1
|
Xin J, Chen Y, Zhang L, Ma L. E2F2 induces microglial activation and augments depressive-like behavior in mice by repressing PTPN6 transcription. Cytotechnology 2025; 77:66. [PMID: 39991704 PMCID: PMC11845659 DOI: 10.1007/s10616-025-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Depression is the leading contributor to disability and suicide ideation. Informed by the insights from bioinformatics analyses, this study investigates the roles of E2F transcription factor 2 (E2F2) and protein tyrosine phosphatase non-receptor type 6 (PTPN6) in the activation of microglia and the manifestation of depressive-like behavior in mice. Chronic unpredictable mild stress was applied to induce a mouse model of depression, while a cellular model featuring microglia was established through exposure to lipopolysaccharide and adenosine triphosphate. E2F2 was upregulated whereas PTPN6 was downregulated in these models. Notably, E2F2 was found to bind to the PTPN6 promoter, thereby repressing its transcription. Various behavioral tests demonstrated that silencing of E2F2, accomplished via shRNA transfection, led to increased locomotor activity, heightened social interaction rates, enhanced sucrose preference, and reduced immobility time in response to stress stimuli in mice. Furthermore, E2F2 silencing effectively reduced expression of Iba1, a microglial activation marker, and decreased concentrations of pro-inflammatory cytokines both in vivo and in vitro. However, these mitigating effects were countered by additional PTPN6 silencing. In conclusion, this study investigation underscores the role of E2F2 in promoting inflammatory activation of microglia and exacerbating depressive-like behavior in mice by repressing PTPN6 transcription.
Collapse
Affiliation(s)
- Jiali Xin
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang P.R. China
| | - Yao Chen
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang P.R. China
| | - Leijing Zhang
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang P.R. China
| | - Lan Ma
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang P.R. China
| |
Collapse
|
2
|
Kandror EK, Wang A, Carriere M, Peterson A, Liao W, Tjärnberg A, Fung JH, Mahbubani KT, Loper J, Pangburn W, Xu Y, Saeb-Parsy K, Rabadan R, Maniatis T, Rizvi AH. Enhancer Dynamics and Spatial Organization Drive Anatomically Restricted Cellular States in the Human Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632483. [PMID: 39829819 PMCID: PMC11741326 DOI: 10.1101/2025.01.10.632483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we report the spatial organization of RNA transcription and associated enhancer dynamics in the human spinal cord at single-cell and single-molecule resolution. We expand traditional multiomic measurements to reveal epigenetically poised and bivalent active transcriptional enhancer states that define cell type specification. Simultaneous detection of chromatin accessibility and histone modifications in spinal cord nuclei reveals previously unobserved cell-type specific cryptic enhancer activity, in which transcriptional activation is uncoupled from chromatin accessibility. Such cryptic enhancers define both stable cell type identity and transitions between cells undergoing differentiation. We also define glial cell gene regulatory networks that reorganize along the rostrocaudal axis, revealing anatomical differences in gene regulation. Finally, we identify the spatial organization of cells into distinct cellular organizations and address the functional significance of this observation in the context of paracrine signaling. We conclude that cellular diversity is best captured through the lens of enhancer state and intercellular interactions that drive transitions in cellular state. This study provides fundamental insights into the cellular organization of the healthy human spinal cord.
Collapse
Affiliation(s)
- Elena K. Kandror
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | | | - Alexis Peterson
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | | | - Andreas Tjärnberg
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Jun Hou Fung
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | - Krishnaa T. Mahbubani
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
| | - Jackson Loper
- Department of Statistics, University of Michigan Ann Arbor
| | - William Pangburn
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center
| | - Yuchen Xu
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
| | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center
| | - Tom Maniatis
- New York Genome Center
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center
| | - Abbas H. Rizvi
- Department of Neuroscience and Waisman Center, University of Wisconsin-Madison
- Lead contact
| |
Collapse
|
3
|
Li Y, Lei Z, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice. Cells 2024; 13:1584. [PMID: 39329765 PMCID: PMC11430243 DOI: 10.3390/cells13181584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| |
Collapse
|
4
|
Li Y, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the integrin CD11b mac-1 limits deleterious responses to traumatic spinal cord injury and improves functional recovery in mice. RESEARCH SQUARE 2024:rs.3.rs-4196316. [PMID: 38645238 PMCID: PMC11030505 DOI: 10.21203/rs.3.rs-4196316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Spinal cord injury (SCI) causes long-term sensorimotor deficits and posttraumatic neuropathic pain, with no effective treatment. In part, this reflects an incomplete understanding of the complex secondary pathobiological mechanisms involved. SCI triggers microglial/macrophage activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18, αMβ2 or CR3), a heterodimer consisting of αM (CD11b) and β2 (CD18) chains, is generally regarded as a pro-inflammatory receptor in neurotrauma. Multiple immune cells of the myeloid lineage express CD11b, including microglia, macrophages, and neutrophils. In the present study, we examined the effects of CD11b gene ablation on posttraumatic neuroinflammation and functional outcomes after SCI. Methods Young adult age-matched female CD11b knockout (KO) mice and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation in the injured spinal cord was assessed with qPCR, flow cytometry, NanoString, and RNAseq. Neurological function was evaluated with the Basso Mouse Scale (BMS), gait analysis, thermal hyperesthesia, and mechanical allodynia. Lesion volume was evaluated by GFAP-DAB immunohistochemistry, followed by analysis with unbiased stereology. Results qPCR analysis showed a rapid and persistent upregulation of CD11b mRNA starting from 1d after injury, which persisted up to 28 days. At 1d post-injury, increased expression levels of genes that regulate inflammation-resolving processes were observed in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen production in CD11b KO mice at d3 post-injury. Further examination of the injured spinal cord with NanoString Mouse Neuroinflammation Panel and RNAseq showed upregulated expression of pro-inflammatory genes, but downregulated expression of the reactive oxygen species pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Conclusion Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Thus, the integrin CD11b represents a potential target that may lead to novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yun Li
