1
|
Liu M, Song J, Liu H, Li G, Luan N, Liu X, Shen Y, Lyu M, Wang Z, Zhou H, Yang Q, Zuo J. Combined heavy metals (As and Pb) affects antioxidant status and lipid metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110160. [PMID: 39988223 DOI: 10.1016/j.cbpc.2025.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The potential risk of coexistence of mixed heavy metals in the aquatic environment has increased with the development of technology. Lead (Pb) and arsenic (As) are among the most widely applied heavy metals, whose single toxicity has been extensively investigated, but their combined toxicity has been reported relatively rarely. In this study, different concentrations of Pb (40 μg/L, 4 mg/L), As (32 μg/L, 3.2 mg/L) and their combinations (40 μg/L + 32 μg/L, 4 mg/L + 3.2 mg/L) were set up for 30 days to establish a heavy metal exposure model in zebrafish. Pathological sections, biochemical parameters and gene expression analysis were used to assess the toxicity effects of oxidative damage and lipid metabolism in the liver. Our results showed that combined exposure of As and Pb resulted in elevated ROS and MDA levels and upregulated expression of genes related to the Nrf2-Keap1/Are signaling pathway in female zebrafish, causing enhanced oxidative stress. Moreover, mixture of As and Pb was able to cause abnormal upregulation of lipid metabolism-related genes and reduced activity of fatty acid synthase (FAS) in the liver of female zebrafish. The abnormal decrease of carnitine palmitoyl transferase (CPT-1) and gene cpt1a in males were also observed. These results contributed to hepatic Triglyceride (TG) excessive accumulation, ultimately triggering a disturbance of lipid metabolism. These findings indicated that chronic exposure to As and Pb was capable of producing adverse effects on oxidative stress and lipid metabolism in fish in a sex-specific manner. This study provides new perspective for evaluating the combined effects of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Ming Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Guangzhou Nutriera Biotechnology Co., Ltd, Guangzhou 511495, Guangdong, China
| | - Jian Song
- Wuqi Oriental Aquaculture Co., Ltd, Wuhan 430345, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Minglei Lyu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhengyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huiming Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Jiangxi Fisheries Research Institute, Nanchang 330039, Jiangxi, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources, Chinese Academy of Sciences, Wuhan 430079, Hubei, China.
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Akinbode OL, Obeng-Gyasi E. Combined Effects of Arsenic, Cadmium, and Mercury with Cardiovascular Disease Risk: Insights from the All of Us Research Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:239. [PMID: 40003465 PMCID: PMC11855445 DOI: 10.3390/ijerph22020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Environmental exposures to heavy metals/metalloids such as arsenic, cadmium, and mercury have been implicated in adverse cardiovascular health outcomes. Using data from the All of Us research program, we investigated the associations between these metals/metalloids and six cardiovascular-related biomarkers: systolic blood pressure (SBP), HDL cholesterol, LDL cholesterol, C-reactive protein (CRP), total cholesterol, and triglycerides. METHODS This study explored the relationship between outcome cardiovascular variables (SBP, CRP, LDL, HDL, triglycerides, and total cholesterol) and predictor metal/metalloid variables (cadmium, mercury, and arsenic) among 136 participants (53.4 percent women). We initially conducted linear regression to determine the association between variables of interest. Bayesian Kernel Machine Regression (BKMR) analysis was subsequently performed to capture potential non-linear relationships, as well as interactions among metal/metalloid exposures. In the BKMR analysis, posterior inclusion probabilities (PIPs) quantified the contribution of each metal/metalloid to the outcomes, with higher PIP values indicating a greater likelihood of a specific exposure being a key predictor for a given cardiovascular biomarker. Within the BKMR framework, univariate, bivariate, and overall exposure-response analyses provided insights into the individual and combined effects of metal/metalloid exposures. These analyses identified the factors with the strongest associations and highlighted interactions between exposures. RESULTS In this study, the average age of male participants was 58.2 years, while female participants had an average age of 55.6 years. The study population included 104 individuals identifying as White (mean age: 57.5 years), 10 as Black or African American (mean age: 63.2 years), 7 as Hispanic (mean age: 48.2), 3 as Asian (mean age: 49.7 years), and 12 as Other race (mean age: 48.8 years). In our study, men exhibited higher levels of SBP, triglycerides, mercury, and arsenic, while women had higher levels of CRP, LDL cholesterol, HDL cholesterol, total cholesterol, and cadmium. Black people exhibited higher levels and greater variability in markers of cardiovascular risk