1
|
Li X, Wu T, Dong R, Wu X. The prognosis of ciRS-7 and circHIPK3 in pan-cancer: a mini-review and meta-analysis. Discov Oncol 2025; 16:207. [PMID: 39969753 PMCID: PMC11839969 DOI: 10.1007/s12672-025-01944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are increasingly recognized for their potential as cancer biomarkers. Although various studies have investigated the biological function of ciRS-7 and circHIPK3 in malignant tumors, their prognostic value in pan-cancer has not been systematically analyzed. METHODS We systematically searched the PubMed, Web of Science, and Cochrane Library databases from January 1, 1990, to October 14, 2024. The impact of ciRS-7 or circHIPK3 on prognostic outcomes, including overall survival (OS) and disease-free survival (DFS), was assessed by pooled hazard ratios (HR). The association between CiRS-7 or circHIPK3 and clinical features was evaluated using odds ratios (OR). The Data analysis was conducted using Review Manager 5.4. RESULTS For most cancers, our meta-analysis of 14 studies (N = 2140) and 15 studies (N = 1045) showed that high ciRS-7 and circHIPK3 were associated with worse OS. Pooled analysis of 5 studies (N = 421) and 2 studies (N = 248) indicated that high ciRS-7 and circHIPK3 were also associated with shorter DFS. Additionally, high ciRS-7 and circHIPK3 expression were associated with worse histological grade, higher TNM stage, larger tumor size, more lymph node and distant metastasis. CONCLUSION High ciRS-7 and circHIPK3 were significantly associated with poor prognosis and advanced clinical features in most cancers, suggesting their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruihan Dong
- Department of Nursing, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Xiaoying Wu
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100005, People's Republic of China.
| |
Collapse
|
2
|
Karimi R, Javandoost E, Asadmasjedi N, Atashi A, Soleimani A, Behzadifard M. Circular RNAs: history, metabolism, mechanisms of function, and regulatory roles at a glance. Ann Med Surg (Lond) 2025; 87:141-150. [PMID: 40109602 PMCID: PMC11918698 DOI: 10.1097/ms9.0000000000002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNA (ncRNA) molecules that, due to their covalent ring structure and lack of free ends, have a very high intracellular stability compared to their linear counterparts. In general, circRNAs are expressed in mammalian cells and exhibit tissue/cell-specific expression patterns. Mounting evidence is indicative that circRNAs regulate a variety of cellular processes by acting as miRNA sponges, transcriptional regulators, protein sponges, molecular scaffolds, and protein/peptide translators. The emergence of the biological functions of circRNAs has brought a novel outlook to our better understanding of cellular physiology and disease pathogenesis. CircRNAs have also been shown to play a critical role in the occurrence, development and progression of cancers. Their participation in the pathophysiology of various diseases including cardiovascular diseases, diabetes and neurological disorders is very important. Such characteristics have led to more studies investigating circRNAs as promising tools in molecular medicine and targeted therapy.
Collapse
Affiliation(s)
- Roqaye Karimi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Javandoost
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nooshin Asadmasjedi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Atashi
- Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Soleimani
- Student Research Committee Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
3
|
Zhang Y, Xiong C, Jiang Z, Wang X, Ji J, Pan Y, Yu T, Wang Z, Zhu L, Yue Y, Li Q, Wang H, Zhu S, Zhou Y. Circular RNA CDR1as/ciRS-7- a novel biomarker in solid tumors. Front Oncol 2024; 14:1468363. [PMID: 39678511 PMCID: PMC11638042 DOI: 10.3389/fonc.2024.1468363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION Circular RNA CDR1as/ciRS-7 has been reported to function as an oncogenic regulator in various cancers. However, the prognostic value of CDR1as/ciRS-7 expression in solid tumors remains unclear. Herein, we conducted an updated meta-analysis to investigate the association between CDR1as/ciRS-7 expression and clinical outcomes in solid tumors. METHODS A systematic search was performed through the PubMed, EMBASE, Web of Science, and Ovid databases for eligible studies on clinical values of CDR1as/ciRS-7 in solid tumors. The pooled hazard ratios (HRs) or odd ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the correlation between CDR1as/ciRS-7 and clinical outcomes. RESULTS A total of 2424 patients from 17 studies between 2017 and 2023 were included. The results suggested that elevated CDR1as/ciRS-7 expression predicted a poor overall survival (OS) for 12 types of solid tumors (HR=1.93, 95% CI: 1.43-2.60, P<0.001) with no heterogeneity (I2 = 80.2%, P<0.001). Stratified analysis indicated that there was a negative relationship between CDR1as/ciRS-7 expression and OS in digestive system cancers (HR=2.30, 95% CI: 1.84-2.88, P<0.001), and respiratory cancers (HR=2.40, 95% CI: 1.75-3.30, P<0.001). Furthermore, we also revealed that CDR1as/ciRS-7 was positively related to tumor size (OR=2.11, 95%CI: 1.64-2.71, P<0.001), TNM stage (OR=2.05, 95%CI: 1.65-2.54, P<0.001), lymph node metastasis (LNM) (OR=1.74, 95%CI: 1.38-2.21, P<0.001), and distant metastasis (OR=2.79, 95%CI: 1.71-4.55, P<0.001). Although the probable evidence of publication bias was found in the studies with OS, tumor size, TNM stage, and LNM, the trim and fill analysis confirmed the reliability of these results was not affected. CONCLUSION Elevated CDR1as/ciRS-7 expression was associated with larger tumor size, advanced TNM stage, worse LNM, distant metastasis, and shorter OS, suggesting that CDR1as/ciRS-7 may act as an independent prognostic biomarker in solid tumors.
Collapse
Affiliation(s)
- Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Organ Transplant Center, Sichuan Provincial Key Laboratory for Clinical Immunology Translational Medicine, School of Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Pan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yumei Yue
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial Key Laboratory for Clinical Immunology Translational Medicine, School of Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Chao Y, Jin X, Guo R, Zhang H, Cui X, Qi Y. Characterization of Immune-Related circRNAs and mRNAs in Human Chronic Atrophic Gastritis. J Inflamm Res 2024; 17:8487-8500. [PMID: 39534060 PMCID: PMC11556230 DOI: 10.2147/jir.s472213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic atrophic gastritis (CAG) is a severe condition characterized by inflammation and loss of appropriate mucosal glands in the stomach. The underlying mechanisms of CAG development remain unclear. Exploring immune-related circular RNAs (circRNAs) could provide insights for potential diagnostic and therapeutic strategies. Methods Samples from 40 patients with CAG and non-CAG (CNAG) underwent high-throughput sequencing, and EdgeR analysis identified differentially expressed circRNAs and mRNAs. Gene Ontology (GO) analysis elucidated biological functions, while Immune Cell Abundance Identifier (ImmuCellAI) estimated immune cell abundance. Flow cytometry analyzed immune cell infiltration. Weighted gene co-expression network analysis (WGCNA) identified hub genes related to the immune response in CAG. CircRNA-mRNA networks were constructed, and qRT-PCR validated findings. Results A total of 163 differentially expressed immune-related genes (DEIRGs) were identified between CAG and CNAG. The upregulated immune-related mRNAs in CAG were significantly enriched in antimicrobial humoral response, viral entry into host cells, neutrophil activation, and leukocyte migration. Conversely, downregulated immune-related mRNAs were linked to regulation of natural killer cell-mediated cytotoxicity, positive regulation of adaptive immune response, antigen receptor-mediated signaling pathway, and B cell activation. Immune Cell Abundance Identifier (ImmuCellAI) and flow cytometry confirmed increased neutrophil infiltration in CAG compared to CNAG. WGCNA identified 56 hub immune-related genes. Additionally, circRNA expression profiles in CNAG and CAG were explored, with 19 upregulated and 23 downregulated circRNAs identified in CAG. The upregulated circRNAs were associated with biological processes like carnitine metabolic process and regulation of B cell receptor signaling pathway. A circRNA-mRNA co-expression network was constructed based on five circRNAs highly related to hub immune-related genes. Furthermore, the expression of eight immune-related mRNAs and five circRNAs were validated in CAG. Conclusion This study is the first systematic analysis of circRNA profiles in CAG and provide important insights for potential immunotherapeutic strategies and early diagnostic biomarkers in CAG treatment.