- University of Maryland School of Medicine
| | | | - Junyun He
- University of Maryland School of Medicine
| | - Simon Liu
- University of Maryland School of Medicine
| | - Li Zhang
- University of Maryland School of Medicine
| | - Junfang Wu
- University of Maryland School of Medicine
| |
Collapse
|
5
|
Yang S, Bao J, Shi R, Liu L, Wang Y, Hong X, Wu X. Bioinformatics-based diagnosis and evaluation of several pivotal genes and pathways associated with immune infiltration at different time points in spinal cord injury. Biotechnol Genet Eng Rev 2024; 40:65-91. [PMID: 36841940 DOI: 10.1080/02648725.2023.2178970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
Spinal Cord Injury (SCI) is a devastating neurological event. To assess the degree of spinal cord damage and classify the injury, it is recommended to use the 2019 version of the AIS standard. The severity of trauma was evaluated using the Trauma Severity Score, and various classification systems have been proposed for injuries at different parts and segments of the spine. Understanding the regulated signaling pathways and immune processes following SCI can lead to a better understanding of SCI-induced biomarkers and their underlying mechanisms. In this study, two gene expression datasets (GSE464 and GSE45006) from the Gene Expression Omnibus database were utilized. Differential gene expression and co-expression network analysis were performed, revealing 370 shared genes in the 3-day group and 111 shared genes in the 14-day group after SCI. The study used functional enrichment analysis methods such as Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. The ssGSEA method was used to assess the levels and composition of immune infiltration in both the sham (control) and SCI groups. The single-cell transcriptomics dataset GSE182803 was analyzed to identify genes associated with immune marker cells. Four key genes (Ptgs2, Fn1, Ccl2, and Icam1) were identified in the 3-day group, while only one gene (Cyp51) was identified in the 14-day group after SCI. The findings offer significant insights into the immune-related genes and signaling pathways involved in secondary SCI at different time points and hold potential for the development of intervention strategies for acute and chronic post-SCI.
Collapse
Affiliation(s)
- Shu Yang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Junping Bao
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Shi
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuntao Wang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xin Hong
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaotao Wu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Maiarù M, Acton RJ, Woźniak EL, Mein CA, Bell CG, Géranton SM. A DNA methylation signature in the stress driver gene Fkbp5 indicates a neuropathic component in chronic pain. Clin Epigenetics 2023; 15:155. [PMID: 37777763 PMCID: PMC10543848 DOI: 10.1186/s13148-023-01569-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies. Here, we investigated the epigenetic profile of the gene Fkbp5 for this potential, using targeted bisulphite sequencing in rodent pre-clinical models of chronic and latent hypersensitive states. RESULTS The Fkbp5 promoter DNA methylation (DNAm) signature in the CNS was significantly different between models of persistent pain, and there was a significant correlation between CNS and peripheral blood Fkbp5 DNAm, indicating that further exploration of Fkbp5 promoter DNAm as an indicator of chronic pain pathogenic origin is warranted. We also found that maternal separation, which promotes the persistency of inflammatory pain in adulthood, was accompanied by long-lasting reduction in Fkbp5 DNAm, suggesting that Fkbp5 DNAm profile may indicate the increased vulnerability to chronic pain in individuals exposed to trauma in early life. CONCLUSIONS Overall, our data demonstrate that the Fkbp5 promoter DNAm landscape brings novel insight into the differing pathogenic origins of chronic pain, may be able to stratify patients and predict the susceptibility to chronic pain.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, UK
| | - Richard J Acton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eva L Woźniak
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Ding Y, Chen F, Yang W, Fu X, Xie Y. SENP5 deteriorates traumatic brain injury via SUMO2-dependent suppression of E2F1 SUMOylation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1193-1203. [PMID: 37403456 PMCID: PMC10448041 DOI: 10.3724/abbs.2023121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 07/06/2023] Open
Abstract
Traumatic brain injury (TBI) represents a main public health concern during the past decade, attracting considerable interest because of its rising prevalence, wide-ranging risk factors and lifelong familial and societal influence. SUMO2 can conjugate to substrates upon various cellular stresses. Nevertheless, whether and how SUMO2-specific proteases partake in TBI is less understood. The aim of this study is to dissect the effects of SUMO-specific peptidase 5 (SENP5) on accentuating TBI in rats in an effort to unveil its underlying mechanism. SENP5 is overexpressed in hippocampal tissues of TBI rats, and inhibition of SENP5 reduces neurological function scores, decreases brain water content, inhibits apoptosis in hippocampal tissues, and attenuates brain injury caused in rats. Moreover, SENP5 inhibits the SUMOylation level of E2F transcription factor 1 (E2F1) and increases the protein expression of E2F1. Silencing of E2F1 blocks the p53 signaling pathway. Overexpression of E2F1 partially reverses the protective effect of sh-SENP5 on TBI in rats. These findings reveal an essential role of SENP5 and the SUMOylation status of E2F1 in the TBI development.