and inflammation (e.g., blood pressure and CRP), Asians consistently showed the lowest levels across most biomarkers, while White people, Hispanics, and the "Other" group demonstrated moderate levels with some variability. In linear regression, we identified significant positive associations between mercury and HDL cholesterol, arsenic and triglycerides, and arsenic and total cholesterol. In BKMR analysis, PIP results revealed that mercury had the highest predictive contribution for SBP, HDL cholesterol, and triglycerides; cadmium for CRP; and arsenic for LDL and total cholesterol. Univariate and bivariate exposure-response analyses in BKMR demonstrated non-linear exposure-response patterns, including U-shaped and inverted U-shaped patterns for cadmium, particularly CRP and total cholesterol. Traditional linear regression techniques would have missed these patterns. CONCLUSION Our study results highlight the influence of environmental metal/metalloid exposures on cardiovascular biomarkers, providing evidence of non-linear and interactive effects that warrant further investigation to understand their role in cardiovascular disease risk better.
Collapse
Affiliation(s)
- Oluwatobi L. Akinbode
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Cui T, Che S, Yan X, Yang R, Xu Z, Liu S, Li Y, Hao C, Jiang J, Song L, Jin H, Li Y. Clinical and safety outcomes associated with aristolochic acid exposure: a systematic review and meta-analysis. Toxicol Mech Methods 2025:1-11. [PMID: 39844365 DOI: 10.1080/15376516.2025.2457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Current studies have clearly shown that aristolochic acid (AA) exposure can induce a variety of diseases, such as kidney disease, liver cancer, and urinary tract cancer (UTC). However, no studies have systematically analyzed and integrated these results. Therefore, we aimed to elucidate the association between AA exposure and the risk of safety outcomes for AA-related overall disease and different types of disease it causes. We conducted an exhaustive search of PubMed, EMBASE, Web of Science, and the Cochrane Library for relevant material up to April 2024. For AA-related overall disease, AA exposure was significantly associated with an increased incidence of AA-related overall disease (OR: 1.289, 95% CI: 1.183-1.404). For different types of disease, AA exposure was significantly associated with increased incidence of kidney disease (OR: 1.279, 95% CI: 1.029-1.590), UTC (OR: 1.842, 95% CI: 1.376-2.465), and liver cancer (OR: 1.146, 95% CI: 1.040-1.262). No significant association was found between AA exposure and the incidence of brain disease (OR: 1.161, 95% CI: 0.989-1.362). This study systematically analyzed various safety outcomes associated with AA exposure to provide a solid scientific basis for future prevention strategies and clinical management.
Collapse
Affiliation(s)
- Ting Cui
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumei Che
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingxu Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenna Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijia Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Li
- Department of Pharmacy, First Affiliated Hospital of Henan University of Science and Technology, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chenyu Hao
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhan Jiang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hua Jin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Wu Y, Wang Y, Lin Y, Zhong X, Liu Y, Cai Y, Xue J. Metabolomics reveals the metabolic disturbance caused by arsenic in the mouse model of inflammatory bowel disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117305. [PMID: 39515204 DOI: 10.1016/j.ecoenv.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Arsenic exposure has long been a significant global health concern due to its association with various human diseases. The adverse health effects of arsenic can be influenced by multiple factors, resulting in considerable individual variability. Individuals with inflammatory bowel disease (IBD) are particularly vulnerable to the effects of toxin exposure, yet the specific impact of arsenic in the context of IBD remains unclear. In this study, we employed a non-targeted metabolomics approach to investigate how arsenic exposure affects metabolic homeostasis in an IBD model using Helicobacter trogontum-infected interleukin-10 deficient mice. Our results demonstrated that arsenic exposure disrupted the balance of various metabolites, including tryptophan, polyunsaturated fatty acids, purine and pyrimidine metabolites, and branched-chain amino acids, in mice with colitis but not in those without colitis. Notably, several crucial metabolites involved in anti-inflammatory responses, oxidative stress, and energy metabolism were significantly altered in mice with colitis. These results indicate that arsenic exposure in an IBD context can lead to extensive metabolic disturbances, potentially exacerbating disease severity and impacting overall health. This study underscores the necessity of evaluating arsenic toxicity in relation to IBD to better understand and mitigate associated health risks.
