1
|
Ristić N, Borković-Mitić S, Manojlović-Stojanoski M, Nestorović N, Filipović B, Šošić-Jurjević B, Trifunović S, Mitić B, Čukuranović-Kokoris J, Pavlović S. Is There a Relationship Between Prenatal Dexamethasone and Postnatal Fructose Overexposure and Testicular Development, Function, and Oxidative Stress Parameters in Rats? Int J Mol Sci 2024; 25:13112. [PMID: 39684822 DOI: 10.3390/ijms252313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Prenatal glucocorticoid overexposure alters the developmental program of fetal reproductive organs and results in numerous changes that can lead to various disorders later in life. Moderate fructose consumption during childhood and adolescence may impair the development and function of reproductive organs. The aim of this study was to investigate the effects of prenatal dexamethasone (Dx) exposure in combination with postnatal fructose overconsumption on testicular development and function in fetal and adult male rat offspring. Pregnant female rats were treated with a subcutaneous injection of Dx at a dose of 0.5 mg/kg/day on gestation days 16, 17, and 18, and the effects on fetal growth and testicular development were analyzed. Spontaneously born male offspring were fed 10% fructose in drinking water until the age of 3 months. Prenatal exposure to Dx led to a reduction in fetal weight and testicular volume. However, testicular development normalized by adulthood, with testosterone levels decreasing. After moderate fructose consumption, impaired redox homeostasis and structural changes in the testicles and decreased testosterone levels were observed, indicating reduced testicular function. The results suggest that the synergistic effect of prenatal Dx exposure and moderate postnatal fructose consumption leads to more deleterious changes in testicular tissue.
Collapse
Affiliation(s)
- Nataša Ristić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Slavica Borković-Mitić
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Svetlana Trifunović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Bojan Mitić
- Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Jovana Čukuranović-Kokoris
- Department of Anatomy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Slađan Pavlović
- Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
2
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Tagorti G, Yalçın B, Güneş M, Burgazlı AY, Kaya B. Comparative evaluation of natural and artificial sweeteners from DNA damage, oxidative stress, apoptosis, to development using Drosophila melanogaster. Drug Chem Toxicol 2024; 47:606-617. [PMID: 37386929 DOI: 10.1080/01480545.2023.2228522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
The overconsumption of added sugars makes people vulnerable to a myriad of diseases. Several biochemical and developmental assays were performed in the current study to assess the effect of fructose on Drosophila melanogaster and to find substitutes for fructose by comparing it to well-known sweeteners. Drosophila was exposed separately to the same ratio of sugar 9.21% (w/v) of several types of sweeteners (sucrose, fructose, glucose syrup, high-fructose corn syrup and stevia). Results revealed that fructose might induce recombination, whereas stevia lacks genotoxic potential. No developmental delay, growth defects, or neurotoxic effects were recorded for any of the sweeteners. We also observed no striking differences in reactive oxygen species levels. Thus, stevia seems to be an alternative sweetener to fructose that can be consumed to reduce fructose-induced anomalies.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Uddandrao VVS, Brahma Naidu P, Chandrasekaran P, Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes (Lond) 2024; 48:147-165. [PMID: 37963998 DOI: 10.1038/s41366-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment. METHODS We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women. RESULTS The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis. CONCLUSIONS In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India.
| | - Parim Brahma Naidu
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, 500078, India
| | - P Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| | - G Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| |
Collapse
|
5
|
Crean AJ, Pulpitel TJ, Pini T, Rickard JP, de Graaf SP, Senior AM, Simpson SJ, Wali JA. Low-Fat, High-Carbohydrate Diets Reduce Body Weight and Sperm Count but Increase Sperm Motility in Mice. J Nutr 2024; 154:60-68. [PMID: 37984745 DOI: 10.1016/j.tjnut.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Male reproduction is impacted by both over- and under-nutrition, demonstrated by animal studies using high-fat and low-protein dietary interventions. Little is known about the impacts of low-fat, high-carb diets and types of dietary carbohydrates on sperm traits. OBJECTIVES Using a nutritional geometry approach, we investigated the effects of partially or completely substituting glucose for fructose in isocaloric diets containing either 10%, 20%, or 30% fat (by energy) on sperm traits in mice. METHODS Male C57BL/6J mice were fed 1 of 15 experimental diets for 18 wk starting from 8 wk of age. Reproductive organs were then harvested, and sperm concentration, motility, and velocity were measured using Computer-Assisted Sperm Analysis. RESULTS Increasing dietary fat from 10% to 30% while maintaining energy density at 14.3 kJ/g and protein content at 20% resulted in increased body weight and sperm production but reduced the percentage of motile sperm. Body weight and seminal vesicle weight were maximized on diets containing a 50:50 mix of fructose and glucose, but carbohydrate type had few significant impacts on epididymal sperm traits. CONCLUSIONS The opposing impacts of dietary fat on mouse sperm quantity and quality observed suggest that male fertility may not be optimized by a single diet; rather, context-specific dietary guidelines targeted to specific concerns in semen quality may prove useful in treating male infertility.
