1
|
Vilen Z, Pang JM, Huang ML. Proximity Labeling of Cell Surface Proteins via Cell Surface Remodeling. Methods Mol Biol 2025; 2908:33-50. [PMID: 40304901 DOI: 10.1007/978-1-0716-4434-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Within the complex interplay of proteins, lipids and carbohydrates at the cell surface is the surfaceome, a dense layer of proteins and their posttranslationally modified counterparts that serves as a hub for cell signaling and signal transduction. The surfaceome plays crucial roles in mediating interactions between cells and the extracellular environment, which combined with their availability at the cell surface make it an attractive therapeutic target. Despite its importance, the development of technologies to selectively target cell surface proteins for empirical identification is challenged by their structural complexity. Here, we describe a proximity labeling-based technique to covalently label proteins at the cell surface with a biotin handle, enabling downstream streptavidin-based enrichment and manipulation in a variety of modalities, including fluorescence imaging, western blotting, and mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Jia Meng Pang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Mia L Huang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
2
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
3
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Vilen Z, Joeh E, Lee E, Huang ML. Surfaceome Profiling Identifies Basigin-Chaperoned Protein Clients. Chembiochem 2023; 24:e202300073. [PMID: 36973167 PMCID: PMC10424708 DOI: 10.1002/cbic.202300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
The surface proteome or "surfaceome" is a critical mediator of cellular biology, facilitating cell-to-cell interactions and communication with extracellular biomolecules. Constituents of the surfaceome can serve as biomarkers for changing cell states and as targets for pharmacological intervention. While some pathways of cell surface trafficking are well characterized to allow prediction of surface localization, some non-canonical trafficking mechanisms do not. Basigin (Bsg), a cell surface glycoprotein, has been shown to chaperone protein clients to the cell surface. However, understanding which proteins are served by Bsg is not always straightforward. To accelerate such identification, we applied a surfaceome proximity labeling method that is integrated with quantitative mass spectrometry-based proteomics to discern changes in the surfaceome of hepatic stellate cells that occur in response to the genetic loss of Bsg. Using this strategy, we observed that the loss of Bsg leads to corresponding reductions in the cell surface expression of monocarboxylate transporters MCT1 and MCT4. We also found that these relationships were unique to Bsg and not found in neuroplastin (Nptn), a related family member. These results establish the utility of the surfaceome proximity labeling method to determine clients of cell surface chaperone proteins.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Eugene Joeh
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Elizabeth Lee
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
5
|
Xu Y, Wang Y, Höti N, Clark DJ, Chen SY, Zhang H. The next "sweet" spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. MASS SPECTROMETRY REVIEWS 2023; 42:822-843. [PMID: 34766650 PMCID: PMC9095761 DOI: 10.1002/mas.21748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains the only possibly curative therapy, yet 80%-90% of PDAC patients present with nonresectable PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor progression, metastasis, chemoresistance, and immuno-response of PDAC and other types of cancers. A growing interest has thus been placed upon protein glycosylation as a potential early detection biomarker for PDAC. We herein take stock of the advancements in the early detection of PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Naseruddin Höti
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shao-Yung Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Vilen Z, Reeves AE, O’Leary TR, Joeh E, Kamasawa N, Huang ML. Cell Surface Engineering Enables Surfaceome Profiling. ACS Chem Biol 2022; 18:701-710. [PMID: 35443134 PMCID: PMC9901301 DOI: 10.1021/acschembio.1c00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell surface proteins (CSPs) are vital molecular mediators for cells and their extracellular environment. Thus, understanding which CSPs are displayed on cells, especially in different cell states, remains an important endeavor in cell biology. Here, we describe the integration of cell surface engineering with radical-mediated protein biotinylation to profile CSPs. This method relies on the prefunctionalization of cells with cholesterol lipid groups, followed by sortase-catalyzed conjugation with an APEX2 ascorbate peroxidase enzyme. In the presence of biotin-phenol and H2O2, APEX2 catalyzes the formation of highly reactive biotinyl radicals that covalently tag electron-rich residues within CSPs for subsequent streptavidin-based enrichment and analysis by quantitative mass spectrometry. While APEX2 is traditionally used to capture proximity-based interactomes, we envisioned using it in a "baitless" manner on cell surfaces to capture CSPs. We evaluate this strategy in light of another CSP labeling method that relies on the presence of cell surface sialic acid. Using the APEX2 strategy, we describe the CSPs found in three mammalian cell lines and compare CSPs in adherent versus three-dimensional pancreatic adenocarcinoma cells.