Collapse
Affiliation(s)
- Yanmei Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yin Wang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yiling Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Sardar MB, Raza M, Fayyaz A, Nadir MA, Nadeem ZA, Babar M. Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. Cardiovasc Toxicol 2024; 24:1301-1309. [PMID: 39212843 DOI: 10.1007/s12012-024-09913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan.
| | - Mohsin Raza
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Ammara Fayyaz
- Department of Medicine, Central Park Medical College, Lahore, Pakistan
| | - Muhammad Asfandyar Nadir
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Muhammad Babar
- Department of Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
6
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
7
|
Van Buren E, Azzara D, Rangel-Moreno J, Garcia-Hernandez MDLL, Murphy SP, Cohen ED, Lewis E, Lin X, Park HR. Single-cell RNA sequencing reveals placental response under environmental stress. Nat Commun 2024; 15:6549. [PMID: 39095385 PMCID: PMC11297347 DOI: 10.1038/s41467-024-50914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The placenta is crucial for fetal development, yet the impact of environmental stressors such as arsenic exposure remains poorly understood. We apply single-cell RNA sequencing to analyze the response of the mouse placenta to arsenic, revealing cell-type-specific gene expression, function, and pathological changes. Notably, the Prap1 gene, which encodes proline-rich acidic protein 1 (PRAP1), is significantly upregulated in 26 placental cell types including various trophoblast cells. Our study shows a female-biased increase in PRAP1 in response to arsenic and localizes it in the placenta. In vitro and ex vivo experiments confirm PRAP1 upregulation following arsenic treatment and demonstrate that recombinant PRAP1 protein reduces arsenic-induced cytotoxicity and downregulates cell cycle pathways in human trophoblast cells. Moreover, PRAP1 knockdown differentially affects cell cycle processes, proliferation, and cell death depending on the presence of arsenic. Our findings provide insights into the placental response to environmental stress, offering potential preventative and therapeutic approaches for environment-related adverse outcomes in mothers and children.
Collapse
Affiliation(s)
- Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | | | - Shawn P Murphy
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan Lewis
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
8
|
Liu Q, Li P, Ma J, Zhang J, Li W, Liu Y, Liu L, Liang S, He M. Arsenic exposure at environmentally relevant levels induced metabolic toxicity in development mice: Mechanistic insights from integrated transcriptome and metabolome. ENVIRONMENT INTERNATIONAL 2024; 190:108819. [PMID: 38906090 DOI: 10.1016/j.envint.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Emerging evidence has linked arsenic exposure and metabolic homeostasis, but the mechanism is incompletely understood, especially at relatively low concentrations. In this study, we used a mouse model to evaluate the health impacts and metabolic toxicity of arsenic exposure in drinking water at environmentally relevant levels (0.25 and 1.0 ppm). Our results indicated that arsenic damaged intestinal barrier and induced arsenic accumulation, oxidative stress, and pathological changes in the liver and illum. Interestingly, arsenic increased the hepatic triglyceride (TG) and total cholesterol (TC), while reduced serum TG and TC levels. The liver transcriptome found that arsenic exposure caused transcriptome perturbation and promoted hepatic lipid accumulation by regulating the exogenous fatty acids degradation and apolipoproteins related genes. The serum metabolomics