1
|
Das A, Das M, Paul N, Chatterjee S, Sarkar K, Bank S, Sarkar J, Bankura B, Roy D, Acharya K, Ghosh S. Bifenthrin causes disturbance in mitochondrial dynamics and bioenergetic system in human embryonic kidney cells (HEK 293). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125707. [PMID: 39828206 DOI: 10.1016/j.envpol.2025.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Synthetic pyrethroids (SPs) such as bifenthrin (BF) have been used worldwide in pest control due to their high insecticidal activity and low toxicity to mammals. However, due to their lipophilicity, BF can persist in various environments and cause significant adverse effects on non-target organisms, including humans. Mitochondria, crucial for cellular energy production and homeostasis, are primary targets of environmental toxins like BF. This study, which investigated the impact of BF on mitochondrial function in human embryonic kidney (Hek 293) cells, found that BF caused cytotoxicity via a reduction in cell viability assessed by the MTT assay and triggered apoptosis in cells characterized by nuclear condensation and formation of apoptotic bodies revealed through the AO/PI study. BF exposure also led to a marked increase in reactive oxygen species (ROS) levels and a significant reduction in mitochondrial membrane potential (MMP), indicating oxidative stress and mitochondrial dysfunction. BF treatment concentration of 1.00 μM and 2.00 μM significantly affects mitochondrial respiratory capacity by lowering the basal and maximal respiration, ATP production, and spare respiratory capacity, leading to mitochondrial impairment. Gene expression analysis also showed BF exposure altered the expression of genes related to mitochondrial fusion (MFN1, MFN2, OPA1) and fission (FIS1, DRP1), suggesting a disruption in the balance of mitochondrial dynamics. Defects in mitochondrial dynamics caused fragmentation of the mitochondrial branch length and number in BF induced cell compared to control. The analysis of mRNA expression of apoptosis genes also indicated that BF induced cell death. This study demonstrated that BF induced cytotoxicity disrupted mitochondrial membrane potential and impaired mitochondrial bioenergetics. Therefore, this finding emphasizes the significance of understanding the impact of BF on mitochondrial function, highlighting the need for further research and action to mitigate the potential long-term human health risks associated with this pesticide.
Collapse
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Jit Sarkar
- Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | | | - Debraj Roy
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Krishnendu Acharya
- Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|
2
|
Liu H, Chen WJ, Xu Z, Chen SF, Song H, Huang Y, Bhatt K, Mishra S, Ghorab MA, Zhang LH, Chen S. Unraveling the degradation mechanism of multiple pyrethroid insecticides by Pseudomonas aeruginosa and its environmental bioremediation potential. ENVIRONMENT INTERNATIONAL 2025; 195:109221. [PMID: 39721570 DOI: 10.1016/j.envint.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Extensive use of pyrethroid insecticides poses significant risks to both ecological ecosystems and human beings. Herein, Pseudomonas aeruginosa PAO1 exhibited exceptional degradation capabilities towards a range of pyrethroid family insecticides including etofenprox, bifenthrin, tetramethrin, D-cypermethrin, allethrin, and permethrin, with a degradation efficiency reaching over 84 % within 36 h (50 mg·L-1). Strain PAO1 demonstrated effective soil bioremediation by removing etofenprox across different concentrations (25-100 mg·kg-1), with a degradation efficiency over 77 % within 15 days. Additionally, 16S rDNA high-throughput sequencing analysis revealed that introduction of strain PAO1 and etofenprox had a notable impact on the soil microbial community. Strain PAO1 displayed a synergistic effect with local degrading bacteria or flora to degrade etofenprox. UPLC-MS/MS analysis identified 2-(4-ethoxyphenyl) propan-2-ol and 3-phenoxybenzoic acid as the major metabolites of etofenprox biodegradation. A new esterase gene (estA) containing conserved motif (GDSL) and catalytic triad (Ser38, Asp310 and His313) was cloned from strain PAO1. Enzyme activity and gene knockout experiments confirmed the pivotal role of estA in pyrethroid biodegradation. The findings from this study shed a new light on elucidating the degradation mechanism of P. aeruginosa PAO1 and present a useful agent for development of effective pyrethroid bioremediation strategies.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zeling Xu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Lian-Hui Zhang