Collapse
Affiliation(s)
- Zak Vilen
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Abigail E. Reeves
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Timothy R. O’Leary
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284
| | - Eugene Joeh
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458
| | - Mia L. Huang
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Corresponding author:
| |
Collapse
|
7
|
Zheng W, Zhu Y, Chen X, Zhao J. CD73 expression in myeloid-derived suppressor cells is correlated with clinical stages in head and neck squamous cell carcinomas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1148. [PMID: 34430589 PMCID: PMC8350661 DOI: 10.21037/atm-21-2589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
Background Ecto-5'-nucleotidase (cluster of differentiation 73/CD73) is an ectonucleotidase that is being evaluated as a biomarker for the diagnosis and prognosis of various types of cancer. However, the clinicopathological relationship between CD73 expression in monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSC (PMN-MDSCs) in head and neck squamous cell carcinomas (HNSCCs) is not clear. Understanding the phenotypic and functional characteristics of human CD73+ MDSCs in the tumor microenvironment could help elucidate the roles of these cells in the ontogeny, spread, and treatment of solid cancer. Methods In the present study, we first analyzed the expression percentage of human M-MDSCs and PMN-MDSCs subsets circulating in peripheral blood of patients with head and neck tumors originated in nasopharynx, oropharynx, oropharynx and larynx. To identify the correlation between phenotypic characteristics of MDSCs and clinical stages in HNSCC, we extended the study by analyzing the percentage, CD73 phenotype and immunosuppressive function of MDSCs and the correlation with the clinical parameters. Moreover, we compare the functions of both M-MDSCs and PMN-MDSCs blunts T-cell function in an ectonucleotidase-dependent manner. Results Our study revealed that PMN-MDSCs were significantly increased in HNSCC patients, contributing to MDSC-mediated T cell immune suppression. Our results indicated that PMN-MDSCs comprised the majority of MDSCs participating in anticancer immunosuppression. The increase in PMN-MDSCs was directly correlated with the clinical stages of HNSCC. Levels of CD73 were increased in PMN-MDSCs and were correlated with the clinical stages of HNSCC. The ectonucleotidase inhibitor adenosine 5'-(α,β-methylene)diphosphate (APCP) decreased its suppression towards T cell proliferation. Ectonucleotidase inhibitors are promising candidates for the treatment of HNSCC. Conclusions These studies demonstrate the expansion of PMN-MDSCs correlated with expression of CD73 and increasing clinical stages in HNSCC. These CD73+ PMN-MDSCs contributes to T cell immune suppression activity in HNSCC patients. Using ectonucleotidase inhibitors is a promising rationale for PMN-MDSCs in future clinical development of immunotherapy in human HNSCC cancer.
Collapse
Affiliation(s)
- Weihui Zheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiaolong Chen
- NanoDrug Platform, Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Jianqiang Zhao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Lenzo FL, Kato S, Pabla S, DePietro P, Nesline MK, Conroy JM, Burgher B, Glenn ST, Kuvshinoff B, Kurzrock R, Morrison C. Immune profiling and immunotherapeutic targets in pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:119. [PMID: 33569421 PMCID: PMC7867882 DOI: 10.21037/atm-20-1076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Immunotherapeutic approaches for pancreatic ductal adenocarcinoma (PDAC) are less successful as compared to many other tumor types. In this study, comprehensive immune profiling was performed in order to identify novel, potentially actionable targets for immunotherapy. Methods Formalin-fixed paraffin embedded (FFPE) specimens from 68 patients were evaluated for expression of 395 immune-related markers (RNA-seq), mutational burden by complete exon sequencing of 409 genes, PD-L1 expression by immunohistochemistry (IHC), pattern of tumor infiltrating lymphocytes (TILs) infiltration by CD8 IHC, and PD-L1/L2 copy number by fluorescent in situ hybridization (FISH). Results The seven classes of actionable genes capturing myeloid immunosuppression, metabolic immunosuppression, alternative checkpoint blockade, CTLA-4 immune checkpoint, immune infiltrate, and programmed cell death 1 (PD-1) axis immune checkpoint, discerned 5 unique clinically relevant immunosuppression expression profiles (from most to least common): (I) combined myeloid and metabolic immunosuppression [affecting 25 of 68 patients (36.8%)], (II) multiple immunosuppressive mechanisms (29.4%), (III) PD-L1 positive (20.6%), (IV) highly inflamed PD-L1 negative (10.3%); and (V) immune desert (2.9%). The Wilcoxon rank-sum test was used to compare the PDAC cohort with a comparison cohort (n=1,416 patients) for the mean expressions of the 409 genes evaluated. Multiple genes including TIM3, VISTA, CCL2, CCR2, TGFB1, CD73, and CD39 had significantly higher mean expression versus the comparison cohort, while three genes (LAG3, GITR, CD38) had significantly lower mean expression. Conclusions This study demonstrates that a clinically relevant unique profile of immune markers can be identified in PDAC and be used as a roadmap for personalized immunotherapeutic decision-making strategies.