Collapse
Affiliation(s)
- Yanfu Ding
- College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310000China
- Kanglin Biotec (Hangzhou) Co.LtdHangzhou310000China
| | - Feifei Chen
- Kanglin Biotec (Hangzhou) Co.LtdHangzhou310000China
| | - Weitao Yang
- Kanglin Biotec (Hangzhou) Co.LtdHangzhou310000China
| | - Xiaobin Fu
- Kanglin Biotec (Hangzhou) Co.LtdHangzhou310000China
| | - Yuanyuan Xie
- College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310000China
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalZhejiang University of TechnologyHangzhou310000China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang ProvinceHangzhou310000China
| |
Collapse
|
8
|
Castany S, Bagó-Mas A, Vela JM, Verdú E, Bretová K, Svobodová V, Dubový P, Boadas-Vaello P. Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice. Int J Mol Sci 2023; 24:ijms24021761. [PMID: 36675275 PMCID: PMC9863935 DOI: 10.3390/ijms24021761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Karolina Bretová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Correspondence:
| |
Collapse
|
9
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
10
|
Burda JE, O'Shea TM, Ao Y, Suresh KB, Wang S, Bernstein AM, Chandra A, Deverasetty S, Kawaguchi R, Kim JH, McCallum S, Rogers A, Wahane S, Sofroniew MV. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 2022; 606:557-564. [PMID: 35614216 PMCID: PMC10027402 DOI: 10.1038/s41586-022-04739-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes respond to injury and disease in the central nervous system with reactive changes that influence the outcome of the disorder1-4. These changes include differentially expressed genes (DEGs) whose contextual diversity and regulation are poorly understood. Here we combined biological and informatic analyses, including RNA sequencing, protein detection, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and conditional gene deletion, to predict transcriptional regulators that differentially control more than 12,000 DEGs that are potentially associated with astrocyte reactivity across diverse central nervous system disorders in mice and humans. DEGs associated with astrocyte reactivity exhibited pronounced heterogeneity across disorders. Transcriptional regulators also exhibited disorder-specific differences, but a core group of 61 transcriptional regulators was identified as common across multiple disorders in both species. We show experimentally that DEG diversity is determined by combinatorial, context-specific interactions between transcriptional regulators. Notably, the same reactivity transcriptional regulators can regulate markedly different DEG cohorts in different disorders; changes in the access of transcriptional regulators to DNA-binding motifs differ markedly across disorders; and DEG changes can crucially require multiple reactivity transcriptional regulators. We show that, by modulating reactivity, transcriptional regulators can substantially alter disorder outcome, implicating them as therapeutic targets. We provide searchable resources of disorder-related reactive astrocyte DEGs and their predicted transcriptional regulators. Our findings show that transcriptional changes associated with astrocyte reactivity are highly heterogeneous and are customized from vast numbers of potential DEGs through context-specific combinatorial transcriptional-regulator interactions.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Keshav B Suresh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ashu Chandra
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandeep Deverasetty
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sarah McCallum
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexandra Rogers
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shalaka Wahane
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Sabina S, Panico A, Mincarone P, Leo CG, Garbarino S, Grassi T, Bagordo F, De Donno A, Scoditti E, Tumolo MR. Expression and Biological Functions of miRNAs in Chronic Pain: A Review on Human Studies. Int J Mol Sci 2022; 23:ijms23116016. [PMID: 35682695 PMCID: PMC9181121 DOI: 10.3390/ijms23116016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic pain is a major public health problem and an economic burden worldwide. However, its underlying pathological mechanisms remain unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in physiological and pathological processes. This review aims to synthesize the human studies examining miRNA expression in the pathogenesis of chronic primary pain and chronic secondary pain. Additionally, to understand the potential pathophysiological impact of miRNAs in these conditions, an in silico analysis was performed to reveal the target genes and pathways involved in primary and secondary pain and their differential regulation in the different types of chronic pain. The findings, methodological issues and challenges of miRNA research in the pathophysiology of chronic pain are discussed. The available evidence suggests the potential role of miRNA in disease pathogenesis and possibly the pain process, eventually enabling this role to be exploited for pain monitoring and management.