Collapse
Affiliation(s)
- Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiya Jin
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rui Guo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongyu Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
He X, Feng G, Gao X, Liu J. Comprehensive analysis of clinical features, mRNA splicing, and immunological role of REEP5 in esophageal squamous cell carcinoma. Sci Rep 2024; 14:25675. [PMID: 39463444 PMCID: PMC11514286 DOI: 10.1038/s41598-024-77631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy within the digestive system, characterized by high incidence and mortality rates. The biological role of REEP5 in ESCC progression remains poorly understood, despite its associations with various diseases, potentially accelerating tumor malignancy. We retrieved RNA-seq data and clinical information from 179 ESCC patients from the Gene Expression Omnibus (GEO) and 93 patients from The Cancer Genome Atlas (TCGA) databases. Bioinformatics analyses were conducted to explore the biological functions of REEP5 in ESCC, its role in the tumor microenvironment, and its prognostic value. Additionally, utilizing single-cell RNA-seq (scRNA-seq) data from 3 ESCC patients in the GEO database, we performed cluster analyses to investigate cell-specific expression differences of REEP5 between cancerous and adjacent non-cancerous tissues. Molecular biology experiments were also conducted to validate REEP5 expression disparities between tumor and non-tumor tissues. Compared to normal tissues, REEP5 was significantly enriched in ESCC tissues. High REEP5 expression was closely associated with poor prognosis in ESCC patients. Gene Ontology (GO) analysis revealed strong correlations between REEP5 and processes such as mRNA splicing and protein stabilization. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) indicated positive correlations between REEP5 and mRNA spliceosome assembly and disassembly. Pearson correlation analysis demonstrated positive associations between REEP5 and cancer-inhibitory immune checkpoints CTLA-4, TIM-3, and HVEM. Single-cell clustering and CIBERSORT analysis showed that REEP5 expression was closely related to T-cell infiltration in ESCC, with significant enrichment effects observed in CD8+ T-cell infiltration. REEP5 expression is closely correlated with the pathological and molecular pathology of ESCC, potentially playing a crucial role in Mast cell or T-cell-mediated immune responses in ESCC. Therefore, REEP5 holds promise as a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xu He
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiyu Feng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiang Gao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
6
|
Kim J. Circular RNAs: Novel Players in Cancer Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:10121. [PMID: 39337606 PMCID: PMC11432211 DOI: 10.3390/ijms251810121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that have emerged as pivotal players in gene regulation. Our understanding of circRNAs has greatly expanded over the last decade, with studies elucidating their biology and exploring their therapeutic applications. In this review, we provide an overview of the current understanding of circRNA biogenesis, outline their mechanisms of action in cancer, and assess their clinical potential as biomarkers. Furthermore, we discuss circRNAs as a potential therapeutic strategy, including recent advances in circRNA production and translation, along with proof-of-concept preclinical studies of cancer vaccines.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
9
|
Ørbeck SV, Jakobsen T, García-Rodríguez JL, Burton M, Rasmussen LG, Ewald JD, Fristrup CW, Pfeiffer P, Mortensen MB, Kristensen LS, Detlefsen S. Exploring the prognostic value of circular RNAs in pancreatic ductal adenocarcinoma using genome-wide expression profiling. Pancreatology 2024; 24:706-718. [PMID: 38724419 DOI: 10.1016/j.pan.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND/OBJECTIVES Median survival of pancreatic ductal adenocarcinoma (PDAC) is around eight months and new prognostic tools are needed. Circular RNAs (circRNAs) have gained interest in different types of cancer. However, only a few studies have evaluated their potential in PDAC. We aimed to identify the most differentially expressed circRNAs in PDAC compared to controls and to explore their potential as prognostic markers. METHODS Using frozen specimens with PDAC and controls, we performed RNA sequencing and identified 20,440 unique circRNAs. A custom code set of capture- and reporter probes for NanoString nCounter analysis was designed to target 152 circRNAs, based on abundancy, differential expression and a literature study. Expression of these 152 circRNAs was examined in 108 formalin-fixed and paraffin-embedded surgical PDAC specimens and controls. The spatial expression of one of the most promising candidates, ciRS-7 (hsa_circ_0001946), was evaluated by chromogenic in situ hybridization (CISH) using multi-punch tissue microarrays (TMAs) and digital imaging analysis. RESULTS Based on circRNA expression profiles, we identified different PDAC subclusters. The 30 most differentially expressed circRNAs showed log2 fold changes from -3.43 to 0.94, where circNRIP1 (hsa_circ_0004771), circMBOAT2 (hsa_circ_0007334) and circRUNX1 (hsa_circ_0002360) held significant prognostic value in multivariate analysis. CiRS-7 was absent in PDAC cells but highly expressed in the tumor microenvironment. CONCLUSIONS We identified several new circRNAs with biomarker potential in surgically treated PDAC, three of which showed an independent prognostic value. We also found that ciRS-7 is absent in cancer cells but abundant in tumor microenvironment and may hold potential as marker of activated stroma.
Collapse
Affiliation(s)
- Siri Vreim Ørbeck
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Mark Burton
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Clinical Genome Center, University of Southern Denmark, Odense, Denmark
| | - Lukas Gammelgaard Rasmussen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Jesper Dupont Ewald
- Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus Wilki Fristrup
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Per Pfeiffer
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Surgery, Odense University Hospital, Odense, Denmark
| | | | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
Qiao M, Yang H, Liu L, Yu T, Wang H, Chen X, Zhang Y, Duan A, Lyu S, Wu S, Xiao J, Li B. Chronic Lead Exposure in Adult Mice: Associations with miR-671/CDR1as Regulation, NF-κB Signaling, and Alzheimer's Disease-like Pathology. TOXICS 2024; 12:410. [PMID: 38922090 PMCID: PMC11209093 DOI: 10.3390/toxics12060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer's disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), β-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-β (Aβ), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Mengyun Qiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haihua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shujun Lyu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Siyu Wu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jingwei Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
11
|
Shi Y, Yao M, Shen S, Wang L, Yao D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon 2024; 10:e28292. [PMID: 38560274 PMCID: PMC10979174 DOI: 10.1016/j.heliyon.2024.e28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer still is one of the most common malignancy tumors in the world. However, the mechanisms of its occurrence and development have not been fully elucidated. Zinc finger protein family (ZNFs) is the largest transcription factor family in human genome. Recently, the more and more basic and clinical evidences have confirmed that ZNFs/Krüppel-like factors (KLFs) refer to a group of conserved zinc finger-containing transcription factors that are involved in lung cancer progression, with the functions of promotion, inhibition, dual roles and unknown classifications. Based on the recent literature, some of the oncogenic KLFs are promising molecular biomarkers for diagnosis, prognosis or therapeutic targets of lung cancer. Interestingly, a novel computational approach has been proposed by using machine learning on features calculated from primary sequences, the XGBoost-based model with accuracy of 96.4 % is efficient in identifying KLF proteins. This paper reviews the recent some progresses of the oncogenic KLFs with their potential values for diagnosis, prognosis and molecular target in lung cancer.