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Seong SM, Go RE, Lee HK, Choi KC. Fludioxonil induces cardiotoxicity via mitochondrial dysfunction and oxidative stress in two cardiomyocyte models. ENVIRONMENTAL TOXICOLOGY 2024; 39:2993-3002. [PMID: 38314641 DOI: 10.1002/tox.24176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Fludioxonil (Flu) is a phenylpyrrole fungicide and is currently used in over 900 agricultural products globally. Flu possesses endocrine-disrupting chemical-like properties and has been shown to mediate various physiological and pathological changes, such as apoptosis and differentiation, in diverse cell lines. However, the effects of Flu on cardiomyocytes have not been studied so far. The present study investigated the effects of Flu on mitochondria in AC16 human cardiomyocytes and H9c2 rat cardiomyoblasts. Flu decreased cell viability in a water-soluble tetrazolium assay and mediated morphological changes suggestive of apoptosis in AC16 and H9c2 cells. We confirmed that annexin V positive cells were increased by Flu through annexin V/propidium iodide staining. This suggests that the decrease in cell viability due to Flu may be associated with increased apoptotic changes. Flu consistently increased the expression of pro-apoptotic markers such as Bcl-2-associated X protein (Bax) and cleaved-caspase 3. Further, Flu reduced the oxygen consumption rate (OCR) in AC16 and H9c2 cells, which is associated with decreased mitochondrial membrane potential (MMP) as observed through JC-1 staining. In addition, Flu augmented the production of mitochondrial reactive oxygen species, which can trigger oxidative stress in cardiomyocytes. Taken together, these results indicate that Flu induces mitochondrial dysregulation in cardiomyocytes via the downregulation of the OCR and MMP and upregulation of the oxidative stress, consequently resulting in the apoptosis of cardiomyocytes. This study provides evidence of the risk of Flu toxicity on cardiomyocytes leading to the development of cardiovascular diseases and suggests that the use of Flu in agriculture should be done with caution and awareness of the probable health consequences of exposure to Flu.
Collapse
Affiliation(s)
- Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
5
|
Pileco Cappelleti C, Santos Silva KT, Rodrigues-Conrad K, Grams KC, Kottwitz da Silva I, Frielink AP, da Rocha Abdallah S, de Fátima Colet C, Woutheres Bortolotto J, Bonfanti-Azzolin G, Migliorini Parisi M. Cytotoxic and oxidative changes in individuals occupationally exposed to recyclable municipal solid waste. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:898-908. [PMID: 37691320 DOI: 10.1080/15287394.2023.2256782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
aste collectors are exposed to a wide variety of bacteria, endotoxins, fungi, allergens, particulate matter, irritating inhalants, and vehicle exhaust, making them more prone to development of chronic diseases. Although several studies described the impact of occupational exposure on the overall health of waste collectors, few investigations were conducted regarding cellular and molecular changes that may occur due to exposure. The aim of this study was to assess biomarkers of oxidative stress such as levels of reactive oxygen species (ROS), lipoperoxidation, total antioxidant capacity (TAC), apoptosis, butyrylcholinesterase (BChE) activity and mitochondrial function (MitoTrackerTM Green FM and MitoTrackerTM Red) using the peripheral blood from individuals occupationally exposed to recyclable solid waste in Southern Brazil. The study included 30 waste collectors and 30 control individuals, who did not perform activities with recognized exposure to biological and chemical substances. Waste collectors were found to exhibit in peripheral blood leukocytes (PBL) higher rates of apoptosis, increased production of ROS, and reduced mitochondrial membrane potential (MMP), associated with decreased total antioxidant capacity (TAC) and elevated activity of BChE in plasma. Therefore, evidence indicates that cytotoxicity, oxidative stress, and inflammatory responses may be involved in the multiplicity of adverse health outcomes related to contaminant exposure in waste collectors. It is thus necessary to implement and/or improve occupational health programs aimed at workers as well as mandatory inspections for the use of personal protective equipment.