Collapse
Affiliation(s)
- Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, c/o ex Osp. Di Summa, Piazza Di Summa, 72100 Brindisi, Italy;
| | - Carlo Giacomo Leo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via Edoardo Orabona, 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Correspondence: ; Tel.: +39-(08)-3229-8860
| | - Maria Rosaria Tumolo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| |
Collapse
|
12
|
E2F1 Expression and Apoptosis Initiation in Crayfish and Rat Peripheral Neurons and Glial Cells after Axonal Injury. Int J Mol Sci 2022; 23:ijms23084451. [PMID: 35457270 PMCID: PMC9026502 DOI: 10.3390/ijms23084451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrauma is among the main causes of human disability and mortality. The transcription factor E2F1 is one of the key proteins that determine the fate of cells. The involvement of E2F1 in the regulation of survival and death of peripheral nerve cells after axotomy has not been previously studied. We, for the first time, studied axotomy-induced changes in the expression and localization of E2F1 following axonal injury in rats and crayfish. Immunoblotting and immunofluorescence microscopy were used for the analysis of the expression and intracellular localization of E2F1 and its changes after axotomy. To evaluate whether this transcription factor promotes cell apoptosis, we examined the effect of pharmacological inhibition of E2F activity in axotomized rat models. In this work, axotomy caused increased expression of E2F1 as early as 4 h and even 1 h after axotomy of mechanoreceptor neurons and ganglia of crayfish ventral nerve cord (VNC), as well as rat dorsal root ganglia (DRG). The level of E2F1 expression increased both in the cytoplasm and the nuclei of neurons. Pharmacological inhibition of E2F demonstrated a pronounced neuroprotective activity against axotomized DRGs. E2F1 and downstream targets could be considered promising molecular targets for the development of potential neuroprotective agents.
Collapse
|
13
|
Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, Lin J, Yin J, Li H, Cui L, Lin Z, Cai Y. Peripheral Blood Circular RNAs as a Biomarker for Major Depressive Disorder and Prediction of Possible Pathways. Front Neurosci 2022; 16:844422. [PMID: 35431783 PMCID: PMC9009243 DOI: 10.3389/fnins.2022.844422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and have been reported to be associated with neuropsychiatric diseases, but their potential role in major depressive disorder (MDD) remains unclear. Here, we demonstrated that there was a disorder of circRNAs in the blood of MDD patients. It has been preliminarily proved that hsa_circ_0002473, hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 were highly expressed in MDD patients and can be used as diagnostic markers for MDD. Bioinformatics analysis revealed that hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 may affect the neuroplasticity of MDD through the ceRNA mechanism.
Collapse
Affiliation(s)
- Dandan Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - RunSen Chen
- Department of Rehabilitation Medicine Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hezhan Li
- School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Zhixiong Lin,
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yujie Cai,
| |
Collapse
|
14
|
Caldi Gomes L, Galhoz A, Jain G, Roser A, Maass F, Carboni E, Barski E, Lenz C, Lohmann K, Klein C, Bähr M, Fischer A, Menden MP, Lingor P. Multi-omic landscaping of human midbrains identifies disease-relevant molecular targets and pathways in advanced-stage Parkinson's disease. Clin Transl Med 2022; 12:e692. [PMID: 35090094 PMCID: PMC8797064 DOI: 10.1002/ctm2.692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process. METHODS Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies. RESULTS Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function. CONCLUSIONS This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Department of NeurologyRechts der Isar HospitalTechnical University of MunichMünchenGermany
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Ana Galhoz
- Helmholtz Zentrum München GmbH ‐ German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Anna‐Elisa Roser
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Fabian Maass
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Eleonora Carboni
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Elisabeth Barski
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Christof Lenz
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Mathias Bähr
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Michael P. Menden
- Helmholtz Zentrum München GmbH ‐ German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
- German Centre for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Paul Lingor
- Department of NeurologyRechts der Isar HospitalTechnical University of MunichMünchenGermany
- German Center for Neurodegenerative Diseases (DZNE)MünchenGermany
| |
Collapse
|
15
|
Abstract
E2F transcription factor 2 (E2F2) is a member of the E2F family of transcription factors. The classical view is that some E2Fs act as "activators" and others "inhibitors" of cell cycle gene expression. However, the so-called "activator" E2F2 is particularly enigmatic, with seemingly contradictory roles in the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. How can we rationalize the apparently opposing functions of E2F2 in different situations? This is difficult because different methods of studying E2F2 have yielded conflicting results, so extrapolating mechanisms from an observed endpoint is challenging. This review will attempt to summarize and clarify these issues. This review focuses on genetic studies that have helped elucidate the biological functions of E2F2 and that have enhanced our understanding of how E2F2 is integrated into pathways controlling the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. This review will also discuss the function of E2F2 in cancer and other diseases. This review provides a strong basis for further research on the biological function and clinical potential of E2F2.