Collapse
Affiliation(s)
- Yang Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, First People's Hospital of Yancheng, Yancheng 224001, China
| | - Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Shuijie Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
12
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
13
|
Shrestha SM, Fang X, Ye H, Ren L, Ji Q, Shi R. A novel upregulated hsa_circ_0032746 regulates the oncogenesis of esophageal squamous cell carcinoma by regulating miR-4270/MCM3 axis. Hum Genomics 2024; 18:3. [PMID: 38200573 PMCID: PMC10777493 DOI: 10.1186/s40246-023-00564-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Circular RNAs (CircRNA) have emerged as an interest of research in recent years due to its regulatory role in various kinds of cancers of human body. Esophageal squamous cell carcinoma (ESCC) is one of the major disease subtype in Asian countries, including China. CircRNAs are formed by back-splicing covalently joined 3'- and 5'- ends rather than canonical splicing and are found to have binding affinity with miRNAs that conjointly contribute to oncogenesis. MATERIALS AND METHODS 4 pairs of normal, cancer adjacent tissues and cancer tissues were analyzed by high-throughput RNA sequencing and 84 differentially upregulated circRNAs were detected in cancer tissues. hsa_circ_0032746 was silenced by siRNA and lentivirus and then further proliferation, migration and invasion were performed by CCK-8 and transwell assays. Bioinformatic analysis predicted binding affinity of circRNA/miRNA/mRNA axis. RESULTS After qPCR validation, we selected a novel upregulated hsa_circ_0032746 to explore its biogenetic functions which showed high expression in cancer tissues but not in cancer adjacent tissues. The clinicopathological relation of hsa_circ_0032746 showed positive correlation with the tumor location (P = 0.026) and gender (P = 0.05). We also predicted that hsa_circ_0032746 could sponge with microRNA. Bioinformatic analysis predicted 11 microRNA response element (MRE) sequences of hsa_circ_0032746 and dual luciferase reporter assay confirmed binding affinity with miR4270 evidencing further study of circRNA/miRNA role. The knockdown of hsa_circ_0032746 by siRNA and lentivirus demonstrated that proliferation, invasion and migration of ESCC were inhibited in vitro and vivo experiments. Bioinformatic analysis further predicted MCM3 as a target of miR-4270 and was found upregulated in ESCC upon validation. miR4270 mimic decreased the level of hsa_circ_0032746 and MCM3 while further rescue experiments demonstrated that hsa_circ_0032746 was dependent on miR4270/MCM3 axis on the development process of ESCC. CONCLUSION We revealed for the first time that circ_0032746/mir4270/MCM3 contributes in proliferation, migration and invasion of ESCC and could have potential prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Sachin Mulmi Shrestha
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xin Fang
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Hui Ye
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Lihua Ren
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Qinghua Ji
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Ruihua Shi
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China.
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
14
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Zhang Y, Zhu M, Pan J, Qiu Q, Tong X, Hu X, Gong C. BmCPV replication is suppressed by the activation of the NF-κB/autophagy pathway through the interaction of vsp21 translated by vcircRNA_000048 with ubiquitin carboxyl-terminal hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103947. [PMID: 37086910 DOI: 10.1016/j.ibmb.2023.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus, was demonstrated to generate a viral circRNA, vcircRNA_000048, which encodes a vsp21 with 21 amino acid residues to suppress viral replication. However, the regulatory mechanism of vsp21 on virus infection remained unclear. This study discovered that vsp21 induces reactive oxygen species (ROS) generation, activates autophagy, and attenuates virus replication by inducing autophagy. Then we confirmed that the effect of vsp21-induced autophagy on viral replication was attributed to the activation of the NF-κB signaling pathway. Furthermore, we clarified that vsp21 interacted with ubiquitin carboxyl-terminal hydrolase (UCH) and that ubiquitination and degradation of phospho-IκB-α were enhanced by vsp21 via competitive binding to UCH. Finally, we validated that vsp21 activates the NF-κB/autophagy pathway to suppress viral replication by interacting with UCH. These findings provided new insights into regulating viral multiplication and reovirus-host interaction.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Qunnan Qiu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X, Li S, Guo Y. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother 2023; 162:114672. [PMID: 37060662 DOI: 10.1016/j.biopha.2023.114672] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
In recent years, breakthroughs in bioinformatics have been made with the discovery of many functionally significant non-coding RNAs (ncRNAs). The discovery of these ncRNAs has further demonstrated the multi-level characteristics of intracellular gene expression regulation, which plays an important role in assisting diagnosis, guiding clinical drug use and determining prognosis in the treatment process of various diseases. microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are the three major types of ncRNAs that interact with each other. Studies have shown that lncRNAs and circRNAs can sponge miRNAs, thereby influencing normal physiological processes and regulating mRNA expression and, thus, the physiological state of cells. This paper summarizes the mechanism of action and research progress of the three ncRNA and seven types of modalities. This summary is intended to provide new ideas for diagnosing and treating diseases and researching and developing new drugs.
Collapse
Affiliation(s)
- Benchi Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Pufan Shan
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Yufan Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Liping Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Shuyan Li
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China; Laboratory of Liver Viscera-State & Syndrome of Emotional Disease, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| |
Collapse
|
17
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
18
|
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov 2023; 9:118. [PMID: 37031197 PMCID: PMC10082813 DOI: 10.1038/s41420-023-01416-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.
Collapse
Affiliation(s)
- Zhihong He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
| |
Collapse
|
19
|
Zhong G, Zhao Q, Chen Z, Yao T. TGF-β signaling promotes cervical cancer metastasis via CDR1as. Mol Cancer 2023; 22:66. [PMID: 37004067 PMCID: PMC10064584 DOI: 10.1186/s12943-023-01743-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Due to the lack of effective treatment, metastasis is the main cause of cancer related deaths. TGF-β pathway has been reported related to cervical cancer metastasis. However, mechanism is still unclear. METHODS After agonist of TGF-β treatment, RNA sequencing revealed the expression profiles of circRNA in cervical cancer. In situ hybridization was used to analysis relationship between CDR1as and prognosis. Real-time PCR, Western blot, RNA interference, Transwell assay, Wound healing assay, RNA pulldown assay and RIP assays were performed in vitro. And in vivo cervical cancer model (including foot pad model and subcutaneous tumor formation) was also performed. RESULTS CDR1as was found upregulated obviously following TGF-β activation. In situ hybridization showed CDR1as was positively correlated with lymph node metastasis and shortened survival length. Simultaneously, overexpression of CDR1as promoted cervical cancer metastasis in vitro and in vivo. It was also found that CDR1as could facilitate the orchestration of IGF2BP1 on the mRNA of SLUG and stabilize it from degradation. Silencing IGF2BP1 hampers CDR1as related metastasis in cervical cancer. Additionally, effective CDR1as has been proven to activate TGF-β signaling factors known to promote EMT, including P-Smad2 and P-Smad3. CONCLUSIONS Our study proved TGF-β signaling may promote cervical cancer metastasis via CDR1as.