identified 74 and 88 differential metabolites in 0.25 and 1.0 ppm, respectively. The KEGG disease and subcellular location analysis indicated that arsenic induced liver and intestinal diseases, and the mitochondrion might be the target organelle for arsenic-induced toxicity. Co-enrichment of transcriptome and metabolome identified 24 metabolites and 9 genes as metabolic toxicity biomarkers. Moreover, 40 male (20 nonalcoholic fatty liver disease (NAFLD) cases and 20 healthy controls) was further selected to validate our findings. Importantly, the significantly changed L-palmitoylcarnitine, 3-hydroxybutyric acid, 2-hydroxycaproic acid and 6 genes of Hadha, Acadl, Aldh3a2, Cpt1a, Cpt2, and Acox1 were found in the NAFLD cases. The results from integrated multi-omics and chemical-protein network analysis indicated that L-palmitoylcarnitine played a critical role in metabolic toxicity by regulating mitochondrial fatty acids β-oxidation genes (Cpt1a, Cpt2). In conclusion, these findings provided new clues for the metabolic toxicity of arsenic exposure at environmentally relevant levels, which involved in the late-life NAFLD development. Our results also contribute to understanding the human responses and phenotypic changes to this hazardous material exposure in the environment.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinglan Ma
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Liang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
10
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
11
|
Fernández-Macías JC, Marín-Jauregui LS, Méndez-Rodríguez KB, Huerta-Rodríguez AP, Pérez-Vázquez FJ. Atherogenic Index as a Cardiovascular Biomarker in Mexican Workers from Marginalized Urban Areas Occupationally Exposed to Metals. Arch Med Res 2024; 55:102984. [PMID: 38484488 DOI: 10.1016/j.arcmed.2024.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is one of the main causes of death and disability worldwide. The etiology of CVD is often associated with multiple risk factors, with environmental factors receiving considerable attention. Individuals with precarious jobs are among the groups most affected by chronic exposure to environmental pollutants. AIM This study aimed to evaluate occupational exposure to heavy metals among individuals in precarious job settings and investigate atherogenic indices as biomarkers of cardiovascular risk. METHODS A total of 137 workers participated in this cross-sectional study conducted in three work environments in San Luis Potosi, Mexico. Urine and blood samples were collected to assess metal exposure and biochemical profiles, including atherogenic indices. RESULTS The results showed that workers in the brick sector exhibited the highest levels of metal exposure, particularly arsenic (44.06 µg/L), followed by stonecutters and garbage collectors (24.7 and 16.9 µg/L, respectively). Similarly, Castelli risk index (CRI) and the atherogenic index of plasma (AIP) were higher in brickmakers (3.883 and 0.499) compared to stonecutters (3.285 and 0.386) and garbage collectors (3.329 and 0.367). CONCLUSIONS Evidence of exposure to heavy metals was observed in the three populations, in addition to the fact that individuals with greater exposure to arsenic also exhibited higher CRI and AIP.
Collapse
Affiliation(s)
- Juan Carlos Fernández-Macías
- Coordinación para la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Consejo Nacional de Humanidades Ciencias y Tecnologías, México
| | - Laura Sherell Marín-Jauregui
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karen Beatriz Méndez-Rodríguez
- Coordinación para la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Francisco Javier Pérez-Vázquez
- Coordinación para la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Consejo Nacional de Humanidades Ciencias y Tecnologías, México.