Collapse
Affiliation(s)
- Angela J Crean
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia.
| | - Tamara J Pulpitel
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Taylor Pini
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Queensland, School of Veterinary Science, Queensland, Australia
| | - Jessica P Rickard
- The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Simon P de Graaf
- The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Alistair M Senior
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Stephen J Simpson
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Jibran A Wali
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
6
|
Echeverría CE, Oyarzún VI, López-Cortés A, Cancino J, Sotomayor PC, Goncalves MD, Godoy AS. Biological role of fructose in the male reproductive system: Potential implications for prostate cancer. Prostate 2024; 84:8-24. [PMID: 37888416 PMCID: PMC10872645 DOI: 10.1002/pros.24631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Over the last 20 years, fructose has gradually emerged as a potential metabolic substrate capable of promoting the growth and progression of various cancers, including prostate cancer (PCa). The biological and molecular mechanisms that underlie the effects of fructose on cancer are beginning to be elucidated. METHODS This review summarizes the biological function of fructose as a potential carbon source for PCa cells and its role in the functionality of the male reproductive tract under normal conditions. RESULTS The most recent biological advances related to fructose transport and metabolism as well as their implications in PCa growth and progression suggest that fructose represent a potential carbon source for PCa cells. Consequently, fructose derivatives may represent efficient radiotracers for obtaining PCa images via positron emission tomography and fructose transporters/fructose-metabolizing enzymes could be utilized as potential diagnostic and/or predictive biomarkers for PCa. CONCLUSION The existing data suggest that restriction of fructose from the diet could be a useful therapeutic strategy for patients with PCa.
Collapse
Affiliation(s)
- Carolina E. Echeverría
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Vanessa I. Oyarzún
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Paula C. Sotomayor
- Departamento de Urología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Alejandro S. Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo New York, USA
| |
Collapse
|
7
|
Yildirim OG, Guney C, Alcigir ME, Akar F. High-fructose consumption suppresses insulin signaling pathway accompanied by activation of macrophage and apoptotic markers in rat testis. Reprod Biol 2023; 23:100815. [PMID: 37839228 DOI: 10.1016/j.repbio.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Dietary high-fructose may cause metabolic disturbances; however, its effect on the reproductive system is little understood. The insulin signaling pathway is critical in testicular development, maintenance of microcirculation and spermatogenesis. Therefore, in this study, we aimed to investigate the impact of dietary high-fructose on insulin signaling pathway as well as macrophage and apoptotic markers in testicular tissue of rats. Fructose was administered to male Wistar rats as a 20% solution in drinking water for fifteen-week. Gene expression of ir-β, irs-1, irs-2, pi3k, akt, mtor, and enos in the testicular samples was determined by real-time PCR. Protein expression of IR, IRS-1, IRS-2, PI3K, Akt, phospho-Akt (p-Akt), mTOR, eNOS, phospho-eNOS (p-eNOS), and GLUT5 was established by analysis of Western Blot. Testicular expression of occludin, CD163, CD68, caspase-8, and caspase-3 was analyzed by using immunohistochemical assay. Testicular level of fructose was measured by colorimetric method. Dietary high-fructose decreased mRNA expressions of irs-1, irs-2, pi3k, and mtor in the testicular tissue of rats. Also, this dietary intervention impaired protein expressions of IR, IRS-1, IRS-2, PI3K, p-Akt, mTOR, eNOS, and p-eNOS as well as p-Akt/Akt and p-eNOS/eNOS ratios in the testis of rats. However, a high-fructose diet increased the expression of CD163, CD68, caspase-8 and caspase-3, but decreased that of occludin, in the testicular tissue of rats. The high-fructose consumption in rats suppresses testicular insulin signaling but activates macrophages-related factors and apoptotic markers. These changes induced by dietary fructose could be related to male reproductive dysfunction.
