1
|
Bouyssi A, Trecourt A, Déméautis T, Persat F, Glehen O, Wallon M, Devouassoux G, Bentaher A, Menotti J. Aspergillus fumigatus is responsible for inflammation in a murine model of chronic obstructive pulmonary disease exacerbation. Respir Res 2025; 26:25. [PMID: 39827361 PMCID: PMC11743040 DOI: 10.1186/s12931-024-03092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND In patients with chronic obstructive pulmonary disease (COPD), a sensitization to A. fumigatus has been related to a decline in lung function, but the role of fungal agents in the disease pathogenesis remains unclear. The main purpose of the present study was to investigate whether cell inflammation could worsen after exposure to A. fumigatus spores in vitro and then, in mice, following chronic exposure to cigarette smoke mimicking COPD. METHODS The inflammatory response to cigarette smoke alone or with A. fumigatus was investigated in cell culture models of murine macrophages and alveolar epithelial cells. In an animal model, mice were exposed daily to two cigarettes smoke over 14 weeks, and two intranasal instillations of 105 spores at weeks 7 and 14. Then, their lungs were recovered to perform inflammatory and histopathological analyses. RESULTS In co-cultures of macrophages and epithelial cells treated with both cigarette smoke extracts (CSE) and A. fumigatus compared to CSE alone there were significant inductions in TNF-α (6.2-fold) and CXCL-2 (21.5-fold) gene expression, confirmed by significant increases in the corresponding protein secretion. In the murine model, histological analyses of the lung after chronic smoke exposure showed an increase in airspace enlargement. Moreover, a Bio-Plex approach on bronchoalveolar lavage of cigarette smoke and A. fumigatus-treated mice showed significant increases in multiple inflammatory proteins secreted in the lung. CONCLUSIONS There was a stronger inflammatory response after cigarette smoke exposure with A. fumigatus compared to cigarette smoke alone. These findings were correlated with histopathological changes in the mouse lung in vivo.
Collapse
Affiliation(s)
- Alexandra Bouyssi
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Alexis Trecourt
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Pathology, South Lyon Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Tanguy Déméautis
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Florence Persat
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Glehen
- Surgical Department, UR3738 CICLY, Claude Bernard University - Lyon 1, South Lyon Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Martine Wallon
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Devouassoux
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Pulmonology, Croix-Rousse Hospital, Hospices Civils de Lyon, and F-CRIN INSERM Network CRISALIS, Lyon, France
| | - Abderrazzak Bentaher
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Jean Menotti
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France.
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
2
|
Wang F, Barrero CA. Multi-Omics Analysis Identified Drug Repurposing Targets for Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:11106. [PMID: 39456887 PMCID: PMC11507528 DOI: 10.3390/ijms252011106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Despite recent advances in chronic obstructive pulmonary disease (COPD) research, few studies have identified the potential therapeutic targets systematically by integrating multiple-omics datasets. This project aimed to develop a systems biology pipeline to identify biologically relevant genes and potential therapeutic targets that could be exploited to discover novel COPD treatments via drug repurposing or de novo drug discovery. A computational method was implemented by integrating multi-omics COPD data from unpaired human samples of more than half a million subjects. The outcomes from genome, transcriptome, proteome, and metabolome COPD studies were included, followed by an in silico interactome and drug-target information analysis. The potential candidate genes were ranked by a distance-based network computational model. Ninety-two genes were identified as COPD signature genes based on their overall proximity to signature genes on all omics levels. They are genes encoding proteins involved in extracellular matrix structural constituent, collagen binding, protease binding, actin-binding proteins, and other functions. Among them, 70 signature genes were determined to be druggable targets. The in silico validation identified that the knockout or over-expression of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes may drive the cell transcriptomics to a status similar to or contrasting with COPD. While some genes identified in our pipeline have been previously associated with COPD pathology, others represent possible new targets for COPD therapy development. In conclusion, we have identified promising therapeutic targets for COPD. This hypothesis-generating pipeline was supported by unbiased information from available omics datasets and took into consideration disease relevance and development feasibility.