| |
Collapse
|
12
|
Tsai MH, Lin YT. Density Functional Theory Calculation May Confirm Arsenic-Thiol Adhesion as the Primary Mechanism of Arsenical Toxicity. ACS OMEGA 2024; 9:13975-13981. [PMID: 38559941 PMCID: PMC10976359 DOI: 10.1021/acsomega.3c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Previously, it was believed that methylation was the body's primary method to detoxify inorganic arsenic. However, recent research has shown that the metabolized intermediate known as MMAIII is more toxic than arsenite and arsenate, contradicting a previous understanding. Another important question arises: is arsenical toxicity truly caused by arsenic binding to proteins through arsenic thiol adhesion? Based on the toxicity order of the experiment, with MMAIII being the most toxic, followed by arsenite, arsenate, DMAV, and MMAV, density functional theory (DFT) calculations can provide a straightforward assessment of this issue. Our practice captures all the transition states associated with a specific imaginary-frequency vibration mode, including proton transfer and simultaneous departure of leaving group. We have obtained the energy barriers for five arsenicals reacting with thiol, alcohol, and amine separately. In addition to energetic favorability, the following are the energy barriers for arsenic's reaction with thiol ranked from low to high: MMAIII (25.4 kcal/mol), arsenite (27.7 kcal/mol), arsenate (32.8 kcal/mol), DMAV (36.2 kcal/mol), and MMAV (38.3 kcal/mol). Results show that the toxicity of arsenicals is mainly caused by their reaction with thiol rather than with alcohol or amine, as supported by the trend of decreasing toxicity and increasing energy barriers. Thus, this DFT calculation may confirm the paradigm that arsenic-thiol adhesion is the primary cause of arsenic toxicity in the body.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Ting Lin
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug
Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
14
|
Cakmak S, Mitchell K, Lukina A, Dales R. Do blood metals influence lipid profiles? Findings of a cross-sectional population-based survey. ENVIRONMENTAL RESEARCH 2023; 231:116107. [PMID: 37187310 DOI: 10.1016/j.envres.2023.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Dyslipidemia, an imbalance of lipids and a major risk factor for cardiovascular disease, has been associated with elevated blood and urine levels of several heavy metals. Using data from a Canadian Health Measures Survey (CHMS), we tested associations between blood levels of cadmium, copper, mercury, lead, manganese, molybdenum, nickel, selenium, and zinc, and the lipids triglycerides (TG), total cholesterol (TC), low density lipoproteins (LDL), high density lipoproteins (HDL) and apolipoproteins A1 (APO A1), and B (APO B). All adjusted associations between single metals and lipids were positive and significant, except for APO A1 and HDL. The joint effect of an interquartile range increase in heavy metals was positively associated with percentage increases of TC, LDL and APO B of 8.82% (95%CI: 7.06, 10.57), 7.01% (95%CI: 2.51, 11.51) and 7.15% (95%CI: 0.51, 13.78), respectively. Future studies are warranted to determine if reducing environmental exposure to heavy metals favorably influences lipid profiles and the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sabit Cakmak
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kimberly Mitchell
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Anna Lukina
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Robert Dales
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
16
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
17
|
Luo T, Chen S, Cai J, Liu Q, Gou R, Mo X, Tang X, He K, Xiao S, Wei Y, Lin Y, Huang S, Li T, Chen Z, Li R, Li Y, Zhang Z. Association between combined exposure to plasma heavy metals and dyslipidemia in a chinese population. Lipids Health Dis 2022; 21:131. [PMID: 36474262 PMCID: PMC9724421 DOI: 10.1186/s12944-022-01743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to heavy metals in the environment is widespread, while the relationship between combined exposure to heavy metals and dyslipidemia is unclear. METHODS A cross-sectional study was performed, and 3544 participants aged 30 years or older were included in the analyses. Heavy metal concentrations in plasma were based on inductively coupled plasma‒mass spectrometry. The relationship between heavy metals and dyslipidemia was estimated by logistic regression. BKMR was used to evaluate metal mixtures and their potential interactions. RESULTS In logistic regression analysis, participants in the fourth quartile of Fe and Zn (Fe > 1352.38 µg/L; Zn > 4401.42 µg/L) had a relatively higher risk of dyslipidemia (Fe, OR = 1.13, 95% CI: 0.92,1.38; Zn, OR = 1.30, 95% CI: 1.03,1.64). After sex stratification, females in the third quartile of plasma Zn (1062.05-4401.42 µg/L) had a higher relative risk of dyslipidemia (OR = 1.75, 95% CI: 1.28, 2.38). In BKMR analysis, metal mixtures were negatively associated with dyslipidemia in females when all metal concentrations were above the 50th percentile. In the total population (estimated from 0.030 to 0.031), As was positively associated with dyslipidemia when other metals were controlled at the 25th, 50th, or 75th percentile, respectively, and As was below the 75th percentile. In females (estimated from - 0.037 to -0.031), Zn was negatively associated with dyslipidemia when it was above the 50th percentile. CONCLUSION This study indicated that As was positively associated with dyslipidemia and that Zn may be negatively associated with dyslipidemia in females. Combined metal exposure was negatively associated with dyslipidemia in females. Females with low plasma Zn levels are more likely to develop dyslipidemia and should receive more clinical attention in this population.