Collapse
Affiliation(s)
- Camila Pileco Cappelleti
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Karen Taiane Santos Silva
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Kelly Rodrigues-Conrad
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Kendra Caroline Grams
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Isadora Kottwitz da Silva
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Ana Paula Frielink
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Suelen da Rocha Abdallah
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Christiane de Fátima Colet
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
- Postgraduate Program in Environmental and Sustainability Systems, Regional University of the Northwest of the State of Rio Grande do Sul, Ijuí, Brazil
| | - Josiane Woutheres Bortolotto
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Gabriela Bonfanti-Azzolin
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Mariana Migliorini Parisi
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| |
Collapse
|
6
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Cruces MP, Pimentel E, Vidal LM, Jiménez E, Suárez H, Camps E, Campos-González E. Genotoxic action of bifenthrin nanoparticles and its effect on the development, productivity, and behavior of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:661-677. [PMID: 37477220 DOI: 10.1080/15287394.2023.2234408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Rapid development of nanotechnology, particularly nanoparticles of pesticides, has facilitated the transformation of traditional agriculture. However, testing their effectiveness is essential for avoiding any environmental or adverse human health risk attributed to nanoparticle-based formulations, especially insecticides. Recently, organic nanoparticles of bifenthrin, a pyrethroid insecticide, were successfully synthesized by laser ablation of solids in liquid technique, with the most probable size of 5 nm. The aim of the present study was to examine the effects of acute exposure to bifenthrin (BIF) or bifenthrin nanoparticles (BIFNP) on larval-adult viability, developmental time, olfactory capacity, longevity, productivity defined as the number of eggs per couple, and genotoxicity in Drosophila melanogaster. Data demonstrated that BIFNP produced a marked delay in developmental time, significant reduction in viability and olfactory ability compared to BIF. No marked differences were detected between BIF and BIFNP on longevity and productivity. Genotoxicity findings indicated that only BIF, at longer exposure duration increased genetic damage.
Collapse
Affiliation(s)
- Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Luz M Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Elizabeth Jiménez
- Facultad de Ciencias, Universidad Autónoma Del Estado de México, Toluca, México
| | - Hugo Suárez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Camps
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Campos-González
- CONACYT-Departamento de física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| |
Collapse
|
8
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Lee S, Lee W, Yang S, Suh YJ, Hong DG, Chang SC, Kim HS, Lee J. Di- n-butyl phthalate disrupts neuron maturation in primary rat embryo neurons and male C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:56-70. [PMID: 34488563 DOI: 10.1080/15287394.2021.1973631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Di-n-butyl phthalate (DBP) is commonly used as a plasticizer and its usage continues to increase in conjunction with plastic consumption. DBP is readily released into air, drinking water, and soil, and unfortunately, is a potent endocrine disrupter that impairs central nervous system functions. Previously DBP was found to (1) arrest the cell cycle of C17.2 neural progenitor cells (NPCs) at the G1 phase, (2) reduce numbers of newly generated neural stem cells in the mouse hippocampus, and (3) adversely affect learning and memory. Other investigators also noted DBP-mediated neurotoxic effects, but as yet, no study has addressed the adverse effects of DBP on neuronal differentiation. Data demonstrated that at 200 μM DBP induced apoptosis in rat embryo primary neurons by increasing reactive oxygen species levels and inducing mitochondrial dysfunction. However, no significant effect was detected on neurons at concentrations of ≤100 μM. In contrast, doublecortin/microtubule associated protein-2 (DCX/MAP2) immunocytochemistry showed that DBP at 100 μM delayed neuronal maturation by increasing protein levels of DCX (an immature neuronal marker), without markedly affecting cell viability. Further in vivo studies confirmed that DCX+ cell numbers were significantly elevated in the hippocampus of DBP-treated mice, indicating that DBP delayed neuronal maturation, which is known to be associated with impaired memory retention. Data demonstrated that DBP might disrupt neuronal maturation, which is correlated with reduced neurocognitive functions.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Wonjong Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute Of Food And Drug Safety Evaluation, Ministry of Food and Drug Safety, Heungdeok-gu, Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yeon Ji Suh
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Geun Hong
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Republic of Korea1
| | | |
Collapse
|
10
|