Collapse
Affiliation(s)
- Guanglei Zhong
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Zhiliao Chen
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
20
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
21
|
Sun F, Zhang Y, Wu X, Xu X, Zhu C, Huang W. Breviscapine Combined with BMSCs Reduces Aβ Deposition in Rat with Alzheimer's Disease by Regulating Circular RNA ciRS-7. Curr Mol Med 2023; 23:76-86. [PMID: 35048805 DOI: 10.2174/1566524022666220113151044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study aimed to clarify that breviscapine combined with bone marrow mesenchymal stem cells (BMSCs) treatment can reduce Aβ deposition in Alzheimer's disease (AD) patients. BACKGROUND AD is a common degenerative disease of the central nervous system. Aβ protein deposition in the cerebral cortex and hippocampus causes neuronal peroxidation damage, synaptic dysfunction, neuroinflammation, and nerve cell apoptosis, and ultimately leads to AD. OBJECTIVE To investigate whether breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD. METHODS The AD rat model was successfully induced by Aβ1-42. The expression of protein and mRNA was detected by western blot and reverse transcription-quantitative PCR (RT-qPCR), respectively. RESULTS In AD rat brain tissue, the expression of circular RNA ciRS-7 (ciRS-7), ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), and NF-kappaB p65 was significantly downregulated, and the expression of β-amyloid precursor protein (APP), β-site APPcleaving enzyme 1 (BAEC1), and Aβ was upregulated. The expression of ciRS-7, UCHL1, and p65 was significantly upregulated after breviscapine or BMSCs treatment, and there was increased APP and BAEC1 degradation. Notably, breviscapine combined with BMSCs treatment was more effective than either treatment alone. In SH-SY5Y cells, overexpression of ciRS-7 reduced Aβ deposition by upregulating UCHL1 to degrade APP and BAEC1, but these effects were reversed with inhibition of NF-kB signaling. Finally, knockdown of ciRS-7 elevated Aβ, APP, and BAEC1 expression in each group of rats compared with the control. CONCLUSION Breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD rats and promote the degradation of APP and BAEC1 by activating NF-kB to promote UCHL1 expression.
Collapse
Affiliation(s)
- Fengqin Sun
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Yulin Zhang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xinran Wu
- Teaching Research Department, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xu Xu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Chaodie Zhu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Wei Huang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| |
Collapse
|
22
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines 2022; 10:biomedicines10071643. [PMID: 35884948 PMCID: PMC9313320 DOI: 10.3390/biomedicines10071643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) comprise a large class of endogenous non-coding RNA with covalently closed loops and have independent functions as linear transcripts transcribed from identical genes. circRNAs are generated by a “back-splicing” process regulated by regulatory elements in cis and associating proteins in trans. Many studies have shown that circRNAs play important roles in multiple processes, including splicing, transcription, chromatin modification, miRNA sponges, and protein decoys. circRNAs are highly stable because of their closed ring structure, which prevents them from degradation by exonucleases, and are more abundant in terminally differentiated cells, such as brains. Recently, it was demonstrated that numerous circRNAs are differentially expressed in cancer cells, and their dysfunction is involved in tumorigenesis and metastasis. However, the crucial functions of these circRNAs and the dysregulation of circRNAs in cancer are still unknown. In this review, we summarize the recent reports on the biogenesis and biology of circRNAs and then catalog the advances in using circRNAs as biomarkers and therapeutic targets for cancer therapy, particularly esophageal cancer.
Collapse
|
24
|
Luo C, Zhao X, Wang Y, Li Y, Wang T, Li S. A novel circ_0000654/miR-375/E2F3 ceRNA network in esophageal squamous cell carcinoma. Thorac Cancer 2022; 13:2223-2234. [PMID: 35790503 PMCID: PMC9346169 DOI: 10.1111/1759-7714.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background The competing endogenous RNA (ceRNA) activity of circular RNAs (circRNAs) has been implicated in the pathogenesis of cancers, including esophageal squamous cell carcinoma (ESCC). Here, we identified the ceRNA mechanism of circ_0000654 regulation in ESCC. Methods The levels of circ_0000654, E2F transcription factor 3 (E2F3), and microRNA (miR)‐375 were gauged by quantitative real‐time PCR (qRT‐PCR) and western blot. Cell proliferation was assessed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) and 5‐ethynyl‐2′‐deoxyuridine (EdU) assays. Cell apoptosis was detected by flow cytometry. Cell colony formation was tested by colony formation assay. Dual‐luciferase reporter, RNA pull‐down and RNA immunoprecipitation (RIP) assays were performed to confirm the direct relationship between miR‐375 and circ_0000654 or E2F3. Xenograft model assays were used to evaluate the effect of circ_0000654 in vivo. Results Circ_0000654 and E2F3 were upregulated in ESCC. Circ_0000654 depletion enhanced cell apoptosis and hindered cell proliferation and glycolysis in vitro, as well as weakened tumor growth in vivo. Increased expression of E2F3 counteracted the effects of circ_0000654 depletion. Mechanistically, E2F3 was a target of miR‐375, and circ_0000654 modulated E2F3 expression through sequestering miR‐375. Furthermore, miR‐375 upregulation phenocopied circ_0000654 knockdown in inhibiting ESCC progression. Conclusion Our findings identify a new circ_0000654/miR‐375/E2F3 ceRNA crosstalk for the oncogenic role of circ_0000654 in ESCC and establish a notion that targeting circ_0000654 and its pathways may have the potential to improve ESCC outcome.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaowei Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yuan Wang
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yanqiu Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Tuo Wang
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Shumin Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| |
Collapse
|
25
|
Zhang X, Liang Z, Wang C, Shen Z, Sun S, Gong C, Hu X. Viral Circular RNAs and Their Possible Roles in Virus-Host Interaction. Front Immunol 2022; 13:939768. [PMID: 35784275 PMCID: PMC9247149 DOI: 10.3389/fimmu.2022.939768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) as novel regulatory molecules have been recognized in diverse species, including viruses. The virus-derived circRNAs play various roles in the host biological process and the life cycle of the viruses. This review summarized the circRNAs from the DNA and RNA viruses and discussed the biogenesis of viral and host circRNAs, the potential roles of viral circRNAs, and their future perspective. This review will elaborate on new insights gained on viruses encoded circRNAs during virus infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zi Liang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chonglong Wang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zeen Shen
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| |
Collapse
|
26
|
Ju C, He J, Wang C, Sheng J, Jia J, Du D, Li H, Zhou M, He F. Current advances and future perspectives on the functional roles and clinical implications of circular RNAs in esophageal squamous cell carcinoma: more influential than expected. Biomark Res 2022; 10:41. [PMID: 35672804 PMCID: PMC9171998 DOI: 10.1186/s40364-022-00388-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive gastrointestinal cancers with high incidence and mortality. Therefore, it is necessary to identify novel sensitive and specific biomarkers for ESCC detection and treatment. Circular RNAs (circRNAs) are a type of noncoding RNAs featured by their covalently closed circular structure. This special structure makes circRNAs more stable in mammalian cells, coupled with their great abundance and tissue specificity, suggesting circRNAs may present enormous potential to be explored as valuable prognostic and diagnostic biomarkers for tumor. Mounting studies verified the critical roles of circRNAs in regulating ESCC cells malignant behaviors. Here, we summarized the current progresses in a handful of aberrantly expressed circRNAs, and elucidated their biological function and clinical significance in ESCC, and introduced a series of databases for circRNA research. With the improved advancement in high-throughput sequencing and bioinformatics technique, new frontiers of circRNAs will pave the path for the development of precision treatment in ESCC.