Collapse
Affiliation(s)
| | - Shumei Kato
- Center for Personalized Cancer Therapy, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | - Jeffrey M Conroy
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Sean T Glenn
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Boris Kuvshinoff
- Department of Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, La Jolla, CA, USA
| | - Carl Morrison
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
9
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
10
|
Li Q, Xie Y, Wong M, Barboza M, Lebrilla CB. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat Protoc 2020; 15:2668-2704. [PMID: 32681150 PMCID: PMC11790333 DOI: 10.1038/s41596-020-0350-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023]
Abstract
The glycocalyx comprises glycosylated proteins and lipids and fcorms the outermost layer of cells. It is involved in fundamental inter- and intracellular processes, including non-self-cell and self-cell recognition, cell signaling, cellular structure maintenance, and immune protection. Characterization of the glycocalyx is thus essential to understanding cell physiology and elucidating its role in promoting health and disease. This protocol describes how to comprehensively characterize the glycocalyx N-glycans and O-glycans of glycoproteins, as well as intact glycolipids in parallel, using the same enriched membrane fraction. Profiling of the glycans and the glycolipids is performed using nanoflow liquid chromatography-mass spectrometry (nanoLC-MS). Sample preparation, quantitative LC-tandem MS (LC-MS/MS) analysis, and data processing methods are provided. In addition, we discuss glycoproteomic analysis that yields the site-specific glycosylation of membrane proteins. To reduce the amount of sample needed, N-glycan, O-glycan, and glycolipid analyses are performed on the same enriched fraction, whereas glycoproteomic analysis is performed on a separate enriched fraction. The sample preparation process takes 2-3 d, whereas the time spent on instrumental and data analyses could vary from 1 to 5 d for different sample sizes. This workflow is applicable to both cell and tissue samples. Systematic changes in the glycocalyx associated with specific glycoforms and glycoconjugates can be monitored with quantitation using this protocol. The ability to quantitate individual glycoforms and glycoconjugates will find utility in a broad range of fundamental and applied clinical studies, including glycan-based biomarker discovery and therapeutics.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA.
| |
Collapse
|
11
|
Sudo H, Tsuji AB, Sugyo A, Kurosawa G, Kurosawa Y, Alexander D, Tsuda H, Saga T, Higashi T. Radiolabeled Human Monoclonal Antibody 067-213 has the Potential for Noninvasive Quantification of CD73 Expression. Int J Mol Sci 2020; 21:E2304. [PMID: 32225110 PMCID: PMC7177856 DOI: 10.3390/ijms21072304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CD73 is an ectonucleotidase regulating extracellular adenosine concentration and plays an important role in adenosine-mediated immunosuppressive pathways. The efficacy of CD73-targeted therapy depends on the expression levels of CD73; therefore, monitoring CD73 status in cancer patients would provide helpful information for selection of patients who would benefit from CD73-targeted therapy. Here, we evaluated the ability of 111In-labeled antibody 067-213, which has high affinity for human CD73, to act as a noninvasive imaging probe. METHODS Cell binding and competitive inhibition assays for 111In-labeled 067-213 were conducted using MIAPaCa-2 (high CD73 expression) and A431 (low CD73 expression) cells. For in vivo assessments, biodistribution and SPECT/CT studies were conducted in MIAPaCa-2 and A431 tumor-bearing mice. To estimate the absorbed dose in humans, biodistribution and SPECT/CT studies were conducted in healthy rats. RESULTS 111In-labeled 067-213 bound to MIAPaCa-2 and A431 cells in a CD73-dependent manner and the affinity loss after 111In-labeling was limited. Biodistribution and SPECT/CT studies with 111In-labeled 067-213 in mice showed high uptake in MIAPaCa-2 tumors and lower uptake in A431 tumors. In rats, the probe did not show high uptake in normal organs, including endogenously CD73-expressing organs. The estimated absorbed doses in humans were reasonably low. CONCLUSIONS 111In-labeled 067-213 showed CD73-expression-dependent tumor uptake and low uptake in normal organs and tissues. Radiolabeled 067-213 holds promise as an imaging probe for noninvasive evaluation of CD73 expression levels in patients. Our data encourage further clinical studies to clarify a role for CD73 monitoring in patients receiving CD73-targeted immune therapy.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;
| | - Yoshikazu Kurosawa
- Department of Innovation Center for Advanced Medicine, Research Promotion Support Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;
| | - David Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dohri, Mizuho-ku, Nagoya 466-8603, Japan; (D.A.); (H.T.)