Collapse
Affiliation(s)
- Tingyu Luo
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Shiyi Chen
- grid.411858.10000 0004 1759 3543School of Public Health and Management, Guangxi University of Chinese Medicine, Guangxi 530200 Nanning, China
| | - Jiansheng Cai
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Qiumei Liu
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Ruoyu Gou
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Xiaoting Mo
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Xu Tang
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Kailian He
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Song Xiao
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Yanfei Wei
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Yinxia Lin
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Shenxiang Huang
- grid.256607.00000 0004 1798 2653Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi China
| | - Tingjun Li
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Ziqi Chen
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Ruiying Li
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - You Li
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| | - Zhiyong Zhang
- grid.443385.d0000 0004 1798 9548Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, No.1 Zhiyuan Road, Guangxi 541199 Guilin, China ,grid.443385.d0000 0004 1798 9548Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guangxi 541199 Guilin, China
| |
Collapse
|
18
|
Linking the Low-Density Lipoprotein-Cholesterol (LDL) Level to Arsenic Acid, Dimethylarsinic, and Monomethylarsonic: Results from a National Population-Based Study from the NHANES, 2003–2020. Nutrients 2022; 14:nu14193993. [PMID: 36235646 PMCID: PMC9573665 DOI: 10.3390/nu14193993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Arsenic (As) contamination is a global public health problem. Elevated total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) are risk factors for cardiovascular diseases, but data on the association of urinary arsenic species’ level and LDL-C are limited. We performed an association analysis based on urinary arsenic species and blood TC and LDL-C in US adults. Methods: Urinary arsenic, arsenic acid (AA), dimethylarsinic (DMA), monomethylarsonic (MMA), TC, LDL-C, and other key covariates were obtained from the available National Health and Nutrition Examination Survey (NHANES) data from 2003 to 2020. Multiple linear regression analysis and generalized linear model are used to analyze linear and nonlinear relationships, respectively. Results: In total, 6633 adults aged 20 years were enrolled into the analysis. The median total urinary arsenic level was 7.86 µg/L. A positive association of urinary arsenic concentration quartiles was observed with TC (β: 2.42 95% CI 1.48, 3.36). The OR for TC of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.34 (95% CI 1.13, 1.59). The OR for LDL-C of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.36 (95% CI 1.15, 1.62). For speciated arsenics analysis, the OR for arsenic acid and TC was 1.35 (95% CI 1.02, 1.79), whereas the OR for DMA and LDL-L was 1.20 (95% CI 1.03, 1.41), and the OR for MMA and LDL-L was 1.30 (95% CI 1.11, 1.52). Conclusions: Urinary arsenic and arsenic species were positively associated with increased LDL-C concentration. Prevention of exposure to arsenic and arsenic species maybe helpful for the control of TC and LDL-C level in adults.