Collapse
Affiliation(s)
| | - Carlos A. Barrero
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA;
| |
Collapse
|
3
|
Fanoudi S, Alavi MS, Mehri S, Hosseinzadeh H. The protective effects of curcumin against cigarette smoke-induced toxicity: A comprehensive review. Phytother Res 2024; 38:98-116. [PMID: 37813398 DOI: 10.1002/ptr.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cigarette smoking (CS) is a crucial modifiable risk of developing several human diseases and cancers. It causes lung, bladder, breast, and esophageal cancers, respiratory disorders, as well as cardiovascular and metabolic diseases. Because of these adverse health effects, continual efforts to decrease the prevalence and toxicity of CS are imperative. Until the past decades, the impacts of natural compounds have been under investigation on the harmful effects of CS. Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant that belongs to the Zingiberaceae family, is the main source of curcumin. This review is an attempt to find out the current knowledge on CS's harmful effects and protective potential of curcumin in the pulmonary, liver, brain, gastrointestinal, and testis organs. According to the present review, simultaneous consumption of curcumin and CS can attenuate CS toxicities including chronic obstructive pulmonary disease, gastrointestinal toxicity, metabolic diseases, testis injury, and neurotoxicity. Moreover, curcumin suppresses carcinogenesis in the skin, liver, lungs, breast, colon, and stomach. Curcumin mediates these protective effects through antioxidant, anti-inflammatory, anti-apoptotic, and anti-carcinogenicity properties.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
5
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
6
|
Aas M, Andreassen OA, Gjerstad J, Rødevand L, Hjell G, Johansen IT, Lunding SH, Ormerod MBEG, Lagerverg TV, Steen NE, Djurovic S, Akkouh I. Expression of ANK3 moderates the association between childhood trauma and affective traits in severe mental disorders. Sci Rep 2023; 13:13845. [PMID: 37620394 PMCID: PMC10449847 DOI: 10.1038/s41598-023-40310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Exposure to early life trauma increases the risk of psychopathology later in life. Here we investigated if ANK3 mRNA levels influence the relationship between childhood trauma experiences and clinical characteristics in mental disorders. A sample of 174 patients with bipolar disorder and 291 patients with schizophrenia spectrum disorder were included. Patients were diagnosed using the Structured Clinical Interview for DSM-IV, and childhood trauma was assessed using the childhood trauma questionnaire. Age at illness onset and number of psychotic and affective episodes were assessed from interview and medical records. Current depressive symptoms were measured using the calgary depression scale for schizophrenia and the inventory for depressive symptomatology. ANK3 expression was analyzed in whole blood using the Illumina HumanHT-12 v4 Expression BeadChip. Analyses were carried out with the Process adjusted for confounders. Within the total sample, patients with both high ANK3 expression and with the most severe childhood sexual abuse had more manic/hypomanic episodes and an earlier age at onset of the first episode. ANK3 mRNA levels also moderated the relationship between emotional neglect and manic/hypomanic episodes. Our results suggest that ANK3 expression levels moderate the association between specific types of childhood trauma and affective traits in mental disorders.
Collapse
Affiliation(s)
- Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes Gjerstad
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Linn Rødevand
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Monica B E G Ormerod
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trine V Lagerverg
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Clinical Science, NORMENT, University of Bergen, Bergen, Norway
| | - Ibrahim Akkouh
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Doğan B, Ayar B, Pirim D. Investigation of putative roles of smoking-associated salivary microbiome alterations on carcinogenesis by integrative in silico analysis. Comput Biol Chem 2023; 102:107805. [PMID: 36587566 DOI: 10.1016/j.compbiolchem.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Growing evidence suggests that cigarette smoking alters the salivary microbiome composition and affects the risk of various complex diseases including cancer. However, the potential role of the smoking-associated microbiome in cancer development remains unexplained. Here, the putative roles of smoking-related microbiome alterations in carcinogenesis were investigated by in silico analysis and suggested evidence can be further explored by experimental methodologies. The Disbiome database was used to extract smoking-associated microbial taxa in saliva and taxon set enrichment analysis (TSEA) was conducted to identify the gene sets associated with extracted microbial taxa. We further analyzed the expression profiles of identified genes by using RNA-sequencing data from TCGA and GTEx projects. Associations of the genes with smoking-related phenotypes in cancer datasets were analyzed to prioritize genes for their interplay between smoking-related microbiome and carcinogenesis. Thirty-eight microbial taxa associated with smoking were included in the TSEA and this revealed sixteen genes that were significantly associated with smoking-associated microbial taxa. All genes were found to be differentially expressed in at least one cancer dataset, yet the ELF3 and CTSH were the most common differentially expressed genes giving significant results for several cancer types. Moreover, C2CD3, CTSH, DSC3, ELF3, RHOT2, and WSB2 showed statistically significant associations with smoking-related phenotypes in cancer datasets. This study provides in silico evidence for the potential roles of the salivary microbiome on carcinogenesis. The results shed light on the importance of smoking cessation strategies for cancer management and interventions to stratify smokers for their risk of smoking-induced carcinogenesis.