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dohri, Mizuho-ku, Nagoya 466-8603, Japan; (D.A.); (H.T.)
| | - Tsuneo Saga
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| |
Collapse
|
12
|
Agatemor C, Buettner MJ, Ariss R, Muthiah K, Saeui CT, Yarema KJ. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 2019; 3:605-620. [PMID: 31777760 DOI: 10.1038/s41570-019-0126-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.
Collapse
Affiliation(s)
- Christian Agatemor
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Keerthana Muthiah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
14
|
NT5E is associated with unfavorable prognosis and regulates cell proliferation and motility in gastric cancer. Biosci Rep 2019; 39:BSR20190101. [PMID: 30992388 PMCID: PMC6522745 DOI: 10.1042/bsr20190101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Ecto-5′-nucleotidase (NT5E) is a glycosylphosphatidylinositol anchored cell surface protein, and has been suggested to be dysregulated in most types of human cancer including gastric cancer. The aim of the present study was to present more evidence about the clinical and prognostic value of Ecto-5′-nucleotidase in gastric cancer patients, and preliminarily explore the biological function of Ecto-5′-nucleotidase in gastric cancer cells. In our study, high Ecto-5′-nucleotidase expression was observed in gastric cancer tissues and cell lines, respectively, compared with normal gastric mucosa tissues cells. Meanwhile, TCGA database also indicated that Ecto-5′-nucleotidase expression levels were notably elevated in gastric cancer tissues compared with normal gastric mucosa tissues. Furthermore, high-expression of Ecto-5′-nucleotidase was obviously associated with advanced clinical stage, deep tumor invasion, lymph node metastasis and distant metastasis in gastric cancer patients. The survival analyses of TCGA database and our study consistent suggested high Ecto-5′-nucleotidase expression was negatively correlated with overall survival time in gastric cancer patients. The univariate and multivariate Cox proportional hazards regression model showed high Ecto-5′-nucleotidase expression was an independent poor prognostic factor for gastric cancer patients. Moreover, silencing of Ecto-5′-nucleotidase expression suppressed cell proliferation, migration and invasion in vitro in gastric cancer. In conclusion, Ecto-5′-nucleotidase is a credible prognostic biomarker, and serves as a potential therapeutic target in gastric cancer.
Collapse
|
15
|
Passarelli A, Tucci M, Mannavola F, Felici C, Silvestris F. The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine. Tumour Biol 2019; 42:1010428319837138. [PMID: 30957676 DOI: 10.1177/1010428319837138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanisms leading to immune escape of melanoma have been largely investigated in relation to its tumour immunogenicity and features of inflamed microenvironment that promote the immune suppression during the disease progression. These findings have recently led to advantages in terms of immunotherapy-based approaches as rationale for overcoming the immune escape. However, besides immune checkpoints, other mechanisms including the adenosine produced by ectonucleotidases CD39 and CD73 contribute to the melanoma progression due to the immunosuppression induced by the tumour milieu. On the other hand, CD73 has recently emerged as both promising therapeutic target and unfavourable prognostic biomarker. Here, we review the major mechanisms of immune escape activated by the CD39/CD73/adenosine pathway in melanoma and focus potential therapeutic strategies based on the control of CD39/CD73 downstream adenosine receptor signalling. These evidences provide the basis for translational strategies of immune combination, while CD73 would serve as potential prognostic biomarker in metastatic melanoma.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Sciarra A, Monteiro I, Ménétrier-Caux C, Caux C, Gilbert B, Halkic N, La Rosa S, Romero P, Sempoux C, de Leval L. CD73 expression in normal and pathological human hepatobiliopancreatic tissues. Cancer Immunol Immunother 2019; 68:467-478. [PMID: 30607549 PMCID: PMC11028281 DOI: 10.1007/s00262-018-2290-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The tumor-expressed CD73 ectonucleotidase generates immune tolerance and promotes invasiveness via adenosine production from degradation of AMP. While anti-CD73 blockade treatment is a promising tool in cancer immunotherapy, a characterization of CD73 expression in human hepatobiliopancreatic system is lacking. PATIENTS AND METHODS CD73 expression was investigated by immunohistochemistry in a variety of non-neoplastic and neoplastic conditions of the liver, pancreas, and biliary tract. RESULTS CD73 was expressed in normal