Collapse
Affiliation(s)
- Luwen Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Shiguan Wang
- Medical College, Shandong University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| |
Collapse
|
16
|
Li Y, Ritzel RM, He J, Cao T, Sabirzhanov B, Li H, Liu S, Wu LJ, Wu J. The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain Behav Immun 2021; 91:267-283. [PMID: 33039662 PMCID: PMC7749852 DOI: 10.1016/j.bbi.2020.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Tissue acidosis is an important secondary injury process in the pathophysiology of traumatic spinal cord injury (SCI). To date, no studies have examined the role of proton extrusion as mechanism of pathological acidosis in SCI. In the present study, we hypothesized that the phagocyte-specific proton channel Hv1 mediates hydrogen proton extrusion after SCI, contributing to increased extracellular acidosis and poor long-term outcomes. Using a contusion model of SCI in adult female mice, we demonstrated that tissue pH levels are markedly lower during the first week after SCI. Acidosis was most evident at the injury site, but also extended into proximal regions of the cervical and lumbar cord. Tissue reactive oxygen species (ROS) levels and expression of Hv1 were significantly increased during the week of injury. Hv1 was exclusively expressed in microglia within the CNS, suggesting that microglia contribute to ROS production and proton extrusion during respiratory burst. Depletion of Hv1 significantly attenuated tissue acidosis, NADPH oxidase 2 (NOX2) expression, and ROS production at 3 d post-injury. Nanostring analysis revealed decreased gene expression of neuroinflammatory and cytokine signaling markers in Hv1 knockout (KO) mice. Furthermore, Hv1 deficiency reduced microglia proliferation, leukocyte infiltration, and phagocytic oxidative burst detected by flow cytometry. Importantly, Hv1 KO mice exhibited significantly improved locomotor function and reduced histopathology. Overall, these data suggest an important role for Hv1 in regulating tissue acidosis, NOX2-mediated ROS production, and functional outcome following SCI. Thus, the Hv1 proton channel represents a potential target that may lead to novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Mariot V, Joubert R, Marsollier AC, Hourdé C, Voit T, Dumonceaux J. A Deoxyribonucleic Acid Decoy Trapping DUX4 for the Treatment of Facioscapulohumeral Muscular Dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1191-1199. [PMID: 33312755 PMCID: PMC7701011 DOI: 10.1016/j.omtn.2020.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by a loss of repressive epigenetic marks leading to the aberrant expression of the DUX4 transcription factor. In muscle, DUX4 acts as a poison protein though the induction of multiple downstream genes. So far, there is no therapeutic solution for FSHD. Because DUX4 is a transcription factor, we developed an original therapeutic approach, based on a DNA decoy trapping the DUX4 protein, preventing its binding to genomic DNA and thereby blocking the aberrant activation of DUX4's transcriptional network. In vitro, transfection of a DUX4 decoy into FSHD myotubes reduced the expression of the DUX4 network genes. In vivo, both double-stand DNA DUX4 decoys and adeno-associated viruses (AAVs) carrying DUX4 binding sites reduced transcriptional activation of genes downstream of DUX4 in a DUX4-expressing mouse model. Our study demonstrates, both in vitro and in vivo, the feasibility of the decoy strategy and opens new avenues of research.
Collapse
Affiliation(s)
- Virginie Mariot
- NIHR GOSH Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Romain Joubert
- NIHR GOSH Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Anne-Charlotte Marsollier
- NIHR GOSH Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Christophe Hourdé
- Inter-University Laboratory of Human Movement Biology (LIBM), EA7424 Université Savoie Mont Blanc, Campus Scientifique Technolac, 73376 Le Bourget du Lac Cedex, France
| | - Thomas Voit
- NIHR GOSH Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Julie Dumonceaux
- NIHR GOSH Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry/Londonderry BT47 6SB, Northern Ireland, UK
| |
Collapse
|
18
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
19
|
Li Y, Ritzel RM, Khan N, Cao T, He J, Lei Z, Matyas JJ, Sabirzhanov B, Liu S, Li H, Stoica BA, Loane DJ, Faden AI, Wu J. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Am J Cancer Res 2020; 10:11376-11403. [PMID: 33052221 PMCID: PMC7545988 DOI: 10.7150/thno.49199] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.