Collapse
Affiliation(s)
- Berkcan Doğan
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, 16059 Bursa, Turkey
| | - Berna Ayar
- Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey; Istinye University, Institute of Health Science, Department of Molecular Oncology, 34010 Istanbul, Turkey
| | - Dilek Pirim
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey.
| |
Collapse
|
8
|
Tran PT, Beidoun B, Lohan SB, Talbi R, Kleuser B, Seifert M, Jung K, Sandig G, Meinke MC. Establishment of a method to expose and measure pollution in excised porcine skin with electron paramagnetic resonance spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114258. [PMID: 36343452 DOI: 10.1016/j.ecoenv.2022.114258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Health problems associated with the amount of air pollutants are increasing worldwide. Pollution damages not only the lungs; it also has an impact on skin health and is co-responsible for the development of skin diseases. Anti-pollution products are on the rise in the cosmetic market but so far, there is no established method to directly assess the impact of pollution on the skin and to test the efficacy of anti-pollution products. To address this problem, two different chambers were developed for the reproducible exposure to realistic air pollutant concentrations. One chamber for the exclusive use of excised skin and hair samples, the second chamber for ex vivo and in vivo measurements. Measurements of nicotine next to the investigated skin area allow conclusions to be drawn on the particle concentration to which the skin is exposed. Electron paramagnetic resonance spectroscopy, which enables the detection of free radicals in different systems, was applied to assess the hazard potential of pollution in the skin. A direct proof of the formation of free radicals in the skin by the model pollutant cigarette smoke could be demonstrated. An additional application of UV irradiation even increased the formation of free radicals in the skin seven-fold (sum parameter). Depending on the question of interest, the use of different spin probes allows various assessments of the radical formation in skin: the amount of radicals but also the antioxidant status of the microenvironment can be estimated. Using two exposure chambers, the direct formation of oxidative stress by cigarette smoke on ex vivo skin, with and without additional UV exposure, could be reproducibly examined. This measurement method is promising for the assessment of anti-pollution products and could allow a direct causal connection between pollutant, effect on the skin and the protective function of skin care products.
Collapse
Affiliation(s)
- Phuong Thao Tran
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Batoul Beidoun
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berliner Hochschule für Technik Berlin, Luxemburger Straße 10 in, 13353 Berlin, Germany
| | - Silke B Lohan
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rajae Talbi
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berliner Hochschule für Technik Berlin, Luxemburger Straße 10 in, 13353 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | | | | | - Grit Sandig
- Gematria Test Lab GmbH, 13187 Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Aakerøy L, Cheng CW, Sustova P, Scrimgeour NR, Wahl SGF, Steinshamn S, Bowen TS, Brønstad E. Identification of exercise-regulated genes in mice exposed to cigarette smoke. Physiol Rep 2022; 10:e15505. [PMID: 36324300 PMCID: PMC9630761 DOI: 10.14814/phy2.15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoke (CS) is the major risk factor for COPD and is linked to cardiopulmonary dysfunction. Exercise training as part of pulmonary rehabilitation is recommended for all COPD patients. It has several physiological benefits, but the mechanisms involved remain poorly defined. Here, we employed transcriptomic profiling and examined lung endothelium to investigate novel interactions between exercise and CS on cardiopulmonary alterations. Mice were exposed to 20 weeks of CS, CS + 6 weeks of high-intensity interval training on a treadmill, or control. Lung and cardiac (left and right ventricle) tissue were harvested and RNA-sequencing was performed and validated with RT-qPCR. Immunohistochemistry assessed pulmonary arteriolar changes. Transcriptome analysis between groups revealed 37 significantly regulated genes in the lung, 21 genes in the left ventricle, and 43 genes in the right ventricle (likelihood-ratio test). Validated genes that showed interaction between exercise and CS included angiotensinogen (p = 0.002) and resistin-like alpha (p = 0.019) in left ventricle, with prostacyclin synthetase different in pulmonary arterioles (p = 0.004). Transcriptomic profiling revealed changes in pulmonary and cardiac tissue following exposure to CS, with exercise training exerting rescue effects. Exercise-regulated genes included angiotensinogen and resistin-like alpha, however, it remains unclear if these represent potential candidate genes or biomarkers that could play a role during pulmonary rehabilitation.