Collapse
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Ceren Guney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
8
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Mautone Gomes H, Silveira AK, Gasparotto J, Bortolin RC, Terra SR, Brum PO, Gelain DP, Fonseca Moreira JC. Effects of coconut oil long-term supplementation in Wistar rats during metabolic syndrome - regulation of metabolic conditions involving glucose homeostasis, inflammatory signals, and oxidative stress. J Nutr Biochem 2023; 114:109272. [PMID: 36681309 DOI: 10.1016/j.jnutbio.2023.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
This study was designed to evaluate the long-term effects of Fructose (20%) feeding in rats, simulating metabolic syndrome (MetS), and the effects of coconut oil (C.O.) supplementation when administered in a MetS context. MetS is a cluster of systemic conditions that represent an increased chance of developing cardiovascular diseases and type 2 diabetes in the future. C.O. has been the target of media speculation, and recent studies report inconsistent results. C.O. improved glucose homeostasis and reduced fat accumulation in Fructose-fed rats while decreasing the levels of triglycerides (TGs) in the liver. C.O. supplementation also increased TGs levels and fructosamine in serum during MetS, possibly due to white adipose tissue breakdown and high fructose feeding. Pro-inflammatory cytokines IL-1β and TNF-α were also increased in rats treated with Fructose and C.O. Oxidative stress marker nitrotyrosine is increased in fructose-fed animals, and C.O. treatment did not prevent this damage. No significant changes were observed in lipoperoxidation marker 4-Hydroxynonenal; however, fructose feeding increased total conjugated dienes and caused conjugated dienes to switch their conformation from cis-trans to trans-trans, which was not prevented by C.O. treatment. Potential benefits of C.O. have been reported with inconsistent results, and indeed we observed some benefits of C.O. supplementation in aiding weight loss, fat accumulation, and improving glucose homeostasis. Nonetheless, we also demonstrated that long-term C.O. supplementation could present some problematic effects with higher risk for individuals suffering MetS, including increased TGs and fructosamine levels and conformational changes in dienes.
Collapse
Affiliation(s)
- Henrique Mautone Gomes
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil.
| | - Alexandre K Silveira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| | - Juciano Gasparotto
- Institute of Biomedical Sciences, Departament of Biochemistry, Federal University of Alfenas - UNIFAL, Minas Gerais, Brazil
| | - Rafael Calixto Bortolin
- Departamento de Ingeniería Civil y Ambiental, Universidad de La Costa - Barranquilla, Atlántico, Colombia
| | - Silvia R Terra
- Hospital Veterinário UNISUL, Universidade do Sul de Santa Catarina, Avenida José Acácio Moreira, 787, Dehon, Tubarão, Santa Catarina, Brasil
| | - Pedro O Brum
- Dr Bohr-Gasse 9, Universität Wien, department of microbiology, immunology and genetics, Max Perutz Labs, 1030, Vienna, Austria
| | - Daniel P Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| | - José C Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences - Federal University of Rio Grande do Sul - UFRGS, Brazil
| |
Collapse
|
10
|
Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats. Biomedicines 2022; 10:biomedicines10123009. [PMID: 36551765 PMCID: PMC9776103 DOI: 10.3390/biomedicines10123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Plasma testosterone levels have been found to decrease in older insulin-resistant male patients. Both lower total testosterone levels and a higher incidence of metabolic syndrome have also been reported. The aim of this study was to investigate the effects of high-fructose diet-induced diabetes on both the testosterone release by Leydig cells and the activity of the hypothalamus-pituitary-gonadal (HPG) axis in male rats. Male rats were fed with either standard chow (control group) or a high-fructose diet (fructose-fed group) for 21 weeks. Hyperglycemia, hyperinsulinemia, and hypertension were observed in the fructose-fed group. Moreover, plasma testosterone and LH levels decreased in the fructose-fed group compared to the control group. Sperm motility was also reduced by 15% in the fructose-fed rats. In contrast, the basal release of testosterone from rat Leydig cells was not altered by fructose feeding. Moreover, in vitro studies showed that the testosterone release, in response to different stimulants, including forskolin (an adenylyl cyclase activator, 10-5 M), 8-Br-cAMP (a permeable analog of cAMP, 10-5 M), A23187 (a calcium ionophore, 10-5 M), or 25-hydroxy-cholesterol (water-soluble cholesterol, 10-5 M), did not significantly differ between the fructose-fed and control groups. Interestingly, the release of testosterone in response to human chorionic gonadotropin (hCG, 0.05 IU/mL) was enhanced by eightfold in the control group, but elevenfold in the fructose-fed group. LH receptor expression in rat Leydig cells was also increased. Moreover, LH secretion from the anterior pituitary was altered in the fructose diet-fed group. These results suggest that fructose diet-fed rats have lower plasma testosterone levels, which can lead to a higher sensitivity of hCG in Leydig cells.
