susceptibility of the C. auris isolates was determined, and they were genotyped with microsatellite analysis. Results Among body swabs collected from 47 patients, eight (n = 8/47, 17%) samples from the axillae were positive for C. auris. Among samples collected from inanimate surfaces, digital thermometers had the highest rate of positive cultures (n = 8/47, 17%). Antifungal susceptibility testing showed MICs of 0.5 to 1 mg/L for AMB, 0.03 to 0.06 mg/L for voriconazole, 2 to 4 mg/L for fluconazole and 0.03 to 0.06 mg/L for anidulafungin. Microsatellite analysis revealed that all C. auris isolates belong to the South Asian clade (Clade I) and had different genotypes. In multivariate analysis, having a colonised digital thermometer was the only independent risk factor associated with C. auris colonisation. Three episodes of C. auris fungemia occurred after the investigation, with 30‐day attributable mortality of 33.3%. Conclusions Emergence of C. auris in Salvador, Brazil, may be related to local C. auris clade I closely related genotypes. Contaminated axillary monitoring thermometers may facilitate the dissemination of C. auris reinforcing the concept that these reusable devices should be carefully cleaned with an effective disinfectant or replaced by other temperature monitoring methods.
Collapse
Affiliation(s)
- João Nobrega de Almeida
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Central Laboratory Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Igor B Brandão
- Comissão de Controle de Infecção Hospitalar, Hospital de Bahia, Salvador, Brazil
| | - Elaine C Francisco
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Thaisse Souza de Andrade
- Superintendência de Vigilância e Proteção da Saúde, Secretaria de Saúde do Estado da Bahia, Salvador, Brazil
| | | | | | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Nijmegen, The Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Arnaldo L Colombo
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
34
|
Kaur H, Singh S, Mandya Rudramurthy S, Jayashree M, James Peters N, Ray P, Samujh R, Ghosh A, Chakrabarti A. Fungaemia due to rare yeasts in paediatric intensive care units: A prospective study. Mycoses 2021; 64:1387-1395. [PMID: 33942404 DOI: 10.1111/myc.13297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Considering the emergence of fungaemia due to rare yeasts at our centre, we performed a systematic epidemiologic study on fungaemia due to rare yeasts. OBJECTIVES We undertook the present prospective observational study to explore the epidemiological features and clinical characteristics of fungaemia due to rare yeasts in paediatric ICUs at our centre. METHODS The successive yeasts isolated from blood at our PICUs during December 2017 through March 2019 were identified by molecular methods. Fungaemia due to yeasts other than C. albicans, C. tropicalis, C. glabrata, C. krusei and C. parapsilosis was categorised as rare yeast fungaemia. Antifungal susceptibility testing of the yeast isolates was performed as per clinical and laboratory standards institute (CLSI) guidelines. We also compared different clinical parameters of fungaemia due to common versus rare yeasts, and rare yeasts in neonates versus non-neonates. RESULTS During the study period, 212 yeast isolates were obtained from 159 patients at PICUs of our hospital, and 127 isolates from 98 patients (61.6%) were categorised as rare yeasts. Neonates acquired fungaemia significantly earlier after ICU admission than non-neonates (median: 4 vs 6 days; p = .005). of rare yeast fungaemia, Wickerhamomyces anomalus (43.8%) and Candida utilis (40.8%) were common isolates; surgical intervention and gastrointestinal disease were significantly associated; overall, azole, echinocandin and amphotericin B resistance was at 9.1%, 1.02% and 1.02%, respectively; overall mortality was 65.3%. CONCLUSIONS The emergence of rare yeasts especially W. anomalus and C. utilis causing fungaemia in our children demands urgent attention to control the spread.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Muralidharan Jayashree
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nitin James Peters
- Department of Paediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ram Samujh
- Department of Paediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
35
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
36
|
Frei A, King AP, Lowe GJ, Cain AK, Short FL, Dinh H, Elliott AG, Zuegg J, Wilson JJ, Blaskovich MAT. Nontoxic Cobalt(III) Schiff Base Complexes with Broad-Spectrum Antifungal Activity. Chemistry 2021; 27:2021-2029. [PMID: 33231906 PMCID: PMC7855930 DOI: 10.1002/chem.202003545] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Resistance to currently available antifungal drugs has quietly been on the rise but overshadowed by the alarming spread of antibacterial resistance. There is a striking lack of attention to the threat of drug-resistant fungal infections, with only a handful of new drugs currently in development. Given that metal complexes have proven to be useful new chemotypes in the fight against diseases such as cancer, malaria, and bacterial infections, it is reasonable to explore their possible utility in treating fungal infections. Herein we report a series of cobalt(III) Schiff base complexes with broad-spectrum antifungal activity. Some of these complexes show minimum inhibitory concentrations (MIC) in the low micro- to nanomolar range against a series of Candida and Cryptococcus yeasts. Additionally, we demonstrate that these compounds show no cytotoxicity against both bacterial and human cells. Finally, we report the first in vivo toxicity data on these compounds in Galleria mellonella, showing that doses as high as 266 mg kg-1 are tolerated without adverse effects, paving the way for further in vivo studies of these complexes.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