Collapse
Affiliation(s)
- Lars Aakerøy
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Chew W. Cheng
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Pavla Sustova
- Department of PathologySt. Olav Hospital, Trondheim University HospitalTrondheimNorway
| | - Nathan R. Scrimgeour
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Sigurd Steinshamn
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Eivind Brønstad
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
10
|
Su X, Wu W, Zhu Z, Lin X, Zeng Y. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update. Respir Res 2022; 23:225. [PMID: 36045410 PMCID: PMC9429334 DOI: 10.1186/s12931-022-02153-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoke is a complex aerosol containing a large number of compounds with a variety of toxicity and carcinogenicity. Long-term exposure to cigarette smoke significantly increases the risk of a variety of diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is a unique biological process, that refers to epithelial cells losing their polarity and transforming into mobile mesenchymal cells, playing a crucial role in organ development, fibrosis, and cancer progression. Numerous recent studies have shown that EMT is an important pathophysiological process involved in airway fibrosis, airway remodeling, and malignant transformation of COPD. In this review, we summarized the effects of cigarette smoke on the development and progression of COPD and focus on the specific changes and underlying mechanisms of EMT in COPD induced by cigarette smoke. We spotlighted the signaling pathways involved in EMT induced by cigarette smoke and summarize the current research and treatment approaches for EMT in COPD, aiming to provide ideas for potential new treatment and research directions.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
11
|
Khaleel A, Alkhawaja B, Al-Qaisi TS, Alshalabi L, Tarkhan AH. Pathway analysis of smoking-induced changes in buccal mucosal gene expression. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:69. [PMID: 37521848 PMCID: PMC8929449 DOI: 10.1186/s43042-022-00268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cigarette smoking is the leading preventable cause of death worldwide, and it is the most common cause of oral cancers. This study aims to provide a deeper understanding of the molecular pathways in the oral cavity that are altered by exposure to cigarette smoke. Methods The gene expression dataset (accession number GSE8987, GPL96) of buccal mucosa samples from smokers (n = 5) and never smokers (n = 5) was downloaded from The National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) repository. Differential expression was ascertained via NCBI's GEO2R software, and Ingenuity Pathway Analysis (IPA) software was used to perform a pathway analysis. Results A total of 459 genes were found to be significantly differentially expressed in smoker buccal mucosa (p < 0.05). A total of 261 genes were over-expressed while 198 genes were under-expressed. The top canonical pathways predicted by IPA were nitric oxide and reactive oxygen production at macrophages, macrophages/fibroblasts and endothelial cells in rheumatoid arthritis, and thyroid cancer pathways. The IPA upstream analysis predicted that the TP53, APP, SMAD3, and TNF proteins as well as dexamethasone drug would be top transcriptional regulators. Conclusions IPA highlighted critical pathways of carcinogenesis, mainly nitric oxide and reactive oxygen production at macrophages, and confirmed widespread injury in the buccal mucosa due to exposure to cigarette smoke. Our findings suggest that cigarette smoking significantly impacts gene pathways in the buccal mucosa and may highlight potential targets for treating the effects of cigarette smoking. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-022-00268-y.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Alkhawaja
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Talal Salem Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Lubna Alshalabi
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | |
Collapse
|
12
|
The Effects of e-Cigarette Aerosol on Oral Cavity Cells and Tissues: A Narrative Review. TOXICS 2022; 10:toxics10020074. [PMID: 35202260 PMCID: PMC8878056 DOI: 10.3390/toxics10020074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
A wealth of research has comprehensively documented the harmful effects of traditional cigarette smoking and nicotine on human health. The lower rate of exposure to harmful chemicals and toxic substances offered by alternative electronic smoking devices (e-cigarettes, vaping, etc.) has made these methods of smoking popular, especially among adolescents and young adults, and they are regarded frequently as safer than regular cigarettes. During vaporization of these so-called e-liquids, toxins, carcinogens and various other chemical substances may be released and inhaled by the user. Data on the potential human health effect attendant on exposure to e-vapor are based mainly on animal and in vitro studies. The oral tissues are the first locus of direct interaction with the components of the inhaled vapor. However, the short-term as well as long-term effects of the exposure are not known. The aim of the review is to briefly present data on the effects of the chemical components and toxins of e-cigarette vapor on oral cavity cells and tissues of oral health.