Collapse
|
11
|
Cao Y, Kou T, Peng L, Munang'andu HM, Peng B. Fructose Promotes Crucian Carp Survival Against Aeromonas hydrophila Infection. Front Immunol 2022; 13:865560. [PMID: 35386717 PMCID: PMC8979172 DOI: 10.3389/fimmu.2022.865560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Aquatic food is becoming an important food source that provides micronutrients to human beings. The decline of wild aquatic animals makes aquaculture become increasingly important to play this role. However, infectious diseases, especially bacterial infection, represent severe threat to aquaculture, which causes huge economic loss. Meanwhile, strategies in managing bacterial infection in an antibiotic-independent way are still lacking. In this study, we monitor the metabolomic shift of crucian carp upon Aeromonas hydrophila infection. We find that the metabolism of the fish that died of infection is distinct from the ones that survived. By multivariate analysis, we identify fructose as a crucial biomarker whose abundance is significantly different from the dying and surviving groups where the surviving group has a higher content of fructose than the dying group. Exogenous supplementation of fructose increases fish survival rate by 27.2%. Quantitative gene expression analysis demonstrated that fructose enhances the expression of lysozyme and complement 3 expression, which is also confirmed in the serum level. Furthermore, the augmented lysozyme and C3 levels enhance serum cell lytic activity which contribute to the reduced bacterial load in vivo. Thus, our study demonstrates a metabolism-based approach to manage bacterial infection through modulating immune response to clear bacterial infection.
Collapse
Affiliation(s)
- Yunchao Cao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianshun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liaotian Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Ekici Ö, Aslan E, Aladağ T, Güzel H, Korkmaz ÖA, Bostancı A, Sadi G, Pektaş MB. Masseter muscle and gingival tissue inflammatory response following treatment with high-fructose corn syrup in rats: Anti-inflammatory and antioxidant effects of kefir. J Food Biochem 2022; 46:e13732. [PMID: 33864286 DOI: 10.1111/jfbc.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
The aim of the study was to evaluate whether high-fructose corn syrup (HFCS) intake (20% beverages) impacts antioxidative structures and inflammation in the gingival tissue and masseter muscle of rats. Kefir was tested for its potential utility on changes induced by HFCS. Animals were randomly divided into four groups as control, kefir, HFCS, and HFCS plus kefir. HFCS was given as 20% solutions in drinking water while kefir supplementations were given by gastric gavage for 8 weeks. It has been clearly determined that the HFCS diet increased expressions of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α proinflammatory structures via lymphocyte infiltration by suppressing antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in both tissues. Kefir improved these undesirable changes in rats fed with HFCS. The results of this current study, the first investigation to examine the effects of kefir on masseter muscle and gingival tissue, may provide new access to the restorative effects of kefir consumption on oral health disorders caused by high fructose in the diet. PRACTICAL APPLICATIONS: In this study, at an early age, the effects of kefir on improving inflammation via antioxidation in the masseter muscle and gingival tissue were investigated for the first time. We showed that kefir feeding ameliorates lymphocyte infiltration on the high-fructose corn syrup (HFCS)-induced masseter muscle and gingival tissue inflammation in rats. The mRNA expressions of inflammatory parameters measured in the study were supported by protein measurements via ELISA or immunohistochemistry. In the present study, kefir may play an important role in the antioxidation and inflammation process on the masseter muscle and gingival tissue against HFCS.