Collapse
Affiliation(s)
- Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Sarfaraz S, Taheri M, Ayatollahi SA. Circ_CDR1as: A circular RNA with roles in the carcinogenesis. Pathol Res Pract 2022; 236:153968. [PMID: 35667198 DOI: 10.1016/j.prp.2022.153968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022]
Abstract
Circular RNAs are a group of ancient but recently appreciated transcripts that affect carcinogenesis. An example of cancer-related circular RNAs is circ_CDR1as. It is mostly regarded as an oncogenic circular RNA, yet in bladder cancer and glioma it has the opposite effect. In gastric and ovarian cancer, both roles have been reported for this circular RNA. Circ_CDR1as has regulatory effects on miR-1270/AFP, miR-1287/Raf1, miR-7-5p/KLF4, miR-641/HOXA9, miR-219a-5p/SOX5, miR-7/HOXB13 and miR-876-5p/MAGE-A molecular axes. miR-7 is the most appreciated interacting miRNA with circ_CDR1as, since its interaction with circ_CDR1as has been validated in liver cancer, lung cancer, colorectal cancer, esophageal carcinoma, gastric cancer, pancreatic cancer, thyroid cancer, oral squamous cell carcinoma, nasopharyngeal carcinoma and osteosarcoma. The present article aims at summarization of the role of circ_CDR1as in neoplasms and its application as a biomarker in human cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Circular RNA circ_0006948 Promotes Esophageal Squamous Cell Carcinoma Progression by Regulating microRNA-3612/LASP1 Axis. Dig Dis Sci 2022; 67:2158-2172. [PMID: 34024023 DOI: 10.1007/s10620-021-07057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most prevalent malignancy worldwide. Circular RNAs (circRNAs) circ_0006948 is reported to be upregulated in ESCC cells. AIMS This study is designed to explore the role and mechanism of circ_0006948 in ESCC progression. METHODS Circ_0006948, linear FNDC3B, microRNA-3612 (miR-3612), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, colony number, migration, invasion, and apoptosis were examined by Cell Counting Kit-8 (CCK-8), colony formation, transwell, and flow cytometry assays, severally. Glucose consumption, lactate production, and ATP level were measured by the corresponding kits. Protein levels of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), and LASP1 were assessed by western blot assay. The cytoplasmic localization of circ_0006948 was identified by the subcellular fractionation assay. The binding relationship between miR-3612 and circ_0006948 or LASP1 was predicted by starBase or TargetScan and then verified by a dual-luciferase reporter assay. The biological role of circ_0006948 on ESCC tumor growth was examined by the xenograft tumor model in vivo. RESULTS Circ_0006948 and LASP1 were increased, and miR-3612 was decreased in ESCC tissues and cells. Furthermore, circ_0006948 knockdown could suppress cell viability, colony number, migration, invasion, glycolysis, and boost apoptosis in ESCC cells. Mechanically, circ_0006948 could act as a sponge of miR-3612 to regulate LASP1 expression. In addition, circ_0006948 silencing inhibited ESCC tumor growth in vivo. CONCLUSION Circ_0006948 boosted ESCC progression partly by regulating the miR-3612/LASP1 axis, providing an underlying therapeutic target for the ESCC treatment.
Collapse
|
29
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Chen C, Xia C, Tang H, Jiang Y, Wang S, Zhang X, Huang T, Yuan X, Wang J, Peng L. Circular RNAs Involve in Immunity of Digestive Cancers From Bench to Bedside: A Review. Front Immunol 2022; 13:833058. [PMID: 35464462 PMCID: PMC9020258 DOI: 10.3389/fimmu.2022.833058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system plays a complex role in tumor formation and development. On the one hand, immune surveillance can inhibit the growth of tumors; on the other hand, immune evasion of tumors can create conditions conducive for tumor development and growth. CircRNAs are endogenous non-coding RNAs with a covalently closed loop structure that are abundantly expressed in eukaryotic organisms. They are characterized by stable structure, rich diversity, and high evolutionary conservation. In particular, circRNAs play a vital role in the occurrence, development, and treatment of tumors through their unique functions. Recently, the incidence and mortality of digestive cancers, especially those of gastric cancer, colorectal cancer, and liver cancer, have remained high. However, the functions of circRNAs in digestive cancers immunity are less known. The relationship between circRNAs and digestive tumor immunity is systematically discussed in our paper for the first time. CircRNA can influence the immune microenvironment of gastrointestinal tumors to promote their occurrence and development by acting as a miRNA molecular sponge, interacting with proteins, and regulating selective splicing. The circRNA vaccine even provides a new idea for tumor immunotherapy. Future studies should be focused on the location, transportation, and degradation mechanisms of circRNA in living cells and the relationship between circRNA and tumor immunity. This paper provides a new idea for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Chunyue Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Congcong Xia
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yirun Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Li Peng, ; Junpu Wang,
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Peng, ; Junpu Wang,
| |
Collapse
|
31
|
Yang J, Yang B, Wang Y, Zhang T, Hao Y, Cui H, Zhao D, Yuan X, Chen X, Shen C, Yan W, Zheng H, Zhang K, Liu X. Profiling and functional analysis of differentially expressed circular RNAs identified in foot-and-mouth disease virus infected PK-15 cells. Vet Res 2022; 53:24. [PMID: 35313983 PMCID: PMC8935690 DOI: 10.1186/s13567-022-01037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.
Collapse
|
32
|
Mao C, Wen H, Zhang Y, Yu G, Ge Q. ciRS-7 enhances the progression of hepatocellular carcinoma through miR-944/NOX4 pathway. Crit Rev Eukaryot Gene Expr 2022; 32:11-24. [DOI: 10.1615/critreveukaryotgeneexpr.2022039225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Xi SJ, Cai WQ, Wang QQ, Peng XC. Role of circular RNAs in gastrointestinal tumors and drug resistance. World J Clin Cases 2021; 9:10400-10417. [PMID: 35004973 PMCID: PMC8686142 DOI: 10.12998/wjcc.v9.i34.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Shi-Jun Xi
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Qin-Qi Wang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
34
|
Wu F, Sun G, Zheng W, Tang W, Cheng Y, Wu L, Li X, Tao J, Ma S, Cao H. circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-κB pathway. J Clin Lab Anal 2021; 35:e24003. [PMID: 34676904 PMCID: PMC8649343 DOI: 10.1002/jcla.24003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNA (circRNA) affects the occurrence and development of human cancers, but the specific mechanism of hepatocellular carcinoma (HCC) has not yet been fully understood. METHODS CircRNAs were determined by human circRNA array analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell viability, migration, invasion, and other indicators were used for cell function analysis. Knockdown and overexpression techniques were used to explore the mechanism of circCORO1C in the occurrence and development of HCC by RNA sequencing, qRT-PCR, western blot, and other methods. RESULTS Among the thousands of circRNAs, 1238 circRNAs were significantly changed. As for the top 10 upregulated circRNAs, the expression of circRNAs, hsa_circ_0036412, hsa_circ_0036411, hsa_circ_0028071, hsa_circ_0036409, hsa_circ_0000437, hsa_circ_0021427, hsa_circ_0097182, hsa_circ_0028067, hsa_circ_0006852, and hsa_circ_0003620 were significantly increased. In regard to the top 10 downregulated circRNAs, the expression of hsa_circ_0123629, hsa_circ_0096121, hsa_circ_0038932, hsa-circRNA3310-44, hsa_circ_0045746, hsa_circ_0016836, hsa-circRNA10899-9, hsa_circ_0050116, hsa_circ_0035543, and hsa_circ_0092118 decreased significantly. About these circRNAs, the downregulation of hsa_circ_0006852 (circCORO1C) can inhibit the tumorigenesis of HCC cells in vivo and in vitro, and the overexpression of circCORO1C can enhance the proliferation and metastasis ability of HCC cells. Mechanistically, circCORO1C activated the NF-κB signaling pathway, increased P65 phosphorylation and upregulation of c-Myc and COX-2, leading to increased PD-L1 expression. CONCLUSION CircCORO1C upregulates c-Myc and COX-2 through NF-κB signaling pathway, leading to the upregulation of PD-L1, which jointly promotes the development of HCC, suggesting that circCORO1C is a promising biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Fan Wu
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Guoqiang Sun
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Wubin Zheng
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation CenterKey Laboratory of Living Donor TransplantationChinese Academy of Medical SciencesThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye Cheng
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - LiangLiang Wu
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao Li
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing Tao
- Department of General SurgeryNanjing Pukou HospitalNanjing Medical UniversityNanjingChina
| | - Shijie Ma
- Department of GastroenterologyThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Hongyong Cao
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
35
|
Zhang Y, Shao J, Li S, Liu Y, Zheng M. The Crosstalk Between Regulatory Non-Coding RNAs and Nuclear Factor Kappa B in Hepatocellular Carcinoma. Front Oncol 2021; 11:775250. [PMID: 34804980 PMCID: PMC8602059 DOI: 10.3389/fonc.2021.775250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.