Collapse
|
13
|
Chen M, Long Q, Borrie MS, Sun H, Zhang C, Yang H, Shi D, Gartenberg MR, Deng W. Nucleoporin TPR promotes tRNA nuclear export and protein synthesis in lung cancer cells. PLoS Genet 2021; 17:e1009899. [PMID: 34793452 PMCID: PMC8639082 DOI: 10.1371/journal.pgen.1009899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/02/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
The robust proliferation of cancer cells requires vastly elevated levels of protein synthesis, which relies on a steady supply of aminoacylated tRNAs. Delivery of tRNAs to the cytoplasm is a highly regulated process, but the machinery for tRNA nuclear export is not fully elucidated. In this study, using a live cell imaging strategy that visualizes nascent transcripts from a specific tRNA gene in yeast, we identified the nuclear basket proteins Mlp1 and Mlp2, two homologs of the human TPR protein, as regulators of tRNA export. TPR expression is significantly increased in lung cancer tissues and correlated with poor prognosis. Consistently, knockdown of TPR inhibits tRNA nuclear export, protein synthesis and cell growth in lung cancer cell lines. We further show that NXF1, a well-known mRNA nuclear export factor, associates with tRNAs and mediates their transport through nuclear pores. Collectively, our findings uncover a conserved mechanism that regulates nuclear export of tRNAs, which is a limiting step in protein synthesis in eukaryotes.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Qian Long
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Haohui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Han Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingbo Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- The Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Maciel de Lima AP, Schneider BC, Bertoldi AD, Tomasi E, Gonzalez MC, Demarco FF, Domingues MR, Bielemann RM. NCD behavioral risk factors and mortality among older adults in Brazil. Clin Nutr ESPEN 2021; 45:462-468. [PMID: 34620356 DOI: 10.1016/j.clnesp.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS & AIMS Literature shows that the most studied concurrent risk factors for mortality in elderly individuals are smoking, inadequate diet, alcohol consumption and physical inactivity. The combination of such habits can increase from 3 to 11 times the chance of death. To measure the association between concurrence of behavioral risk factors (BRF) for non-communicable diseases (NCD's) and mortality up to three years among the elderly. METHODS Cohort study started in 2014 named "COMO VAI?" with community-dwelling aged ≥60 years in Pelotas, Rio Grande do Sul, Brazil. We investigated the deaths from all causes occurred until April 2017. The exposure was defined by the presence of physical inactivity, low-quality diet, alcohol consumption and smoking that composed a score ranging from 0 (none) to 4 (all). Cox proportional hazard regression models were used to evaluate the association between BRF concurrence and mortality. RESULTS In 2014, 1451 elderly people were interviewed, 145 deaths were identified (10%) by April 2017. Higher risk of death was observed for the combinations of physical inactivity + smoking and low-quality diet + physical inactivity. The simultaneous presence of three or more BRF was associated with a nearly six-fold higher risk of death. CONCLUSIONS Higher mortality during a 3-year period was observed among those with at least three BRF for NCD's.
Collapse
Affiliation(s)
| | | | - Andréa Dâmaso Bertoldi
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Elaine Tomasi
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Maria Cristina Gonzalez
- Postgraduate Program in Nutrition and Food, Federal University of Pelotas, Pelotas, RS, Brazil; Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | | | | | - Renata Moraes Bielemann
- Postgraduate Program in Nutrition and Food, Federal University of Pelotas, Pelotas, RS, Brazil; Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil; Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Almutairi M, Almutairi B, Almutairi M, Parine NR, Alrefaei A, Alanazi M, Semlali A. Human beta-defensin-1 rs2738047 polymorphism is associated with shisha smoking risk among Saudi population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42916-42933. [PMID: 33826097 PMCID: PMC8025738 DOI: 10.1007/s11356-021-13660-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Human β-defensin (HBD), a member of the antimicrobial peptides, is essential for respiratory epithelial cells' microbial defense, and is affected by cigarette smoking (CS). Its expression is upregulated by stimulation from microbes or inflammation. Genetic polymorphisms in the HBD-1 gene have been implicated in the development of various smoking-related diseases, including chronic obstructive pulmonary disease and asthma. Thus, we sought to analyze possible associations between HBD-1 single-nucleotide polymorphism (SNP) in HBD-1 gene and CS in ethnic Saudi Arabian subjects. Variants rs1047031 (C/T), rs1799946 (C/T), rs2738047 (C/T), and rs11362 (C/T) were investigated by genotyping 575 blood specimens from males and females, smokers/non-smokers: 288/287. The CT and CT+TT genotypes of rs1799946 presented an ~5-fold increased correlation with CS among the female smokers, compared with the female controls (OR = 5.473, P = 0.02003; and OR = 5.211, P = 0.02028, respectively), an observation similar to rs11362 SNP in female smokers, but with protective effects in TT genotype, compared with the CC reference allele (OR = 0.143, P = 0.04368). In shisha smokers, the heterozygous CT and the CT/TT genotype of rs2738047 polymorphism showed the same results with ~3-fold increased correlation with CS (OR = 2.788; P = 0.03448), compared with the cigarette smokers category. No significant association was shown in genotypic distributions and allelic frequencies of rs1047031. Further investigations, including large study samples, are required to investigate the effects of shisha on human beta-defensin expression and protein levels.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