Collapse
Affiliation(s)
- Ömer Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tuğçe Aladağ
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hilal Güzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ömer Adil Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
13
|
Karaman ME, Tektemur A. The therapeutic effects of distinct exercise types on metabolic syndrome-induced reproductive system impairment in male rats: Potential contribution of mitochondria-related genes. Andrologia 2022; 54:e14391. [PMID: 35118694 DOI: 10.1111/and.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/06/2022] Open
Abstract
A sedentary lifestyle and high fructose dietary habits cause diseases, such as metabolic syndrome (MS). The study was aimed to investigate the potential ameliorative effects of different exercise interventions on high fructose-induced MS-mediated reproductive system disruption of male rats. Rats were divided into four groups (n = 6): Control, MS, MS+aerobic exercise (AE) and MS+anaerobic exercise (ANE). MS was induced by using tap water containing 30% fructose for 8 weeks. After the induction of MS, AE/ANE implementations were started for 6 weeks. Testis tissue and serum samples of rats were stored for biochemical and molecular analyses. Serum total antioxidant status level increased in the MS+AE group compared to all groups. Also, serum total oxidant status level, which increased by MS, decreased with AE, but not altered with ANE. Moreover, MS markedly decreased serum luteinizing hormone, but not changed the follicle-stimulating hormone. However, serum hormone levels were similar to the control group in both MS+AE and MS+ANE groups. MS upregulated mitochondria-related genes' mRNA expressions (MFN2, PGC1A, PPARG, PARP2 and TXNL4B). These increases, except for PPARG, were normalized with both exercise types. These results revealed that mitochondria-related genes may have a crucial role in MS-mediated male reproductive impairment and therapeutic effects of exercises.
Collapse
Affiliation(s)
- Muhammed Emre Karaman
- Faculty of Sport Sciences, Department of Coach Training, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| |
Collapse
|
14
|
Medaglia DSA, Vieira HR, Silveira SDS, Siervo GEMDL, Marcon MSDS, Mathias PCDF, Fernandes GSA. High-fructose diet during puberty alters the sperm parameters, testosterone concentration, and histopathology of testes and epididymis in adult Wistar rats. J Dev Orig Health Dis 2022; 13:20-27. [PMID: 33441200 DOI: 10.1017/s2040174420001385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The consumption of fructose has increased in children and adolescents and is partially responsible for the high incidence of metabolic diseases. The lifestyle during postnatal development can result in altered metabolic programming, thereby impairing the reproductive system and fertility during adulthood. Therefore, the aim of this study was to evaluate the effect of a high-fructose diet in the male reproductive system of pubertal and adult rats. Male Wistar rats (30 d old) were assigned to four different groups: Fr30, which received fructose (20%) in water for 30 d and were euthanized at postnatal day (PND) 60; Re-Fr30, which received fructose (20%) for 30 d and were euthanized at PND 120; and two control groups C30 and Re-C30, which received water ad libitum and were euthanized at PND 60 and 120, respectively. Fructose induced an increase in abnormal seminiferous tubules with epithelial vacuoles, degeneration, and immature cells in the lumen. Moreover, Fr30 rats showed altered spermatogenesis and daily sperm production (DSP), as well as increased serum testosterone concentrations. After discontinuing high-fructose consumption, DSP and sperm number decreased significantly. We observed tissue remodeling in the epididymis, with a reduction in stromal and epithelial compartments that might have influenced sperm motility. Therefore, we concluded that fructose intake in peripubertal rats led to changes in the reproductive system observed both during puberty and adulthood.