hepatobiliopancreatic tissues with subcellular-specific patterns of staining: canalicular in hepatocytes, and apical in cholangiocytes and pancreatic ducts. CD73 was present in all hepatocellular carcinoma (HCC), in all pancreatic ductal adenocarcinoma (PDAC), and in the majority of intra and extrahepatic cholangiocellular carcinomas, whereas it was detected only in a subset of pancreatic neuroendocrine neoplasms and almost absent in acinar cell carcinoma. In addition to the canonical pattern of staining, an aberrant membranous and/or cytoplasmic expression was observed in invasive lesions, especially in HCC and PDAC. These two entities were also characterized by a higher extent and intensity of staining as compared to other hepatobiliopancreatic neoplasms. In PDAC, aberrant CD73 expression was inversely correlated with differentiation (p < 0.01) and was helpful to identify isolated discohesive tumor cells. In addition, increased CD73 expression was associated with reduced overall survival (HR 1.013) and loss of E-Cadherin. CONCLUSIONS Consistent CD73 expression supports the rationale for testing anti-CD73 therapies in patients with hepatobiliopancreatic malignancies. Specific patterns of expression could also be of help in the routine diagnostic workup.
Collapse
Affiliation(s)
- Amedeo Sciarra
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Inês Monteiro
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center, Lyon, France
| | - Christophe Caux
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center, Lyon, France
| | - Benoit Gilbert
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Nermin Halkic
- Department of Visceral Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland.
| | - Laurence de Leval
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, rue du Bugnon 25, 1011, Lausanne, Switzerland.
| |
Collapse
|
17
|
Coleman O, Henry M, O'Neill F, Roche S, Swan N, Boyle L, Murphy J, Meiller J, Conlon NT, Geoghegan J, Conlon KC, Lynch V, Straubinger NL, Straubinger RM, McVey G, Moriarty M, Meleady P, Clynes M. A Comparative Quantitative LC-MS/MS Profiling Analysis of Human Pancreatic Adenocarcinoma, Adjacent-Normal Tissue, and Patient-Derived Tumour Xenografts. Proteomes 2018; 6:proteomes6040045. [PMID: 30404163 PMCID: PMC6313850 DOI: 10.3390/proteomes6040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide; it develops in a relatively symptom-free manner, leading to rapid disease progression and metastasis, leading to a 5-year survival rate of less than 5%. A lack of dependable diagnostic markers and rapid development of resistance to conventional therapies are among the problems associated with management of the disease. A better understanding of pancreatic tumour biology and discovery of new potential therapeutic targets are important goals in pancreatic cancer research. This study describes the comparative quantitative LC-MS/MS proteomic analysis of the membrane-enriched proteome of 10 human pancreatic ductal adenocarcinomas, 9 matched adjacent-normal pancreas and patient-derived xenografts (PDXs) in mice (10 at F1 generation and 10 F2). Quantitative label-free LC-MS/MS data analysis identified 129 proteins upregulated, and 109 downregulated, in PDAC, compared to adjacent-normal tissue. In this study, analysing peptide MS/MS data from the xenografts, great care was taken to distinguish species-specific peptides definitively derived from human sequences, or from mice, which could not be distinguished. The human-only peptides from the PDXs are of particular value, since only human tumour cells survive, and stromal cells are replaced during engraftment in the mouse; this list is, therefore, enriched in tumour-associated proteins, some of which might be potential therapeutic or diagnostic targets. Using human-specific sequences, 32 proteins were found to be upregulated, and 113 downregulated in PDX F1 tumours, compared to primary PDAC. Differential expression of CD55 between PDAC and normal pancreas, and expression across PDX generations, was confirmed by Western blotting. These data indicate the value of using PDX models in PDAC research. This study is the first comparative proteomic analysis of PDAC which employs PDX models to identify patient tumour cell-associated proteins, in an effort to find robust targets for therapeutic treatment of PDAC.
Collapse
Affiliation(s)
- Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Sandra Roche
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Niall Swan
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | | | - Jean Murphy
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Justine Meiller
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Neil T Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | - Kevin C Conlon
- St. Vincent's University Hospital, Dublin 4, Ireland.
- Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Vincent Lynch
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Ninfa L Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Gerard McVey
- St. Vincent's University Hospital, Dublin 4, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
18
|
CD73 expression and clinical significance in human metastatic melanoma. Oncotarget 2018; 9:26659-26669. [PMID: 29928476 PMCID: PMC6003551 DOI: 10.18632/oncotarget.25426] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background CD73 is an ectoenzyme involved in the production of adenosine. It exerts immunosuppressive and protumoral roles and has emerged as a potential immuno-oncology target. Results CD73 expression was detected in TC in 54% of melanoma metastases, involving < 50% TC in the majority of the cases, with variable intensity. CD73 expression was significantly associated with a lower Breslow's depth of the primary lesion and was more frequent in patients having received prior non-surgical therapies. In an adjusted analysis, CD73 expression in TC (H-score > 37.5 or intensity > 1) significantly correlated to decreased overall survival (OS) from biopsy. Of the samples containing TIMC, 35% presented CD73+ TIMC. Highly infiltrated tumors were more likely to contain CD73+ TIMC. CD73 expression in TIMC (percentage ≥1%) significantly correlated with improved OS from biopsy. Conclusions Immunohistochemistry detected CD73 expression in more than half of metastatic melanomas. While CD73 expression in TC significantly correlated with decreased OS, CD73 expression in TIMC significantly associated with improved OS. These results encourage the study of anti-CD73 therapies for metastatic melanoma patients. Methods CD73 expression was assessed by immunohistochemistry in metastatic melanomas from 114 patients. Immunostainings were evaluated in tumor cells (TC) (percentage, intensity (1–3) and H-score) and in tumor-infiltrating mononuclear cells (TIMC) (percentage).
Collapse
|
19
|
Kuhlmann L, Cummins E, Samudio I, Kislinger T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev Proteomics 2018; 15:259-275. [DOI: 10.1080/14789450.2018.1429924] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Emma Cummins
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Ismael Samudio
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Front Immunol 2017; 8:1526. [PMID: 29184552 PMCID: PMC5694450 DOI: 10.3389/fimmu.2017.01526] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer is still one of the world's most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that boosts patient's immune system to fight cancer by modifying tumor-immune cells interaction in the tumor microenvironment (TME). Extracellular adenosine triphosphate (eATP) and adenosine (Ado) are signaling molecules released in the TME that act as modulators of both immune and tumor cell responses. Extracellular adenosine triphosphate and Ado activate purinergic type 2 (P2) and type 1 (P1) receptors, respectively, triggering the so-called purinergic signaling. The concentration of eATP and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, while Ado attenuates or suppresses immunity against the tumor. In addition, both molecules can mediate growth stimulation or inhibition of the tumor, depending on the specific receptor activated. Therefore, purinergic signaling is able to modulate both tumor and immune cells behavior and, consequently, the tumor-host interaction and disease progression. In this review, we discuss the role of purinergic signaling in the host-tumor interaction detailing the multifaceted effects of eATP and Ado in the inflammatory TME. Moreover, we present recent findings into the application of purinergic-targeting therapy as a potential novel option to boost antitumor immune responses in cancer.
Collapse
Affiliation(s)
- Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol 2016; 22:9288-9299. [PMID: 27895417 PMCID: PMC5107693 DOI: 10.3748/wjg.v22.i42.9288] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
Collapse
|
23
|
Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2016; 2:95-109. [PMID: 27014745 PMCID: PMC4800751 DOI: 10.1016/j.trecan.2016.01.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, cancer immunotherapy made significant advances due to a better understanding of the principles underlying tumor biology and immunology. In this context, CD73 is a key molecule, since via degradation of adenosine monophosphate into adenosine, endorses the generation of an immunosuppressed and pro-angiogenic niche within the tumor microenvironment that promotes the onset and progression of cancer. Targeting CD73 results in favorable antitumor effects in pre-clinical models and combined treatments of CD73 blockade with other immune-modulating agents (i.e. anti-CTLA-4 mAb or anti-PD1 mAb) is particularly attractive. Although there is still a long way to go, anti-CD73 therapy, through the development of CD73 monoclonal antibodies, can potentially constitute a new biologic therapy for cancer patients. In this review, we discuss the link between CD73 and the onset, development and spread of tumors, highlighting the potential value of this molecule as a target and as a novel biomarker in the context of personalized cancer therapy.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Gennady G Yegutkin
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Finland
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|