| | - Bader Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulwahed Alrefaei
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Li X, Haberzettl P, Conklin DJ, Bhatnagar A, Rouchka EC, Zhang M, O’Toole TE. Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice. Genes (Basel) 2021; 12:1058. [PMID: 34356074 PMCID: PMC8307414 DOI: 10.3390/genes12071058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to fine particulate matter (PM2.5) air pollution is associated with quantitative deficits of circulating endothelial progenitor cells (EPCs) in humans. Related exposures of mice to concentrated ambient PM2.5 (CAP) likewise reduces levels of circulating EPCs and induces defects in their proliferation and angiogenic potential as well. These changes in EPC number or function are predictive of larger cardiovascular dysfunction. To identify global, PM2.5-dependent mRNA and miRNA expression changes that may contribute to these defects, we performed a transcriptomic analysis of cells isolated from exposed mice. Compared with control samples, we identified 122 upregulated genes and 44 downregulated genes in EPCs derived from CAP-exposed animals. Functions most impacted by these gene expression changes included regulation of cell movement, cell and tissue development, and cellular assembly and organization. With respect to miRNA changes, we found that 55 were upregulated while 53 were downregulated in EPCs from CAP-exposed mice. The top functions impacted by these miRNA changes included cell movement, cell death and survival, cellular development, and cell growth and proliferation. A subset of these mRNA and miRNA changes were confirmed by qRT-PCR, including some reciprocal relationships. These results suggest that PM2.5-induced changes in gene expression may contribute to EPC dysfunction and that such changes may contribute to the adverse cardiovascular outcomes of air pollution exposure.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA;
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA;
| | - Petra Haberzettl
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Daniel J. Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA;
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40202, USA
| | - Mei Zhang
- Department of Medicine, University of Louisville Genomics Facility, Louisville, KY 40202, USA;
| | - Timothy E. O’Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.J.C.); (A.B.)
- Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Qi B, Ramamurthy J, Bennani I, Trakadis YJ. Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: A case-control study. Am J Med Genet B Neuropsychiatr Genet 2021; 186:101-112. [PMID: 33645908 DOI: 10.1002/ajmg.b.32839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
This study analyzed gene expression messenger RNA data, from cases with major depressive disorder (MDD) and controls, using supervised machine learning (ML). We built on the methodology of prior studies to obtain more generalizable/reproducible results. First, we obtained a classifier trained on gene expression data from the dorsolateral prefrontal cortex of post-mortem MDD cases (n = 126) and controls (n = 103). An average area-under-the-receiver-operating-characteristics-curve (AUC) from 10-fold cross-validation of 0.72 was noted, compared to an average AUC of 0.55 for a baseline classifier (p = .0048). The classifier achieved an AUC of 0.76 on a previously unused testing-set. We also performed external validation using DLPFC gene expression values from an independent cohort of matched MDD cases (n = 29) and controls (n = 29), obtained from Affymetrix microarray (vs. Illumina microarray for the original cohort) (AUC: 0.62). We highlighted gene sets differentially expressed in MDD that were enriched for genes identified by the ML algorithm. Next, we assessed the ML classification performance in blood-based microarray gene expression data from MDD cases (n = 1,581) and controls (n = 369). We observed a mean AUC of 0.64 on 10-fold cross-validation, which was significantly above baseline (p = .0020). Similar performance was observed on the testing-set (AUC: 0.61). Finally, we analyzed the classification performance in covariates subgroups. We identified an interesting interaction between smoking and recall performance in MDD case prediction (58% accurate predictions in cases who are smokers vs. 43% accurate predictions in cases who are non-smokers). Overall, our results suggest that ML in combination with gene expression data and covariates could further our understanding of the pathophysiology in MDD.
Collapse
Affiliation(s)
- Bill Qi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Imane Bennani
- Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
19
|
Lechasseur A, Morissette MC. The fog, the attractive and the addictive: pulmonary effects of vaping with a focus on the contribution of each major vaping liquid constituent. Eur Respir Rev 2020; 29:29/157/200268. [PMID: 33060167 DOI: 10.1183/16000617.0268-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 11/05/2022] Open
Abstract
Vaping has become increasingly popular over the past decade. This pragmatic review presents the published biological effects of electronic cigarette vapour inhalation with a focus on the pulmonary effects. Special attention has been devoted to providing the documented effects specific to each major ingredient, namely propylene glycol/glycerol, nicotine and flavouring agents. For each ingredient, findings are divided according to the methodology used, being in vitro studies, animal studies and clinical studies. Finally, we provide thoughts and insights on the current state of understanding of the pulmonary effects of vaping, as well as novel research avenues and methodologies.