Collapse
|
20
|
Zhang W, Yu T, Cui X, Yu H, Li X. Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA‐101 expression and the E2F2–TLR4–NF‐κB axis. Exp Physiol 2020; 105:1588-1597. [PMID: 32706450 DOI: 10.1113/ep088596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Tingting Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xiangyan Cui
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Hong Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xinbai Li
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| |
Collapse
|
21
|
Cao T, Matyas JJ, Renn CL, Faden AI, Dorsey SG, Wu J. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells 2020; 9:cells9051194. [PMID: 32403409 PMCID: PMC7290366 DOI: 10.3390/cells9051194] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.
Collapse
Affiliation(s)
- Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
22
|
Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes. J Proteomics 2020; 220:103753. [PMID: 32200115 DOI: 10.1016/j.jprot.2020.103753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Microglia, the resident immune cells of the brain, can exhibit a broad range of activation phenotypes, many of which have been implicated in several diseases and disorders of the central nervous system including those related to alcohol abuse. Given the complexity of global-scale molecular changes that define microglial activation, accurate phenotypic classification in the context of alcohol exposure is still lacking. We employed an optimized method for deep, quantitative proteome profiling of primary microglia in order to characterize their response to acute exposure to alcohol (ethanol) as well as the pro-inflammatory driver and TLR4 agonist, LPS. From this analysis, 5,062 total proteins were identified where 4,857 and 4,928 of those proteins were quantifiable by label-free quantitation in ethanol and LPS treatment groups, respectively. This study highlights the subtle, yet significant proteomic changes that occur in ethanol-treated microglia, which do not align with the robust pro-inflammatory phenotype induced by TLR4 activation. Specifically, our results indicate inhibition of several upstream regulators associated with inflammation, opposing effects on pathways such as phagocytosis upon comparison to TLR4-mediated pro-inflammatory phenotype, and a potential metabolic shift associated with increased expression of proteins related to OXPHOS and lipid homeostasis. Data are available via ProteomeXchange with identifier PXD14466. SIGNIFICANCE: Alcohol abuse has a significant impact on the central nervous system, which includes the pathophysiological mechanisms resulting from glial cell activation. Microglia, in particular, are the resident immune cells of the brain and exhibit a broad range of activation phenotypes. The molecular changes that drive microglial activation phenotype are complex and have yet to be fully characterized in the context of alcohol exposure. Our study highlights the first and most comprehensive characterization of alcohol-induced proteomic changes in primary microglia to date and has shed light on novel immune-related and metabolic pathways that are altered due to alcohol exposure. The results from this study provide an important foundation for future work aimed to understand the complexity of alcohol-induced microglial activation in vivo and other translational models of acute and chronic alcohol exposure.
Collapse
|
23
|
Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019; 12:67. [PMID: 31722751 PMCID: PMC6852955 DOI: 10.1186/s13072-019-0313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.
Collapse
Affiliation(s)
- Alexandra V Goodnight
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA
| | - Isaac Kremsky
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Embryonic Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yoon Hee Jung
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - James M Billingsley
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Sabirzhanov B, Matyas J, Coll-Miro M, Yu LL, Faden AI, Stoica BA, Wu J. Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell Death Dis 2019; 10:839. [PMID: 31685802 PMCID: PMC6828685 DOI: 10.1038/s41419-019-2079-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Jessica Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Marina Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Laina Lijia Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA. .,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Sabirzhanov B, Li Y, Coll-Miro M, Matyas JJ, He J, Kumar A, Ward N, Yu J, Faden AI, Wu J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav Immun 2019; 80:73-87. [PMID: 30807841 PMCID: PMC6660361 DOI: 10.1016/j.bbi.2019.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
NADPH oxidase (NOX2) is an enzyme that induces reactive oxygen species (ROS) and serves as a switch between the pro-inflammatory and neurorestorative microglial/macrophage phenotypes; such changes play an important role in neuropathic pain and motor dysfunction. Increased NOX2 expression after spinal cord injury (SCI) has been reported, and inhibition of NOX2 improves motor function. However, the underlying mechanisms of NOX2 in post-traumatic pain and motor deficit remain unexplored. In the present study, we report that depletion of NOX2 (NOX2-/-) or inhibition of NOX2 using NOX2ds-tat significantly reduced mechanical/thermal cutaneous hypersensitivity and motor dysfunction after moderate contusion SCI at T10 in male mice. Western blot (WB, 3 mm lesion area) and immunohistochemistry (IHC) showed that SCI elevates NOX2 expression predominantly in microglia/macrophages up to 8 weeks post-injury. Deletion of NOX2 significantly reduced CD11b+/CD45hiF4/80+ macrophage infiltration at 24 h post-injury detected by flow cytometry and 8-OHG+ ROS production at 8 weeks post-injury by IHC in both lesion area and lumbar enlargement. NOX2 deficiency also altered microglial/macrophage pro-inflammatory and anti-inflammatory balance towards the neurorestorative response. WB analysis showed robust increase of Arginase-1 and YM1 proteins in NOX2-/- mice. Furthermore, qPCR analysis showed significant up-regulation of anti-inflammatory cytokine IL-10 levels in NOX2-/- mice, associated with reduced microRNA-155 expression. These findings were confirmed in CD11b+ microglia/macrophages isolated from spinal cord at 3 days post-injury. Taken together, our data suggest an important role for IL-10/miR-155 pathway in regulating NOX2-mediated SCI-dysfunction. Thus, specific targeting of NOX2 may provide an effective strategy for treating neurological dysfunction in SCI patients.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Marino Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Nicole Ward
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jingwen Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201 USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201 USA.