Kim D, Kim EH, Bae ON. Comparative study of two isothiazolinone biocides, 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT), on barrier function and mitochondrial bioenergetics using murine brain endothelial cell line (bEND.3). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:932-943. [PMID: 34315345 DOI: 10.1080/15287394.2021.1955786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Isothiazolinone (IT) biocides are potent antibacterial substances used as preservatives and disinfectants. These biocides exert differing biocidal effects and display environmental stability based upon chemical structure. In agreement with our recent study reporting that 2-n-octyl-4-isothiazolin-3-one (OIT) induced dysfunction of the blood-brain barrier (BBB), the potential adverse health effects of two IT biocides 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT) were compared using brain endothelial cells (ECs) derived from murine brain endothelial cell line (bEND.3). BIT possesses an unchlorinated IT ring structure and used as a preservative in cleaning products. DCOIT contains a chlorinated IT ring structure and employed as an antifouling agent in paints. Data demonstrated that DCOIT altered cellular metabolism at a lower concentration than BIT. Both BIT and DCOIT increased reactive oxygen species (ROS) generation at the mitochondrial and cellular levels. However, the effect of DCOIT on glutathione (GSH) levels appeared to be greater than BIT. While mitochondrial membrane potential (MMP) was decreased in both BIT- and DCOIT-exposed cells, direct disturbance in mitochondrial bioenergetic flux was only observed in BIT-treated ECs. Taken together, IT biocides produced toxicity in brain EC and barrier dysfunction, but at different concentration ranges suggesting distinct differing mechanisms related to chemical structure.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
11
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
12
|
Park W, Park S, Lim W, Song G. Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147143. [PMID: 33901951 DOI: 10.1016/j.scitotenv.2021.147143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Exposure to pesticides has become a serious concern for the environment and human health. Bifenthrin, a synthetic pyrethroid pesticide, is one of the most frequently used pesticides worldwide. Despite the toxic potential of bifenthrin, no studies have elucidated the cytotoxic response of bifenthrin in maternal and fetal cells that are involved in the implantation process. In this study, the cytotoxic effect of bifenthrin was investigated using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. The results showed that bifenthrin suppressed cell proliferation and viability in pTr and pLE cells. In particular, bifenthrin induced cell cycle arrest, resulting in apoptosis in both cell lines. We found that bifenthrin damaged the mitochondria and induced the production of reactive oxygen species, causing endoplasmic reticulum stress and calcium dysregulation in pTr and pLE cells. Finally, bifenthrin altered the MAPK/PI3K signaling pathway and pregnancy-related gene expression. Collectively, our results suggest that bifenthrin reduces the implantation potential of embryos and may help elucidate the mechanisms underlying toxin-derived cytotoxicity in maternal and fetal cells.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Mitidiero Stachissini Arcain B, Gross MC, Frasson Furtado D, Grade CVC. Embryotoxic effects of Rovral® for early chicken ( Gallus gallus) development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:632-648. [PMID: 33970833 DOI: 10.1080/15287394.2021.1924331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rovral® is a fungicide used to control pests that affect various crops and little is known regarding its effects on embryonic development of amniotes. Thus, this study aimed to determine the influence of Rovral® during chicken organogenesis using acute in ovo contamination. Fertilized eggs were inoculated with different concentrations of Rovral® (100, 300, 500 or 750 µl/ml), injected into the egg's air chamber. After 7 days, embryos were examined for possible malformations, staging, weight and mortality. Subsequently, head, trunk, limbs and eyes were measured for morphometry and asymmetry. For blood analysis, eggs were treated with 300 µl/ml Rovral® and glucose, presence of micronuclei and erythrocyte nuclei abnormalities determined. Treatments with Rovral® affected the mortality rate in a concentration-dependent manner. LC50 value was found to be 596 µl/ml which represents 397-fold higher than the recommended concentration for use. Rovral® produced several malformations including hemorrhagic, ocular and cephalic abnormalities. No significant changes were observed in body weight, staging, body measurements, symmetry and glucose levels of live embryos, which indicates this fungicide presents low toxicity under the analyzed conditions. Changes in erythrocyte nuclei were noted; however significant difference was observed only for presence of binucleated erythrocytes. It is important to point out that possibly more significant changes may have occurred at lower concentrations through chronic contamination. Therefore, caution is needed in the use of this fungicide, since it presents teratogenic and mutagenic potential.
Collapse
Affiliation(s)
- Beatriz Mitidiero Stachissini Arcain
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Maria Cláudia Gross
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Danúbia Frasson Furtado
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Carla Vermeulen Carvalho Grade
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| |
Collapse
|