| | - A. Paden King
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
| | - Amy K. Cain
- Department of Molecular SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Francesca L. Short
- Department of Molecular SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Hue Dinh
- Department of Molecular SciencesMacquarie UniversitySydneyNSW2109Australia
- Department of Biological SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
| |
Collapse
|
37
|
Rossoni RD, de Barros PP, Mendonça IDC, Medina RP, Silva DHS, Fuchs BB, Junqueira JC, Mylonakis E. The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Front Cell Infect Microbiol 2020; 10:397. [PMID: 32850495 PMCID: PMC7417517 DOI: 10.3389/fcimb.2020.00397] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris has emerged as a medically important pathogen with considerable resistance to antifungal agents. The ability to produce biofilms is an important pathogenicity feature of this species that aids escape of host immune responses and antimicrobial agents. The objective of this study was to verify antifungal action using in vitro and in vivo models of the Lactobacillus paracasei 28.4 probiotic cells and postbiotic activity of crude extract (LPCE) and fraction 1 (LPF1), derived from L. paracasei 28.4 supernatant. Both live cells and cells free supernatant of L. paracasei 28.4 inhibited C. auris suggesting probiotic and postbiotic effects. The minimum inhibitory concentration (MIC) for LPCE was 15 mg/mL and ranges from 3.75 to 7.5 mg/mL for LPF1. Killing kinetics determined that after 24 h treatment with LPCE or LPF1 there was a complete reduction of viable C. auris cells compared to fluconazole, which decreased the initial inoculum by 1-logCFU during the same time period. LPCE and LPF1 significantly reduced the biomass (p = 0.0001) and the metabolic activity (p = 0.0001) of C. auris biofilm. There was also a total reduction (~108 CFU/mL) in viability of persister C. auris cells after treatment with postbiotic elements (p < 0.0001). In an in vivo study, injection of LPCE and LPF1 into G. mellonella larvae infected with C. auris prolonged survival of these insects compared to a control group (p < 0.05) and elicited immune responses by increasing the number of circulating hemocytes and gene expression of antimicrobial peptide galiomicin. We concluded that the L. paracasei 28.4 cells and postbiotic elements (LPCE and LPF1) have antifungal activity against planktonic cells, biofilms, and persister cells of C. auris. Postbiotic supplementation derived from L. paracasei 28.4 protected G. mellonella infected with C. auris and enhanced its immune status indicating a dual function in modulating a host immune response.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Iatã do Carmo Mendonça
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
38
|
Chakrabarti A, Meis JF, Cornely OA. International Society for Human and Animal Mycology (ISHAM)-New Initiatives. J Fungi (Basel) 2020; 6:jof6030097. [PMID: 32630110 PMCID: PMC7557397 DOI: 10.3390/jof6030097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Fungal infections have emerged as major threat to human beings. The world is not ready to face this formidable challenge due to limited awareness, insufficient laboratories, and difficulty in managing mycoses especially in developing countries. The International Society for Human and Animal Mycology (ISHAM) has undertaken several new initiatives to overcome these gaps, including a global outreach program with national affiliated mycology societies and other regional groups. ISHAM is working closely with the European Confederation of Medical Mycology (ECMM) and Global Action Fund for Fungal Infections (GAFFI) to enhance these efforts. The society has launched laboratory e-courses and is in the process of the development of clinical e-courses. ISHAM has partnered with regional conferences in South America and Asia by sponsoring international experts and young delegates. The society also supports young people from less developed countries to undergo training in laboratories of excellence. ISHAM facilitated the formation of the INFOCUSLatin American Clinical Mycology Working Group (LATAM) and the Pan-African Mycology Working Group. The society appointed country ambassadors to facilitate coordination with national societies. Still, the task is enormous and ISHAM calls for strong advocacy and more coordinated activities to attract the attention of people from all disciplines to this neglected field.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
- Correspondence:
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Center of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 81531-970, Brazil
| | - Oliver A. Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Zentrum fuer klinische Studien (ZKS) Köln, Clinical Trials Centre Cologne, University of Cologne, 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|