Collapse
Affiliation(s)
- Ariane Lechasseur
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Dept of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
20
|
Matsushita K, Ding N, Kou M, Hu X, Chen M, Gao Y, Honda Y, Zhao D, Dowdy D, Mok Y, Ishigami J, Appel LJ. The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis. Glob Heart 2020; 15:64. [PMID: 33150129 PMCID: PMC7546112 DOI: 10.5334/gh.814] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Whether cardiovascular disease (CVD) and its traditional risk factors predict severe coronavirus disease 2019 (COVID-19) is uncertain, in part, because of potential confounding by age and sex. METHODS We performed a systematic review of studies that explored pre-existing CVD and its traditional risk factors as risk factors of severe COVID-19 (defined as death, acute respiratory distress syndrome, mechanical ventilation, or intensive care unit admission). We searched PubMed and Embase for papers in English with original data (≥10 cases of severe COVID-19). Using random-effects models, we pooled relative risk (RR) estimates and conducted meta-regression analyses. RESULTS Of the 661 publications identified in our search, 25 papers met our inclusion criteria, with 76,638 COVID-19 patients including 11,766 severe cases. Older age was consistently associated with severe COVID-19 in all eight eligible studies, with RR >~5 in >60-65 versus <50 years. Three studies showed no change in the RR of age after adjusting for covariate(s). In univariate analyses, factors robustly associated with severe COVID-19 were male sex (10 studies; pooled RR = 1.73, [95% CI 1.50-2.01]), hypertension (8 studies; 2.87 [2.09-3.93]), diabetes (9 studies; 3.20 [2.26-4.53]), and CVD (10 studies; 4.97 [3.76-6.58]). RR for male sex was likely to be independent of age. For the other three factors, meta-regression analyses suggested confounding by age. Only four studies reported multivariable analysis, but most of them showed adjusted RR ~2 for hypertension, diabetes, and CVD. No study explored renin-angiotensin system inhibitors as a risk factor for severe COVID-19. CONCLUSIONS Despite the potential for confounding, these results suggest that hypertension, diabetes, and CVD are independently associated with severe COVID-19 and, together with age and male sex, can be informative for predicting the risk of severe COVID-19.
Collapse
Affiliation(s)
- Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Ning Ding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Minghao Kou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Xiao Hu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Mengkun Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Yumin Gao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Yasuyuki Honda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Di Zhao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - David Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
| | - Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| | - Lawrence J. Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, US
- Welch Center for Prevention, Epidemiology, and Clinical Research, US
| |
Collapse
|
21
|
Analysis of the Status of the Cutaneous Endogenous and Exogenous Antioxidative System of Smokers and the Short-Term Effect of Defined Smoking Thereon. Antioxidants (Basel) 2020; 9:antiox9060537. [PMID: 32575569 PMCID: PMC7346159 DOI: 10.3390/antiox9060537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
The daily consumption of tobacco products leads to a boost in free radical production in tissues, promoting the risk for malignancies, metabolic alterations and chronic-inflammatory diseases. This study aimed to broaden the knowledge of the status of the antioxidative (AO) system in the skin, compared to the blood, of healthy appearing smokers. Both, the basic status compared to non-smokers and the short-term impact of controlled cigarette consumption in smokers were analyzed. Our study showed that the basic level of the AO system of smokers significantly differed from that of non-smokers. As determined by resonant Raman spectroscopy (RRS), the levels of exogenous AOs were decreased in both, the skin, in vivo (β-carotene and lycopene), and blood plasma (β-carotene only). In contrast, the levels of glutathione (GSH), the prototypical endogenous AO, which were analyzed by fluorimetric assays in cutaneous tape strips and blood plasma, were increased in the skin, although unchanged in the blood of smokers. Elevated cutaneous GSH levels were reflected by an elevated overall radical scavenging activity in the skin, as quantified by non-invasive electron paramagnetic resonance (EPR) spectroscopy. Analysis of the expression of selected stress-associated genes in blood immune cells by quantitative RT-PCR in subgroups of non-smokers and smokers additionally demonstrated the downregulation of AKR1C2 in smokers, and its negative correlation with blood plasma levels of the protective immune mediator interleukin-22, assessed by the ELISA technique. Controlled cigarette consumption did not alter exogenous or endogenous AOs in the skin of smokers, but decreased lycopene levels in blood plasma. Moreover, there was a decline in blood IL-22 levels, while no relevant response of blood cell gene expressions was found after the considered short time. Our data therefore demonstrate a strengthened endogenous AO status in the skin of smokers, which may indicate a long-term adaptation to chronic oxidative stress in this specific organ. While this effect was not clearly visible in the blood, this compartment seems to be useful as an immediate indicator of the body's AO consumption. Moreover, decreased levels of AKR1C2, which we show for the first time to be expressed in immune cells, may be a candidate marker for long-term smoking. In addition, this study demonstrates that the rate constant of a spin probe decline determined by EPR spectroscopy mainly represents the endogenous AO status of a tissue.