| |
Collapse
|
26
|
RNA Sequencing of Peripheral Blood Revealed that the Neurotropic TRK Receptor Signaling Pathway Shows Apparent Correlation in Recovery Following Spinal Cord Injury at Small Cohort. J Mol Neurosci 2019; 68:221-233. [PMID: 30993646 DOI: 10.1007/s12031-019-01273-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) can be lethal; however, the precise mechanisms underlying healing are unclear, limiting the development of effective therapies. In this study, the molecular mechanisms involved in SCI were investigated. Clinical peripheral blood samples from normal individuals and patients with incomplete SCI (ISCI) and complete SCI (CSCI) were analyzed by RNA-Seq. The expression levels of EPHA4, CDK16, BAD, MAP2 Normal 2, EGR, and RHOB differed significantly between the SCI group and normal individuals, and these results were verified by q-PCR. A gene ontology (GO) enrichment analysis showed that differentially expressed genes were mostly enriched for the neurotrophin TRK receptor signaling pathway. We verified the expression of neurotrophic factors and found that they were all expressed most highly in the SCI group. The results of this study demonstrate that neurotrophic factors are highly expressed after SCI and the neurotrophin TRK receptor signaling pathway may be involved in the initiation of nerve system regeneration.
Collapse
|
27
|
Comparing effects of CDK inhibition and E2F1/2 ablation on neuronal cell death pathways in vitro and after traumatic brain injury. Cell Death Dis 2018; 9:1121. [PMID: 30401820 PMCID: PMC6219504 DOI: 10.1038/s41419-018-1156-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1−/−/E2F2−/− or E2F2−/− transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.
Collapse
|
28
|
Zhang S, Wang XJ, Li WS, Xu XL, Hu JB, Kang XQ, Qi J, Ying XY, You J, Du YZ. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Acta Biomater 2018; 77:15-27. [PMID: 30126591 DOI: 10.1016/j.actbio.2018.06.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022]
Abstract
Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. However, how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. Here, a polycaprolactone (PCL)/PSA hybrid nanofiber scaffold encapsulating glucocorticoid methylprednisolone (MP) is developed for SCI treatment. Rat models with spinal cord transection is established and the PCL/PSA/MP scaffold is transplanted into lesion area. PCL/PSA/MP scaffold decreases tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release by inhibiting ionized calcium-binding adapter molecule 1 (Iba1) positive microglia/macrophage activation and reduces apoptosis-associated Caspase-3 protein expression. In addition, the PCL/PSA/MP scaffold inhibits axonal demyelination and glial fibrillary acidic protein (GFAP) expression, increases neurofilament 200 (NF-200) expression and improves functional outcome by Basso, Beattie and Bresnahan (BBB) test. These results demonstrate the therapeutic potential of PSA hybrid nanofiber scaffold in promoting axonal growth and enhancing the functional recovery following SCI. STATEMENT OF SIGNIFICANCE Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. And how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. However, in vivo therapeutic effect of PSA scaffolds towards SCI is still lack of evidence and needs to be further explored. In this study, a novel electrospun polycaprolactone/PSA scaffold loaded with methylprednisolone (MP) was developed to achieve efficient therapeutic effects towards SCI. And we believe that it broadens the application of PSA for SCI treatment.