Collapse
Affiliation(s)
- Daniele Sapede Alvarenga Medaglia
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil
- Department of Sciences Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Henrique Rodrigues Vieira
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, PR, Brazil
| | - Sandra da Silva Silveira
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, PR, Brazil
| | - Gláucia Eloisa Munhoz de L Siervo
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil
- Department of Sciences Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Monique Suellen da Silva Marcon
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, PR, Brazil
| | - Glaura S A Fernandes
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil
- Department of Sciences Pathology, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
15
|
Akar F, Yildirim OG, Yucel Tenekeci G, Tunc AS, Demirel MA, Sadi G. Dietary high-fructose reduces barrier proteins and activates mitogenic signalling in the testis of a rat model: Regulatory effects of kefir supplementation. Andrologia 2021; 54:e14342. [PMID: 34872158 DOI: 10.1111/and.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are limited data on the influence of fructose rich diet on the male reproductive system. Kefir may have health beneficial effects, but its mechanism of action remains mostly unclear. Herein, we investigated the impact of dietary high fructose on tight junction proteins and mitogenic pathways in rat testis as well as their modulation by kefir supplementation. Twenty-two male Wistar rats (4 weeks old) were divided into the following three groups: Control; Fructose; Fructose + Kefir. Fructose was added to drinking water at concentration of 20% and administered to the rats for 15 weeks and kefir was supplemented by gavage once a day during final 6 weeks. Dietary fructose-induced testicular degeneration was associated with the downregulation of the blood-testis barrier proteins, claudin-11 and N-cadherin as well as SIRT1 expression in testicular tissue of rats. However, p38MAPK, p-p38MAPK and p-ERK1/2 levels were increased in testis of fructose-fed rats. Interestingly, JNK1 and p-JNK1 protein levels were decreased following this dietary intervention. Raf1, ERK1/2, and caspase 3 and TUNEL staining of the testis reveal the activation of apoptosis due to fructose intake. Kefir supplementation markedly promoted the expression of claudin-11, SIRT1, JNK1 and p-JNK1 but suppressed testicular mitogenic and apoptotic factors in fructose-fed rats.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Onur Gokhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Gozde Yucel Tenekeci
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Arda Selin Tunc
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Researches Center, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Gokhan Sadi
- Department of Biology, KO Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
16
|
Shen T, Li J. Drinking Non-nutritive Sweetness Solution of Sodium Saccharin or Rebaudioside a for Guinea Pigs: Influence on Histologic Change and Expression of Sweet Taste Receptors in Testis and Epididymis. Front Nutr 2021; 8:720889. [PMID: 34422887 PMCID: PMC8375269 DOI: 10.3389/fnut.2021.720889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Saccharin sodium and rebaudioside A are extensively used as non-nutritive sweeteners (NNSs) in daily life. NNSs elicit a multitude of endocrine influences on animals, differing across species and chemically distinct sweeteners, whose exposure induce activation of sweet taste receptors in oral and extra-oral tissues with consequences of metabolic changes. To evaluate the influence of NNSs on histologic change and expression of sweet taste receptors in testis and epididymis of young male guinea pigs, thirty 4-week-old male guinea pigs with body weight 245.73 ± 6.02 g were randomly divided into five groups (n = 6) and received normal water (control group) and equivalent sweetness low dose or high dose of sodium saccharin (L-SS, 1.5 mM or H-SS, 7.5 mM) or rebaudioside A (L-RA, 0.5 mM or H-RA, 2.5 mM) solution for 28 consecutive days. The results showed that the relative testis weight in male guinea pig with age of 56 days represented no significant difference among all groups; in spite of heavier body weight in L-SS and H-RA, NNS contributes no significant influence on serum testosterone and estradiol level. Low-dose 0.5 mM rebaudioside A enhanced testicular and epididymal functions by elevating the expressions of taste receptor 1 subunit 2 (T1R2) and gustducin α-subunit (GNAT3), and high-dose 7.5 mM sodium saccharin exerted adverse morphologic influences on testis and epididymis with no effect on the expression of T1R2, taste receptor 1 subunit 2 (T1R3), and GNAT3. In conclusion, these findings suggest that a high dose of sodium saccharin has potential adverse biologic effects on the testes and epididymis, while rebaudioside A is a potential steroidogenic sweetener for enhancing reproductive functions.