Collapse
|
22
|
Nicotine exposure potentiates lung tumorigenesis by perturbing cellular surveillance. Br J Cancer 2020; 122:904-911. [PMID: 32001831 PMCID: PMC7078213 DOI: 10.1038/s41416-020-0730-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nicotine is a major tobacco component and found at circulating concentrations in smokers' bloodstreams. Although considered a non-carcinogenic substance, nicotine rapidly defuses to tissues after being inhaled, inviting effects on cellular physiology, particularly in the lung. Widespread increased use of nicotine-based e-cigarettes, especially in younger adults, creates an urgent need for improved understanding of nicotine's potential to impact human health. METHODS Biological and biochemistry methods were used to interrogate the potential for nicotine to weaken the genetic integrity of murine and human-lung epithelial cells. RESULTS We demonstrate that nicotine potentiates the growth of the lung epithelial cells in a dose-response fashion. Nicotine elicits an acute increase in reactive oxygen species (ROS), which persists at moderately high levels throughout the duration of nicotine exposure. The aberrant increases in ROS appear to induce ER stress and UPR activation, as reflected by BIP upregulation and PERK phosphorylation. Furthermore, prolonged nicotine exposure interferes with p53 function triggered by sodium arsenite. Unless p53 is suppressed, persistent nicotine exposure does not induce colony formation by lung epithelial cells in soft agar. CONCLUSION The data suggest that nicotine treatment, by perturbing intracellular redox state and altering p53 function, can create a pro-tumorigenic environment in lung epithelium. The results suggest caution in using nicotine replacement therapies and e-cigarettes.
Collapse
|
23
|
Freudenheim JL, Shields PG, Song MA, Smiraglia D. DNA Methylation and Smoking: Implications for Understanding Effects of Electronic Cigarettes. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Almutairi M, Mohammad Alhadeq A, Almeer R, Almutairi M, Alzahrani M, Semlali A. Effect of the thymine-DNA glycosylase rs4135050 variant on Saudi smoker population. Mol Genet Genomic Med 2019; 7:e00590. [PMID: 30779328 PMCID: PMC6465727 DOI: 10.1002/mgg3.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Thymine‐DNA glycosylase (TDG) is an essential DNA‐repair enzyme which works in both epigenetic regulation and genome maintenance. It is also responsible for efficient correction of multiple endogenous DNA lesions which occur commonly in mammalian genomes. Research of genetic variants such as SNPs, resulting in disease, is predicted to yield clinical advancements through the identification of sensitive genetic markers and the development of disease prevention and therapy. To that end, the main objective of the present study is to identify the possible interactions between cigarette smoking and the rs4135050 variant of the TDG gene, situated in the intron position, among Saudi individuals. Methods TDG rs4135050 (A/T) was investigated by genotyping 239, and 235 blood specimens were obtained from nonsmokers and smokers of cigarette respectively. Results T allele frequency was found which showed a significant protective effect on Saudi male smokers (OR = 0.64, p = 0.0187) compared to nonsmoking subjects, but not in female smokers. Furthermore, smokers aged less than 29 years, the AT and AT+TT genotypes decreased more than four times the risk of initiation of smoking related‐diseases compare to the ancestral AA homozygous genotype. Paradoxically, the AT (OR = 3.88, p = 0.0169) and AT+TT (OR = 2.86, p = 0.0420) genotypes were present at a higher frequency in smoking patients aged more than 29 years as compared to nonsmokers at the same ages. Conclusion Depending on the gender and age of patients, TDG rs4135050 may provide a novel biomarker for the early diagnosis and prevention of several diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Rafa Almeer
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Alzahrani
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Université Laval, Québec, Québec, Canada.,Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia, Riyadh
| |
Collapse
|
25
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|