Collapse
|
19
|
Paul S, Saha S, Chakraborty A, Jana A, Mukherjee S. Co-cultivation as a Strategy to Reduce Food Chain-Mediated Arsenic Contamination in Human Beings. Appl Biochem Biotechnol 2022; 195:2252-2260. [PMID: 35666384 DOI: 10.1007/s12010-022-03987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Arsenic (As) is a highly toxic metalloid present naturally in the earth's crust. In developing countries apart from drinking water, one major reason for arsenic toxicity among human beings is through contaminated crops and vegetables. The nutritional quality of the crops and vegetables grown in the arsenic-infested area gets compromised. A major challenge is to protect the vegetables and crops from arsenic contamination. Attempts have been made through different remediation technologies. The present research is designed to reduce the arsenic load in arsenic-sensitive (non-hyperaccumulator) plants by co-cultivation with hyperaccumulator plants, thus saving food chain contamination to humans. In the present study, done in potted plants, it has been found that co-cultivated B. oleracea has 1.5 times decreased arsenic translocation compared to the control plant; on the contrary, hyperaccumulator B. juncea showed higher translocation. Plant health biomarkers like total chlorophyll and protein contents were two times higher in co-cultivated B. oleracea compared to the As-treated control which actually seconds the fact of less translocation in the co-cultivated plants. The stress marker like proline content, super oxide dimutase, and malondialdehyde content showed a decrease in co-cultivated B. oleracea compared to the control plant grown in arsenic-infested soil which again reflected less stress in co-cultivated plants. From these findings of the research, we can hypothesize that hyperaccumulator B. juncea might save B. oleracea from arsenic-induced toxicity when co-cultivated and thus can save food chain-mediated contamination to human beings.
Collapse
Affiliation(s)
- Sonali Paul
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Sreshtha Saha
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Ankit Chakraborty
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Annapurna Jana
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Susmita Mukherjee
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India.
| |
Collapse
|
20
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
21
|
Li M, Feng J, Cheng Y, Dong N, Tian X, Liu P, Zhao Y, Qiu Y, Tian F, Lyu Y, Zhao Q, Wei C, Wang M, Yuan J, Ying X, Ren X, Yan X. Arsenic-fluoride co-exposure induced endoplasmic reticulum stress resulting in apoptosis in rat heart and H9c2 cells. CHEMOSPHERE 2022; 288:132518. [PMID: 34637859 DOI: 10.1016/j.chemosphere.2021.132518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to arsenic (As) or fluoride (F) has been shown to cause cardiovascular disease (CVDs). However, evidence about the effects of co-exposure to As and F on myocardium and their mechanisms remain scarce. Our aim was to fill the gap by establishing rat and H9c2 cell exposure models. We determined the effects of As and/or F exposure on the survival rate, apoptosis rate, morphology and ultrastructure of H9c2 cells; in addition, we tested the related genes and proteins of endoplasmic reticulum stress (ERS) and apoptosis in H9c2 cells and rat heart tissues. The results showed that As and/or F exposure induced early apoptosis of H9c2 cells and caused endoplasmic reticulum expansion. Additionally, the mRNA and protein expression levels of GRP78, PERK and CHOP in H9c2 cells were higher in the exposure groups than in the control group, and could be inhibited by 4-PBA. Furthermore, we found that As and/or F exposure increased the expression level of GRP78 in rat heart tissues, but interestingly, the expression level of CHOP protein was increased in the F and As groups, while significantly decreased in the co-exposure group. Overall, our results suggested that ERS-induced apoptosis was involved in the damage of myocardium by As and/or F exposure. In addition, factorial analysis results showed that As and F mainly play antagonistic roles in inducing myocardial injury, initiating ERS and apoptosis after exposure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuefeng Ren
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
22
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
23
|
Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13047. [PMID: 34948652 PMCID: PMC8701112 DOI: 10.3390/ijerph182413047] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden among the European population. Current knowledge supports the notion that endocrine-disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemiological studies focusing on the association between MetS or its individual components (e.g., obesity, insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances (bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far, human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures on the development of individual MetS components. The strength of the association varies between the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and heterogeneous, and mainly represent studies from North America and Asia, highlighting the need for well-conducted and harmonized HBM programmes among the European population. Rigorous and ongoing HBM in combination with health monitoring can help to identify the most concerning EDC exposures, to guide future risk assessment and policy actions.
Collapse
Affiliation(s)
- Elsi Haverinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| | - Mariana F. Fernandez
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Vicente Mustieles
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| |
Collapse
|