Collapse
Affiliation(s)
- Ting Shen
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Suleiman JB, Bakar ABA, Mohamed M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021; 26:molecules26113421. [PMID: 34198728 PMCID: PMC8201164 DOI: 10.3390/molecules26113421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bee products are sources of functional food that have been used in complementary medicine to treat a variety of acute and chronic illnesses in many parts of the world. The products vary from location to location as well as country to country. Therefore, the aim of this review was to identify various bee products with potential preventive and therapeutic values used in the treatment of male reproductive impairment. We undertook a vigorous search for bee products with preventive and therapeutic values for the male reproductive system. These products included honey, royal jelly, bee pollen, bee brood, apilarnil, bee bread, bee wax, and bee venom. We also explained the mechanisms involved in testicular steroidogenesis, reactive oxygen species, oxidative stress, inflammation, and apoptosis, which may cumulatively lead to male reproductive impairment. The effects of bee pollen, bee venom, honey, propolis, royal jelly, and bee bread on male reproductive parameters were examined. Conclusively, these bee products showed positive effects on the steroidogenic, spermatogenic, oxidative stress, inflammatory, and apoptotic parameters, thereby making them a promising possible preventive and therapeutic treatment of male sub/infertility.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
18
|
Mhd Omar NA, Frank J, Kruger J, Dal Bello F, Medana C, Collino M, Zamaratskaia G, Michaelsson K, Wolk A, Landberg R. Effects of High Intakes of Fructose and Galactose, with or without Added Fructooligosaccharides, on Metabolic Factors, Inflammation, and Gut Integrity in a Rat Model. Mol Nutr Food Res 2021; 65:e2001133. [PMID: 33548087 DOI: 10.1002/mnfr.202001133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 02/06/2023]
Abstract
SCOPE A high fructose and galactose intake show adverse metabolic effects in animal models and in humans, but it is yet unknown if addition of fermentable dietary fiber can mitigate such effects. This study investigate the effects of high intakes of fructose and galactose, with/without added fructooligosaccharides (FOS), on metabolic factors, inflammation, and gut integrity markers in rats. METHODS AND RESULTS Rats (n = 6/group) receive different carbohydrates at isocaloric conditions for 12 weeks as follows: 1) starch (control), 2) fructose, 3) galactose, 4) starch + FOS (FOS control), 5) fructose + FOS, and 6) galactose + FOS, together with a high amount of n-6 polyunsaturated fatty acids (n-6 PUFA) in all diets except for in 7) starch + olive oil (negative control). The rats fed the galactose and galactose + FOS diets exhibit lower body weight than other groups. High-galactose diets has more pronounced effects on metabolic factors and gut permeability than high-fructose diets. High-fructose diets show less pronounced effect on these selected markers. No differences in inflammatory markers are detected for any of the diets. CONCLUSIONS The results suggest potential adverse effects of high galactose and fructose on metabolic factors and gut integrity markers, but not on inflammation. However, several mechanisms are at play, and general net effects are difficult to determine conclusively for the conditions tested.
Collapse
Affiliation(s)
- Nor Adila Mhd Omar
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Johanita Kruger
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Karl Michaelsson
- Department of Surgical Sciences, Uppsala University, Uppsala, 75185, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, 75185, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
El-Saka MH, Abo El Gheit RE, El Saadany A, Alghazaly GM, Marea KE, Madi NM. Effect of spexin on renal dysfunction in experimentally obese rats: potential mitigating mechanisms via galanin receptor-2. Arch Physiol Biochem 2021:1-10. [PMID: 33632048 DOI: 10.1080/13813455.2021.1887265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study declared effect of spexin (SPX) on renal dysfunction in obese rats and its potential mitigating mechanisms which could mediated via galanin receptor-2 (GALR-2). Thirty two 32 Wistar male rats were arranged into four groups: control, high fat/fructose diet (HFFD), HFFD + SPX and HFFD + M871 (galanin receptor 2 antagonist)+SPX. At the termination of the experiment, urine volume, body mass index, Lee index and mean arterial blood pressure were assessed. Renal function was evaluated. Lipid profile, fasting glucose, insulin, insulin resistance and SPX levels were estimated. Also, renal histopathological, immunohistochemical and relative gene expression of renal tissue were done. Also, renal protein carbonyl, reduced glutathione, interferon gamma, monocyte chemoattractant protein-1, interleukin-10 and hydroxyproline were determined.Our results explored that SPX treatment prominently mitigated the metabolic changes and renal dysfunction induced by HFFD via GALR-2. SPX improved insulin resistance, dyslipidemia, renal oxidative stress, inflammation, apoptosis, and fibrosis. So, SPX can be considered as prospective therapeutic agent for treating renal dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Karima E Marea
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nermin M Madi
- Department of Physiology, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Menni C, Louca P, Berry SE, Vijay A, Astbury S, Leeming ER, Gibson R, Asnicar F, Piccinno G, Wolf J, Davies R, Mangino M, Segata N, Spector TD, Valdes AM. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med 2021; 19:37. [PMID: 33568158 PMCID: PMC7875684 DOI: 10.1186/s12916-021-01913-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19. METHODS Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils, neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of vegetable intake on lymphocyte counts. RESULTS Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between inflammation and diet. CONCLUSION A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white blood cells, and a fifth of the effect is mediated by the genus Collinsella. TRIAL REGISTRATION The ClinicalTrials.gov registration identifier is NCT03479866 .