Collapse
Affiliation(s)
- Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Fang X, Shrestha SM, Ren L, Shi R. Biological and clinical implications of metastasis-associated circular RNAs in oesophageal squamous cell carcinoma. FEBS Open Bio 2021; 11:2870-2887. [PMID: 34510785 PMCID: PMC8564336 DOI: 10.1002/2211-5463.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Oesophageal squamous cell carcinoma (OSCC) is a prevalent malignancy with high morbidity and mortality as a result of early metastasis and poor prognosis. Metastasis is a multistep process, involving various signalling pathways. Circular RNAs (circRNAs) are a class of covalently closed noncoding RNAs, the aberrant expression of which is reported to be involved in several biological events, including cell transformation, proliferation, migration, invasion, apoptosis and metastasis. Several studies have reported interactions between circRNAs and metastasis-associated signalling pathways. The abundance, stability and highly specific expression of candidate circRNAs make them potential biomarkers and therapeutic targets in OSCC. In this review article, we comprehensively describe metastasis-related circRNAs and their interactions with epithelial-mesenchymal transition-associated molecules. We also describe the molecular mechanisms and clinical relevance of circRNAs in OSCC progression and metastasis.
Collapse
Affiliation(s)
- Xin Fang
- Medical CollegeSoutheast UniversityNanjingChina
| | | | - Li‐Hua Ren
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| | - Rui‐hua Shi
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| |
Collapse
|
37
|
Zhang L, Wang Y, Yu F, Li X, Gao H, Li P. CircHIPK3 Plays Vital Roles in Cardiovascular Disease. Front Cardiovasc Med 2021; 8:733248. [PMID: 34660735 PMCID: PMC8511503 DOI: 10.3389/fcvm.2021.733248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that function in various physiological and pathological processes. CircRNAs are widely involved in the development of cardiovascular disease (CVD), one of the leading causes of morbidity and mortality worldwide. CircHIPK3 is generated from the second exon of the HIPK3 gene, a corepressor of homeodomain transcription factors. As an exonic circRNA (ecRNA), circHIPK3 is produced through intron-pairing driven circularization facilitated by Alu elements. In the past 5 years, a growing number of studies have revealed the multifunctional roles of circHIPK3 in different diseases, such as cancer and CVD. CircHIPK3 mainly participates in CVD pathogenesis through interacting with miRNAs. This paper summarizes the current literature on the biogenesis and functions of circHIPK3, elucidates the role of circHIPK3 in different CVD patterns, and explores future perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Rahmati Y, Asemani Y, Aghamiri S, Ezzatifar F, Najafi S. CiRS-7/CDR1as; An oncogenic circular RNA as a potential cancer biomarker. Pathol Res Pract 2021; 227:153639. [PMID: 34649055 DOI: 10.1016/j.prp.2021.153639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) as a new class of non-coding RNAs (ncRNAs) play role in gene regulation in multicellular organisms via various interactions with nucleic acids, proteins and particularly microRNAs. They have been found to be involved in a number of biological functions particularly in regulation of cell cycle, and extracellular interactions. Thus, dysregulation of circRNAs is found to be associated with several human diseases and especially numerous types of cancers. ciRS-7 is an example of circRNAs which have been studied in a number of human diseases like neurological diseases, diabetes mellitus, and importantly different malignancies. It has been found to regulate cell proliferation and malignant features in cancer cells. CiRS-7 is upregulated in several cancers and its overexpression promoted malignant phenotype of cancer cells via enhancing cell proliferation, migration, and invasion in vitro and in vivo. As a competing endogenous RNA (ceRNA), ciRS-7 is found to sponge miR-7 as the most common miRNA target in interaction together. Functional analyses show role of ciRS-7 in downregulation of miR-7 and involvement of a series of signaling pathways in turn through them it is believed that ciRS-7 regulates malignant behaviors of cancer cells. Clinical studies demonstrate upregulation of ciRS-7 in cancer tissues compared to their non-cancerous adjacent tissues, correlation with worse clinicopathological features in cancerous patients and an independent prognostic factor. In this review, we have an overview to the role of ciRS-7 in development and progression of cancer and also assess its potentials as a diagnostic and prognostic biomarker in human cancers.
Collapse
Affiliation(s)
- Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Bie F, Wang K, Xu T, Yuan J, Ding H, Lv B, Liu Y, Lan M. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother 2021; 141:111826. [PMID: 34328121 DOI: 10.1016/j.biopha.2021.111826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury (SCI) may cause long-term physical impairment and bring a substantial burden to both the individual patient and society. Existing therapeutic approaches for SCI have proven inadequate. This is mainly owing to the incomplete understanding of the cellular and molecular events post-injury. Circular RNAs (circRNAs) represent a new class of non-coding RNAs with a covalently closed annular structure that participates in regulating the transcription of certain genes and are linked to various biological processes and diseases. Mounting evidence is indicative that circRNAs are highly expressed in the spinal cord and they play key roles in multiple processes of neurological diseases. Recently, a role for circRNAs as effectors of SCI has emerged, leading to the continuity of relevant research. In this review, we presented current studies with regards to the abnormality of circRNAs mediating SCI by affecting mechanisms of autophagy, apoptosis, inflammation, and neural regeneration. Furthermore, the potential clinical value of circRNAs as therapeutic targets of SCI was also analyzed.
Collapse
Affiliation(s)
- Fan Bie
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Kaiyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Sixth People's Hospital, Shanghai 200233, China.