Collapse
|
29
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
30
|
Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, Lipinski MM. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis 2018; 9:476. [PMID: 29686269 PMCID: PMC5913300 DOI: 10.1038/s41419-018-0469-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
Necroptosis, a regulated necrosis pathway mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3), is induced following spinal cord injury (SCI) and thought to contribute to neuronal and glial cell death. However, mechanisms leading to activation of necroptosis after SCI remain unclear. We have previously shown that autophagy, a catabolic pathway facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner, is inhibited following SCI in rats. Our current data confirm that inhibition of autophagy also occurs after thoracic contusive SCI in the mouse model, as indicated by accumulation of both the autophagosome marker, LC3-II and autophagy cargo protein, p62/SQSTM1. This was most pronounced in the ventral horn neurons and was caused by rapid inhibition of lysosomal function after SCI. Interestingly, RIPK1, RIPK3, and the necroptosis effector protein MLKL also rapidly accumulated after SCI and localized to neurons with disrupted autophagy, suggesting that these events may be related. To determine if lysosomal dysfunction could contribute to induction of necroptosis, we treated PC12 cells and primary rat cortical neurons with lysosomal inhibitors. This led to rapid accumulation of RIPK1 and RIPK3, confirming that they are normally degraded by the lysosomal pathway. In PC12 cells lysosomal inhibition also sensitized cells to necroptosis induced by tumor necrosis factor α (TNFα) and caspase inhibitor. Imaging studies confirmed that RIPK1 partially localized to lysosomes in both untreated and lysosomal inhibitor treated cells. Similarly, we detected presence of RIPK1, RIPK3 and MLKL in both cytosol and at lysosomes after SCI in vivo. Furthermore, stimulation of autophagy and lysosomal function with rapamycin treatment led to decreased accumulation of RIPK1 and attenuated cell death after SCI. These data suggest that lysosomal dysfunction after SCI may contribute to both inhibition of autophagy and sensitize cells to necroptosis by promoting RIPK1 and RIPK3 accumulation.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yun Li
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Harry M C Choi
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eugene Y Koh
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Marta M Lipinski
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets. J Hum Genet 2018. [PMID: 29531336 DOI: 10.1038/s10038-018-0419-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interstitial cystitis (IC), also known as bladder pain syndrome, is a chronic inflammatory disease that affects the bladder. The symptoms of IC vary, including feeling an urgent need for immediate urination and of needing to urinate often, as well as bladder or pelvic pain. Despite its high incidence, no molecular diagnostic methods are available for IC, and the molecular pathogenesis is unknown. microRNAs (miRNA) can regulate expression of RNA transcripts in cells and aberrant expression of miRNAs is associated with several human diseases. Here, we investigated the molecular pathogenesis of IC based on miRNA expression signatures. RNA sequencing of miRNA levels in IC tissues and comparison with levels in normal bladder tissue and bladder cancer revealed dysregulated expression of 366 miRNAs (203 and 163 down- and upregulated miRNAs, respectively). In particular, miR-320 family miRNAs(miR-320a, miR-320b, miR-320c, miR-320d and miR-320e) had downregulated expression in IC tissues. Genome-wide gene expression analyses and in silico database analyses showed that three transcription factors, E2F-1, E2F-2 and TUB, are regulated by miR-320 family miRNAs. Immunostaining of IC tissues confirmed that these transcription factors are overexpressed in IC tissues. Novel approaches that identify aberrantly expressed miRNA regulatory networks in IC could provide new prognostic markers and therapeutic targets for this disease.
Collapse
|
32
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|
33
|
Wu J, Zhao Z, Kumar A, Lipinski MM, Loane DJ, Stoica BA, Faden AI. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J Neurotrauma 2016; 33:1919-1935. [PMID: 27050417 DOI: 10.1089/neu.2015.4348] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive and depressive-like changes correlate with injury severity, we exposed mice to sham, mild, moderate, or severe SCI using the Infinite Horizon Spinal Cord Impactor and evaluated performance on a variety of neurobehavioral tests that are less dependent on locomotion. Cognitive impairment in Y-maze, novel objective recognition, and step-down fear conditioning tasks were increased in moderate- and severe-injury mice that also displayed depressive-like behavior as quantified in the sucrose preference, tail suspension, and forced swim tests. Bromo-deoxyuridine incorporation with immunohistochemistry revealed that SCI led to a long-term reduction in the number of newly-generated immature neurons in the hippocampal dentate gyrus, accompanied by evidence of greater neuronal endoplasmic reticulum (ER) stress. Stereological analysis demonstrated that moderate/severe SCI reduced neuronal survival and increased the number of activated microglia chronically in the cerebral cortex and hippocampus. The potent microglial activator cysteine-cysteine chemokine ligand 21 (CCL21) was elevated in the brain sites after SCI in association with increased microglial activation. These findings indicate that SCI causes chronic neuroinflammation that contributes to neuronal loss, impaired hippocampal neurogenesis and increased neuronal ER stress in important brain regions associated with cognitive decline and physiological depression. Accumulation of CCL21 in brain may subserve a pathophysiological role in cognitive changes and depression after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Marta M Lipinski
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|