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, Stamford St, London, SE1 9NH, UK
| | - Amrita Vijay
- School of Medicine, University of Nottingham, Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- School of Medicine, University of Nottingham, Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, Stamford St, London, SE1 9NH, UK
| | - Francesco Asnicar
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Gianmarco Piccinno
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Jonathan Wolf
- Zoe Global Ltd, 164 Westminster Bridge Rd, Bishop's, London, SE1 7RW, UK
| | - Richard Davies
- Zoe Global Ltd, 164 Westminster Bridge Rd, Bishop's, London, SE1 7RW, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK
| | - Ana M Valdes
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, SE1 7EH, UK.
- School of Medicine, University of Nottingham, Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Leisegang K, Dutta S. Do lifestyle practices impede male fertility? Andrologia 2020; 53:e13595. [PMID: 32330362 DOI: 10.1111/and.13595] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Alongside an increasing prevalence of couple and male infertility, evidence suggests there is a global declining trend in male fertility parameters over the past few decades. This may, at least in part, be explained through detrimental lifestyle practices and exposures. These include alcohol and tobacco consumption, use of recreational drugs (e.g., cannabis, opioids and anabolic steroids), poor nutritional habits, obesity and metabolic syndrome, genital heat stress (e.g., radiation exposure through cell phones and laptops, prolonged periods of sitting, tight-fitting underwear and recurrent hot baths or saunas), exposure to endocrine-disrupting chemicals (e.g., pesticide residue, bisphenol A, phthalates and dioxins) and psychological stress. This review discusses these lifestyle practices and the current evidence associated with male infertility. Furthermore, known mechanisms of action are also discussed for each of these. Common mechanisms associated with a reduction in spermatogenesis and/or steroidogenesis due to unfavourable lifestyle practices include inflammation and oxidative stress locally or systemically. It is recommended that relevant lifestyle practices are investigated in clinical history of male infertility cases, particularly in unexplained or idiopathic male infertility. Appropriate modification of detrimental lifestyle practices is further suggested and recommended in the management of male infertility.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Cape Town, South Africa
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia
| |
Collapse
|
22
|
Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol 2019; 82:e13178. [PMID: 31373727 DOI: 10.1111/aji.13178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine University of the Western Cape Bellville Cape Town South Africa
| | - Ralf Henkel
- Department of Medical Biosciences University of the Western Cape Bellville Cape Town South Africa
- Department of Urology American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
| | - Ashok Agarwal
- Department of Urology American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
| |
Collapse
|
23
|
Effects of Lactobacillus Plantarum and Lactobacillus Helveticus on Renal Insulin Signaling, Inflammatory Markers, and Glucose Transporters in High-Fructose-Fed Rats. ACTA ACUST UNITED AC 2019; 55:medicina55050207. [PMID: 31137715 PMCID: PMC6572085 DOI: 10.3390/medicina55050207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022]
Abstract
Background and Objectives: The excess consumption of fructose in the diet may cause metabolic syndrome, which is associated with an increased risk of kidney disease. There is limited data on probiotic treatment in high-fructose-induced metabolic syndrome. The present study aims to investigate whether the supplementation of Lactobacillus plantarum (L. plantarum) and Lactobacillus helveticus (L. helveticus) could provide an improving effect on the renal insulin signaling effectors, inflammatory parameters, and glucose transporters in fructose-fed rats. Materials and Methods: The model of metabolic syndrome in male Wistar rats was produced by fructose, which was given as 20% solution in drinking water for 15 weeks. L. plantarum and L. helveticus supplementations were given by gastric gavage from 10 to 15 weeks of age. Results: High-fructose consumption in rats reduced renal protein expressions of insulin receptor substrate (IRS)-1, protein kinase B (AKT), and endothelial nitric oxide synthase (eNOS), which were improved by L. plantarum and partially by L. helveticus supplementations. Dietary fructose-induced elevations in renal tissue levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as well as expression of IL-6 mRNA, were attenuated, especially in L. plantarum treated rats. The increased renal expression of sodium-glucose cotransporter-2 (SGLT2), but not that of glucose transporter type-5 (GLUT5), was suppressed by the treatment with L. plantarum. Conclusion: Suppression in insulin signaling pathway together with the induction of inflammatory markers and upregulation of SGLT2 in fructose-fed rats were improved by L. plantarum supplementation. These findings may offer a new approach to the management of renal dysregulation induced by dietary high-fructose.
Collapse
|