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Hua Ding
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuwen Liu
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| | - Min Lan
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| |
Collapse
|
40
|
Li J, Zhu Z, Li S, Han Z, Meng F, Wei L. Circ_0089823 reinforces malignant behaviors of non-small cell lung cancer by acting as a sponge for microRNAs targeting SOX4 . Neoplasia 2021; 23:887-897. [PMID: 34311177 PMCID: PMC8326602 DOI: 10.1016/j.neo.2021.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
In recent years, increasing evidence indicates the significant roles of circRNAs in carcinogenesis. However, their roles in lung cancer remain largely unclear. We profiled the circRNA expression in 10 paired non-small cell lung cancer (NSCLC) and adjacent non-cancer tissues using high-throughput sequencing. A total of 183 up-regulated and 428 down-regulated circRNAs were identified in the NSCLC tissues (fold change ≥ 2, P < 0.05). Circ_0089823, an up-regulated circRNA (5.4-fold, P = 0.0017), was further investigated through loss-of-function and gain-of-function. The circ_0089823 level in NSCLC samples was related to the gender, tumor size, pathological type, TNM stage and smoking history. Knockdown of circ_0089823 suppressed cell proliferation, induced cell cycle arrest and apoptosis of NSCLC cells in vitro. Additionally, circ_0089823-silenced xenografts grew much slowly. On the contrary, its over-expression promoted the malignant behaviors of NSCLC cells. Furthermore, SOX4, a tumor-promoting transcription factor, was highly expressed in NSCLC tissues and positively regulated by circ_0089823. Bioinformatic analysis revealed several potential binding sites for miR-507, miR-557, miR-579-3p and miR-1287-5p in circ_0089823 and SOX4 3'-untranslated region, which was later confirmed by luciferase reporter assay. Interestingly, silencing SOX4 countervailed the effects of circ_0089823 over-expression on NSCLC cells. Here, we revealed that circ_0089823 might act as a sponge of microRNAs targeting SOX4, thus increasing the expression of SOX4, thereby reinforcing the malignant behaviors of NSCLC cells. This study indicates that circ_0089823 has the potential to become a candidate target for NSCLC treatment.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zibo Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Saisai Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhijun Han
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Fannuo Meng
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China..
| |
Collapse
|
41
|
Abstract
CircRNAs are a subclass of lncRNAs that have been found to be abundantly present in a wide range of species, including humans. CircRNAs are generally produced by a noncanonical splicing event called backsplicing that is dependent on the canonical splicing machinery, giving rise to circRNAs classified into three main categories: exonic circRNA, circular intronic RNA, and exon-intron circular RNA. Notably, circRNAs possess functional importance and display their functions through different mechanisms of action including sponging miRNAs, or even being translated into functional proteins. In addition, circRNAs also have great potential as biomarkers, particularly in cancer, thanks to their high stability, tissue type and developmental stage specificity, and their presence in biological fluids, which make them promising candidates as noninvasive biomarkers. In this chapter, we describe the most commonly used techniques for the study of circRNAs as cancer biomarkers, including high-throughput techniques such as RNA-Seq and microarrays, and other methods to analyze the presence of specific circRNAs in patient samples.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Gartze Mentxaka
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. .,Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
43
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Zhao Q, Zhu X, Ke JM, Su XY, Yi J, Wu DL, Lin J, Deng ZQ. Circular RNA BMI1 Serves as a Potential Target for Diagnosis and Treatment in Esophageal Cancer. Technol Cancer Res Treat 2021; 20:15330338211033075. [PMID: 34278876 PMCID: PMC8293847 DOI: 10.1177/15330338211033075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Previous studies have confirmed that BMI1 is elevated in esophageal cancer, which is a potential therapeutic target for esophageal cancer. However, the clinical significance of circular RNA BMI1 (circ-BMI1) in esophageal cancer is not yet clear. Herein, we revealed the clinical implication of circ-BMI1 in esophageal cancer, and provided a theoretical basis for molecular diagnosis and potential targeted therapy of esophageal cancer. METHODS Firstly, 10 fresh paired esophageal cancer tissues and paracancer tissues, 49 esophageal cancer serum samples and 28 healthy control serum samples were involved in our study. Differential expression and clinical significance of circ-BMI1 in esophageal cancer patients and healthy controls were evaluated by quantitative Real-time RT-PCR (RT-qPCR). Secondly, effects of circ-BMI1 differential expression on biological function of esophageal cancer cell line Eca109 were analyzed. Effects of circ-BMI1 on cell proliferation, migration and colony forming ability were evaluated by CCK-8, wound healing, and colony-forming assay. Cell apoptosis, drug sensitivity tests were also be conducted. Finally, influence of Eca109 cells differentially expressed by circ-BMI1 on tumorigenicity in nude mice was studied. RESULTS Expression of circ-BMI1 in serum and tissues of esophageal cancer patients was significantly decreased compared to controls (P < 0.001 and P = 0.003, respectively). Area under the receiver operating characteristic curve (ROC) was 0.726. Cell proliferation, migration and colony forming ability of circBMI1-Eca109 cells were obviously decreased than that of NC-Eca109 cells (P < 0.05). circBMI1-Eca109 cells were more sensitive to 5-fluorouracil and cisplatin, and tumor volume of nude mice in circBMI1-Eca109 group was smaller (P < 0.05). CONCLUSIONS The study indicated that expression of circ-BMI1 was significantly down-regulated in esophageal cancer. Overexpression of circ-BMI1 inhibited proliferation, migration, colony formation of Eca109 cells, and tumor growth of Eca109 cells in nude mice. circ-BMI1 may be a potential target for diagnosis and treatment in esophageal cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin Zhu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jin-Ming Ke
- Faculty of Forestry, Zhejiang A&F University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Yu Su
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Yi
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Long Wu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Li J, Mao YS, Chen F, Xia DX, Zhao TQ. Palmitic acid up regulates Gal-3 and induces insulin resistance in macrophages by mediating the balance between KLF4 and NF-κB. Exp Ther Med 2021; 22:1028. [PMID: 34373714 PMCID: PMC8343820 DOI: 10.3892/etm.2021.10460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance is the main sign of type 2 diabetes mellitus and is often accompanied by the infiltration of inflammatory factors. These inflammatory factors are mainly produced and secreted by macrophages. The purpose of the current study was to explore the relationship between macrophages and insulin resistance, and to determine its underlying mechanism. The insulin resistance of macrophages was induced by palmitic acid (PA) in vitro. The glucose uptake rate of macrophages, the expression levels of inflammatory cytokines and the expression levels of insulin resistance-related proteins were detected. The protein expression levels of Krüppel-like factor 4 (KLF4), toll-like receptor 4 (TLR4), NF-κB and Galectin-3 (Gal-3) were detected via western blotting and recovery experiments were performed by combining the Gal-3 and TLR4 inhibitors GB1107 and TAK242. The results revealed that PA-induced macrophages demonstrated insulin resistance. Additionally, KLF4 protein was inhibited and the sugar uptake rate was significantly lower than that of the control group. Western blotting and immunofluorescence assays revealed that the expression of Gal-3 in PA-induced macrophages was significantly upregulated. The addition of the Gal-3 inhibitor GB1107 significantly increased glucose utilization and reduced insulin resistance in PA-treated cells. Inhibitor of TLR4 inhibited the protein expression level of the TLR4/NF-κB pathway. In conclusion, PA promoted the TLR4/phosphorylated-NF-κB signaling pathway by inhibiting KLF4, promoted the upregulation of Gal-3 expression and improved the insulin resistance of macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yu-Shan Mao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Fen Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Dong-Xia Xia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Tin-Qi Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
46
|
Li J, Chen M, Wang J, Lu L, Li X, Le Y. MicroRNA profiling in Chinese children with Henoch-Schonlein purpura and association between selected microRNAs and inflammatory biomarkers. Acta Paediatr 2021; 110:2221-2229. [PMID: 33533510 DOI: 10.1111/apa.15789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
AIM This study aimed to profile the microRNA levels in Chinese Henoch-Schonlein purpura (HSP) children and to explore their association with inflammatory factors and T helper 17 (Th17)/regulatory T (Treg). METHODS Forty-five HSP children and 27 healthy controls were enrolled in this study, and microRNA levels were profiled with a microRNA microarray. The levels of selected microRNAs were determined by quantitative real-time PCR, and the levels of serum IgA, interleukin-6, interleukin-10 and interleukin-17A were detected by enzyme-linked immunosorbent assay. Additionally, Th17 and Treg cells were analysed by flow cytometry. RESULTS There were 9 up-regulated and 27 down-regulated microRNAs in the PBMCs of Chinese HSP children. Among them, miR-1-3p, miR-19b-1-5p and miR-29b-1-5p were up-regulated, while miR-483-5p and miR-1246 were down-regulated. Additionally, these selected microRNAs could differentiate HSP patients from healthy controls. Interestingly, miR-29b-1-5p was correlated with IgA, miR-19b-1-5p, miR-483-5p and miR-1246 were correlated with interleukin-6, while miR-1-3p and miR-1246 were correlated with Th17/Treg. CONCLUSION This study reveals that the altered microRNAs could differentiate HSP from the healthy, and were associated with inflammatory factors or Th17/Treg. It is indicated that alteration in these microRNAs may contribute to the HSP pathogenesis and may become therapeutic targets or diagnostic biomarkers for HSP.
Collapse
Affiliation(s)
- Jing Li
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Meixue Chen
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Jinfeng Wang
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Lingling Lu
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Xiang Li
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Yuan Le
- Department of Pediatrics The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|
47
|
Zhang H, Ju L, Hu P, Ye J, Yang C, Huang J. Circular RNA 0014715 Facilitates Cell Proliferation and Inhibits Apoptosis in Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:4735-4749. [PMID: 34163248 PMCID: PMC8214545 DOI: 10.2147/cmar.s314882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) have recently been verified to have multiple biological functions and participate in diverse biological processes in different malignant tumors, including esophageal squamous cell carcinoma (ESCC). Nonetheless, the function of circular RNA 0014715 (hsa_circ_0014715, circ_0014715) in ESCC has not been described. Materials and Methods We investigated clinical data from sixty-seven patients undergoing surgery for esophageal cancer. The clinical data were collected. And we analyzed the correlation between the clinical characteristics of these patients and the expression of circ_0014715. Besides, we explored the expression of circ_0014715 in ESCC cell lines. We used cell counting kit-8, colony formation, transwell assay, and flow cytometry to detect changes in cell proliferation, migration, apoptosis, and cell cycle progression. Results We found that circ_0014715 was highly expressed in esophageal squamous cell carcinoma tissues and cell lines. The correlation analysis of clinicopathological features and gene expression revealed that high expression of circ_0014715 was related to nerve invasion, vascular invasion, more advanced tumor-node-metastasis (TNM) stage and poor differentiation grade. Receiver operating characteristic (ROC) curves revealed that circ_0014715 might have diagnostic value for ESCC. Experiments with cultured cells showed that knockdown of circ_0014715 significantly restrained cell proliferation, migration, invasion, wound healing and accelerated cell apoptosis. And cell cycle arrest at G2 phase was observed via flow cytometry. Overexpression of circ_0014715 caused the opposite effects. Collectively, these studies show that circ_0014715 is closely connected with the pathogenesis and development of ESCC. The excess expression of circ_0014715 may have promoting effects on the progression of esophageal cell carcinoma. Conclusion Our finding revealed that circ_0014715 promoted tumor growth and cell proliferation. All of these suggest that targeting circ_0014715 has potential therapeutic value in the treatment of ESCC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Linling Ju
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Peipei Hu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, People's Republic of China
| | - Jun Ye
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Canlin Yang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| |
Collapse
|
48
|
Sun Y, Ge J, Tang W, Hong H, Liu D, Lin J. Hsa_circ_0045714 induced by eupatilin has a potential to promote fracture healing. Biofactors 2021; 47:376-385. [PMID: 33496034 DOI: 10.1002/biof.1707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/25/2020] [Indexed: 12/22/2022]
Abstract
It is thought that maintaining preosteoblast viability is constructive to fracture healing. Here, we explored the effects of eupatilin on preosteoblast and addressed the mechanism associated with hsa_circ_0045714. Blood specimens were collected from 32 patients with hand fracture or calcaneus fracture. MC3T3-E1 cells were treated with eupatilin. Small interfering-RNA was transfected into MC3T3-E1 cells. The ability of MC3T3-E1 cells to survive, proliferate, migrate, and express fracture-associated proteins was examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), 5-bromodeoxyuridine (BrdU), 24-Transwell, Quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot. Hsa_circ_0045714 was detected by qRT-PCR. NF-κB and PI3K/AKT were evaluated by Western blot. Eupatilin enhanced the survival, proliferation, and migration of MC3T3-E1 cells. Cyclin D1, cyclin E, collagen II, aggrecan, and sulfated glycosaminoglycan (sGAG) were upregulated, while MMP-13 was downregulated in eupatilin-treated cells. Hsa_circ_0045714 was increased in patients with hand and calcaneus fractures with the time-lapse of surgical operation. In eupatilin-treated cells, Hsa_circ_0045714 was also elevated. However, the beneficial effects of eupatilin were weakened in hsa_circ_0045714-deficient cells. Molecularly, eupatilin-induced blockage of NF-κB and activation of PI3K/AKT were abrogated in hsa_circ_0045714-silenced cells. Our results confirmed the beneficial effects of eupatilin in preosteoblast, indicating eupatilin was a promising candidate for fracture healing.
Collapse
Affiliation(s)
- Yan Sun
- The First Ward of Trauma Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Junbo Ge
- The First Ward of Trauma Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Weiwei Tang
- Department of Tramatic Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Huanyu Hong
- The First Ward of Trauma Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Dong Liu
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Jiangtao Lin
- The First Ward of Trauma Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
49
|
Li P, Zhu K, Mo Y, Deng X, Jiang X, Shi L, Guo C, Zhang W, Zeng Z, Li G, Xiong W, Zhang S, Gong Z. Research Progress of circRNAs in Head and Neck Cancers. Front Oncol 2021; 11:616202. [PMID: 33996542 PMCID: PMC8117014 DOI: 10.3389/fonc.2021.616202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Because of their characteristics of a closed loop structure, disease- and tissue-specificity, and high conservation and stability, circRNAs have the potential to be biomarkers for disease diagnosis. Head and neck cancers are one of the most common malignant tumors with high incidence rates globally. Affected patients are often diagnosed at the advanced stage with poor prognosis, owing to the concealment of anatomic sites. The characteristics, functions, and specific mechanisms of circRNAs in head and neck cancers are increasingly being discovered, and they have important clinical significance for the early diagnosis, treatment, and prognosis evaluation of patients with cancer. In this study, the generation, characteristics, and functions of circRNAs, along with their regulatory mechanisms in head and neck cancers have been summarized. We report that circRNAs interact with molecules such as transcription and growth factors to influence specific pathways involved in tumorigenesis. We conclude that circRNAs have an important role to play in the proliferation, invasion, metastasis, energy and substance metabolism, and treatment resistance in cancers.
Collapse
Affiliation(s)
- Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lei Shi
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wenling Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, Wei F. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med 2021; 25:4501-4515. [PMID: 33837664 PMCID: PMC8093972 DOI: 10.1111/jcmm.16541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
CDR1as is a well‐identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness‐related genes and impairs the cell's multi‐differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness‐related genes and enhances these abilities. Furthermore, our results indicate that the RNA‐binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness‐related genes in PDLSCs by inhibiting miR‐7‐mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.
Collapse
Affiliation(s)
- Xiuge Gu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ye Jin
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mengying Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|